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Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, 
tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains 
architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body 
as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as 
scaffolds for the construction of various intracellular structures. The term “architectural RNAs” was proposed to designate 
this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell 
nucleus and maintenance of the three-dimensional organization of the genome.
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Introduction

Sequencing of the genomes of humans and a number of 
other organisms has shown that coding sequences account 
for only 1.5–2% of the total length of the genome [1]. 
The functions of the rest of the genome were unclear. It 
was even suggested that the part of the genome that was 
proposed to be referred to as junk DNA does not carry 
any functions at all and is, in a sense, “parasitic”. How-
ever, subsequent studies have shown that at least 70% of 
the entire genome is transcribed [2, 3]. The transcripts of 
the non-coding part of the genome perform various func-
tions, including regulatory and architectural functions. 
The idea that non-coding RNAs can participate in main-
taining the structure and functional compartmentalization 
of the cell nucleus arose long ago, when it was demon-
strated that inhibition of transcription, or treatment of 
nuclei with RNase leads to significant changes in nucleus 

organization. At that time, these observations were inter-
preted in terms of the participation of RNA in the forma-
tion of the nuclear matrix, which was considered to be 
the structural platform for intranuclear compartmentaliza-
tion [4–8]. Subsequent studies have demonstrated that a 
cytoskeleton-like nuclear matrix does not exist [9], which, 
however, does not exclude the role of RNA in maintain-
ing the structural and functional compartmentalization of 
the cell nucleus. Modern concepts of the structural and 
functional compartmentalization of the cell nucleus are 
largely based on the results of Thomas and Christoph 
Cremer’s laboratories, which demonstrated that relatively 
isolated chromosomal territories exist in the interphase 
nucleus (Fig. 1a). The chromosome territories intermingle 
with one another and collectively make up the chromatin 
domain. This domain is spanned by channels that together 
comprise the interchromatin compartment (IC) [10, 11]. 
The initial model placed IC mostly between chromosomal 
territories [11, 12]. With the increase of the resolution of 
microscopic analysis it becomes clear that IC spans chro-
mosome territories as well. Chromosome territories were 
found to be composed of chromatin globules and clusters 
of these globules (chromatin domain clusters) surrounded 
by IC [13–15]. Transcription is carried out at the border 
of the chromatin globules and IC in a so-called perichro-
matin layer (Fig. 1b) [16–18]. Newly synthesized tran-
scripts end up in the IC, which is used for their transport 
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to nuclear pores (Fig. 1b). The same compartment harbors 
various non-membrane bodies, such as nuclear speckles, 
paraspeckles, Cajal bodies, PML bodies et cetera [18]. 
RNA being one of the most represented macromolecules 
in the IC plays an important role in the formation of this 
compartment, thus performing an architectural function. 
In this context, the general properties of RNA are essen-
tial, which, for example, contributes to an increase in the 
mobility of components within macromolecular conden-
sates [19]. Furthermore, a number of non-coding RNAs 
constitute scaffolds for the assembly of various RNA–pro-
tein complexes, providing an increase in the local concen-
tration of certain proteins and the correct positioning of 
various components of the complex relative to each other. 
It was these RNAs that were proposed to be termed archi-
tectural RNAs. This review examines various aspects of 

RNA participation in the nuclear architecture functional 
compartmentalization.

Role of RNA in formation of cell nucleus 
global architecture

Taking into account the fact that a significant portion of 
primary transcripts is retained in the nucleus [20, 21], one 
would suppose that they should fulfill some function there. 
The contribution of that RNA to the nuclear architecture is, 
perhaps, the first that comes into mind. That is why numer-
ous attempts were made to elucidate the role of RNA in 
nuclear architecture. In initial experiments, two main strat-
egies were applied. Either transcription was inhibited by 
drugs, or nuclei were treated with RNase followed by micro-
scopic analysis. Both treatments were reported to cause 

Fig. 1   Compartmentalization of 
the cell nucleus. a A schematic 
of the cell nucleus depicting 
the existence of chromosome 
territories and interchromatin 
compartment (IC) harboring 
non-membrane nuclear bodies 
(liquid compartments). b A 
schematic view of a section of 
the nucleus showing chromo-
somal territories composed of 
chromatin globules. IC sur-
rounds and permeates chromo-
somal territories. Transcription 
occurs in a perichromatin layer 
that lines chromatin glob-
ules and is in direct contact 
with the IC, which contains 
various nuclear bodies, nascent 
transcripts, and RNA–protein 
complexes
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global reorganization of chromatin within nuclei. More 
specifically, aggregation of chromatin globules into clumps 
and repositioning of these clumps toward the nuclear lamina 
was observed in HeLa cells treated with RNase A [6]. It 
was also reported that treatment of permeabilized cells with 
RNase A affected the integrity of centromeric heterochro-
matin and caused the disintegration of chromocenters (clus-
ters of pericentromeric heterochromatin gathered around 
nucleoli) [22, 23]. Clearly, treatment of permeabilized cells 
with RNase is a rather crude experimental approach because 
the permeabilization itself may contribute to the observed 
effects. To overcome this problem, in some studies, RNase 
was delivered to living cells by microinjection [24]. The 
results essentially confirmed the observations made in per-
meabilized cells treated with RNase A. The most promi-
nent effect was the aggregation of chromatin clusters at the 
nuclear periphery [24]. Interestingly, the addition of purified 
nuclear RNA-to-RNA-depleted nuclei almost completely 
restored the initial pattern of chromatin distribution within 
these nuclei [24]. Taking into account the fact that RNA 
does not contribute to the assembly of nucleosomes, one 
would consider the participation of RNA in higher levels of 
chromatin packaging within the cell nucleus. The authors of 
the above-cited study [24] proposed that a specific fraction 
of Pol II transcripts termed “chromatin-interlinking RNAs” 
contribute to the maintenance of the transcriptionally active 
de-condensed perichromatin layer that is located on the sur-
face of interchromatin channels.

Recently, the contribution of RNA to the global organiza-
tion of chromatin was addressed by Hi-C analysis of RNase-
treated nuclei. It was reported that this treatment did not 
affect the TAD boundaries and slightly compromised spa-
tial interactions within the inactive chromatin compartment 
(B-compartment) [25]. The latter may be due to extra-com-
paction (see above) that prevents long-distant interactions.

At first sight, all of the above-discussed observations 
do not show what the specific role of RNA is, if any, in 
maintaining the architecture of the cell nucleus. How-
ever, it is worth considering them in the context of the 
hypothesis that chromatin as a whole and the interchroma-
tin domain constitute two phase-separated compartments 
within the cell nucleus [26, 27]. Although the existence 
of the interchromatin compartment is well supported by 
experimental data [18], the forces ensuring the existence 
of this compartment (in other words, the forces prevent-
ing the collapse of large chromatin masses) remain largely 
unclear. Taking into account the emerging role of liquid 
phase separation in biological systems, it is tempting to 
propose that the IC as a whole represents a phase-sepa-
rated milieu distinct from the chromatin domain and from 
nuclear bodies immersed into this milieu. RNA molecules 
transported along the IC constitute an important archi-
tectural component of the IC, providing a scaffold for 

the assembly of nuclear hnRNP and other RNA–protein 
complexes [28–30]. Under certain conditions, intrinsi-
cally disordered protein − RNA complexes are able to 
form vesicle-like assemblies. These nucleoprotein vesi-
cles remain highly dynamic and can undergo a reversible 
vesicle-to-droplet phase transition in response to certain 
stimuli. [31]. In addition, RNA molecules themselves pos-
sess an ability to establish multivalent interactions that can 
drive the assembly of liquid condensates [32–35]. Recent 
evidence suggests that the chromatin domain is more solid 
or gel like [36, 37] and is maintained by polymer–polymer 
phase separation [38, 39]. In this case, the driving force 
behind the process is the formation of bridges between 
nucleosomes located in spatial proximity, which is medi-
ated by chromatin-associated proteins. Bridging-induced 
collapse of a chromatin fiber can be considered as coil-
globule transition. Polymer–polymer phase separation 
does not require any interactions among bridging proteins. 
The fluid that surrounds the nucleosomes within collapsed 
globules does not necessarily phase-separate [38, 39]. 
Comparing to chromatin domain, the IC is more fluid, and 
RNA is likely to prevent gelation and enhance fluidity [19, 
40]. Chromatin masses are mostly excluded from the IC 
with the exception of active genes that are located in the 
perichromatin layer [16–18] and can even loop out into 
the IC, being attracted to transcription factories (Fig. 1b) 
[41–43]. The location of active genes at the surface of the 
IC is likely driven by a high level of histone acetylation 
[44]. Besides, nascent transcripts that “belong” to the IC 
[30] constitute an additional anchor of transcribing genes.

To conclude this section, it is necessary to emphasize 
two important points. First, the above-described organi-
zation is highly dynamic. Digestion of nuclear RNA is 
expected to cause a collapse of the IC. Consequently, the 
chromatin masses become more aggregated, as was indeed 
observed in the above-cited studies [6, 24]. Other treat-
ments, such as high-salt extraction, result in the aggrega-
tion of the RNA and proteins present in the IC, giving rise 
to a filament mesh termed an “internal nuclear matrix”, 
which is in fact a cast of the IC channels [9]. Second, 
although RNA certainly plays an architectural role in 
global nuclear organization, this role can hardly be attrib-
uted to a particular kind of transcript. Rather, the entire 
pull of primary transcripts is involved, and the contribu-
tion of these transcripts to the organization of the internal 
nuclear space is temporal and secondary to other more 
specific functions.
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Non‑coding RNAs as scaffolds 
for the assembly of membraneless nuclear 
bodies and other DNA protein complexes

Being a flexible molecule capable of interacting with a 
number of RNA-binding proteins in a sequence-specific 
fashion, RNA is an ideal candidate for the scaffold direct-
ing the assembly of proteins (RNA–protein complexes). 

Many non-coding RNAs possess complementary regions 
of different lengths. Pairing of these regions may either 
support a specific folding of individual RNAs or result 
in the association of multiple RNAs in a mesh. Recruit-
ing RNA-binding proteins to this mesh would increase 
their local concentration to the threshold level necessary 
to trigger the formation of liquid condensates via interac-
tions of the intrinsically disordered regions present in vari-
ous RNA-binding proteins (Fig. 2a). In another scenario, 

Fig. 2   RNA as a scaffold for the assembly of phase condensates and 
protein complexes. a Formation of an RNA–protein condensate on 
a scaffolding RNA mesh generated by pairing of RNAs containing 
complementary regions. Increase in the local concentration of RNA-

bound proteins above a threshold level leads to phase separation. The 
formed condensate may retain proteins that are not directly bound to 
RNA. b Assembly of RNA–protein complexes on a folded RNA scaf-
fold ensuring correct mutual positioning of interacting proteins
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folded RNA may ensure the mutual positioning of RNA-
binding proteins that is necessary for their assembly in 
complexes stabilized by specific protein–protein inter-
actions (Fig. 2b). This scaffolding function of RNA has 
been known since it was demonstrated that both subunits 
of the translation machine—the ribosome—were assem-
bled on rRNA scaffolds that determine both the shape of 
ribosomal subunits and mutual positions of individual 
proteins in the assembly [45–47]. The ribosomal RNAs 
perfectly fit the definition of architectural RNA that was 
suggested to designate RNAs that direct the assembly of 
paraspeckles and several other nuclear bodies [48, 49]. 
Current studies have demonstrated that non-coding RNAs 
serve as scaffolds for the assembly and maintaining of 
various membraneless nuclear compartments (nuclear 
bodies) [50–52]. Paraspeckles constitute a good example. 
These are small nuclear bodies that are frequently located 
close to speckles. Similarly to other nuclear compartments, 
paraspeckles are involved in the realization of multiple 
functions, including (i) nuclear retention of mRNA via 
the adenine to inosine editing process [53], (ii) temporal 
retention of various regulatory proteins [54, 55], and (iii) 
microRNA processing [56]. Paraspeckles disappear upon 
transcription arrest, suggesting that RNA plays a structural 
function in these nuclear bodies [57]. A specific lncRNA, 
NEAT1 was found to provide a scaffold for the assembly 
of paraspeckles [58, 59], reviewed in [60]. This RNA pos-
sesses affinity sites for the RNA-binding proteins NONO, 
SFPQ, RBM14, hnRNP K, FUS, DAZAP1, and hnRNP 
H3. Each paraspeckle contains approximately 50 NEAT1 
RNA molecules held together by RNA–RNA interactions 
[61]. In addition, the above-mentioned RNA-binding pro-
teins associated with NEAT1 interact with each other and 
with other proteins, triggering the assembly of a molecu-
lar condensate via phase separation [60, 62]. A number 
of paraspeckle proteins, including FUS and RBM14 that 
directly interact with NEAT1 RNA, possess intrinsically 
disordered domains capable of establishing multivalent 
interactions resulting in the assembly of phase-separated 
condensates [60]. The association of these proteins with 
NEAT1 apparently increases their local concentration 
above a threshold value, enabling the assembly of par-
aspeckles via phase separation. Besides increasing local 
concentration, the binding of proteins to specific sites on 
NEAT1 RNA may ensure the mutual positioning of these 
proteins, favoring their interaction.

In addition to paraspeckles, several other nuclear bod-
ies built on scaffolds of specific lncRNAs were described. 
Among them are nuclear stress bodies assembled on a scaf-
fold of satellite III lncRNA [63, 64], a perinucleolar com-
partment assembled on a scaffold of pyrimidine-rich non-
coding RNA [65], and Omega speckles built on Drosophila 
heat shock RNA Omega [66]. Of note, scaffolding RNAs 

are often transcribed from repetitive sequences and contain 
repeated motives recognized by RNA-binding proteins. This 
modularity certainly increases the capabilities of such scaf-
folds to provide an increase in the local concentration of 
these RNA-binding proteins [67]. It should be mentioned 
that conventional bioinformatics tools frequently exclude 
from the analysis transcripts of repetitive sequences as well 
as transcripts containing internal repeats. Hence, many 
architectural RNAs in this category may remain uncharac-
terized. In some cases, RNA scaffolds enriched in tandem 
repeats may arise due to the expansion of short repeats in 
transcribed non-coding DNA sequences, which is associ-
ated with the occurrence of a number of neurological and 
neuromuscular diseases [68–72].

Although nuclear bodies built on the scaffolds of specific 
RNAs have attracted the most attention of the scientific com-
munity, in some cases, any transcripts can play the role of 
a scaffold. The repair foci constitute a good example. It has 
been shown that DDR recruits Pol II and other components 
of the transcription machinery that initiate RNA synthesis. 
The products of this synthesis—termed damage-induced 
long non-coding RNA (dilncRNA)—drive the assembly of 
liquid condensates that contain 53BP and other DDR pro-
teins [73, 74]. Of note, DDR foci are disassembled upon 
RNase treatment [75, 76], suggesting that they are assem-
bled on an RNA scaffold. Similarly, enhancer RNA (eRNA) 
appears to serve as a scaffold for the assembly of liquid con-
densates on superenhancers [77].

It should be mentioned that the exact nature of nuclear 
bodies scaffolded by RNA is not always well established. 
Although most of the authors tend to consider nuclear bod-
ies as liquid condensates, some of them do not possess all 
expected features of liquid condensates [78]. The role of 
different modes of phase separation in the organization of 
the cell nucleus has been extensively discussed in several 
resent reviews [26, 79–81]. For our current discussion, the 
exact nature of a nuclear body is not of primary interest. We 
are rather interested in whether this nuclear body is scaf-
folded by RNA.

Architectural role of lncRNA in higher order 
chromatin folding

The role of lncRNA in maintaining the higher order chro-
matin folding may be described by two scenarios: (i) scaf-
folding of protein complexes mediating histone modifica-
tion and targeting these complexes to particular areas of the 
genome and (ii) establishing links between remote genomic 
elements. As frequently occurs in nature, these scenarios 
are not mutually exclusive. Nevertheless, below, we shall 
discuss each of them separately.
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Scaffolding of protein complexes mediating histone 
modification and/or targeting these complexes 
to particular areas of the genome

Many lncRNAs work in cis via the scaffolding of an assem-
bly of liquid condensates close to the sites of lncRNAs 
transcription. These condensates may recruit (retain) his-
tone-modifying enzymes due to their affinity to either the 
scaffolding RNA itself or to some RNA-binding proteins 
interacting with this RNA (Fig. 3a). This scenario can be 
exemplified by the MSL complex mediating the hyperactiva-
tion of the drosophila male X chromosome. RoX1 and RoX2 
RNAs are integral parts of the MSL complex [82]. Their 
functions are partially redundant and include both scaffold-
ing and targeting of the complex to the affinity sites on the 

X chromosome. Interestingly, the binding sites for MSL2, 
one of the key components of the MSL complex, are hidden 
in RoX1/2 RNAs by stable stem-loop structures that should 
be remodeled by MLE helicase to trigger the assembly of 
functional MSL complexes [83, 84]. MSL2 recruits other 
components of the MSL complex, including MOF histone 
acetyltransferase, which performs acetylation of histone H4 
at lysine K16, causing chromatin decompaction [85]. Of 
note, RoX and MSL2 form a stable condensate that ensures 
local trapping of the MSL complex close to the location of 
RoX transcription, thus ensuring its preferential spreading 
over the X chromosome [86]. These observations clarify an 
important question, namely: “Why does lncRNA-directed 
chromatin remodeling occur in cis close to the site of this 
lncRNA transcription and regions juxtaposed in the nuclear 

Fig. 3   Contribution of RNA to targeting chromatin-modifying com-
plexes. a Association of chromatin-modifying enzymes and other pro-
teins with nascent transcripts near the site of transcription may lead 
to the formation of a phase condensate, which may eventually incor-
porate remote genomic regions located in spatial proximity to the site 

of transcription that has nucleated assembly of the liquid condensate. 
b Delivery of a chromatin-modifying enzyme to a specific genomic 
site through interaction with RNA that forms RNA–DNA triplex or 
R-loop with the corresponding genomic site



5495Non‑coding RNAs in chromatin folding and nuclear organization﻿	

1 3

space to this site?”. A similar mechanism appears to oper-
ate during X-chromosome inactivation in mammalian cells. 
It has long been known that X-chromosome inactivation 
is directed by lncRNA Xist, which is spread along one of 
the two X chromosomes in female cells. Xist RNA recruits 
histone deacetylases and Polycomb complexes [87–89], 
which repress most of the genes in the inactive copy of the 
X chromosome. Spreading of Xist over X chromosomes 
begins from the site of transcription (Xist gene) and several 
secondary entry sites that are located nearby in the nuclear 
space [90] and marked by HAS sequences. The question 
regarding why Xist does not diffuse away from the X chro-
mosome remained obscure until a recent study demonstrated 
that a complex of Xist RNA with several proteins (PTBP19 
MATR3, TDP-43 and CELF11) bound to the affinity sites 
on this RNA form a condensate that significantly constrained 
the diffusion of Xist [91].

The expression of specific lncRNAs is typical for 
imprinted loci. Thus, lncRNA Kcnq1ot1 is paternally 
expressed antisense to the coding gene Kcnq1 [92]. This 
lncRNA interacts with H3K9- and H3K27-specific histone 
methyltransferases, introducing repressive marks into chro-
matin, and it appears to target these complexes to regions 
located nearby to the Kcnq1ot1 transcription site [93]. 
Another lncRNA involved in the establishment of imprint-
ing is Air (Airn) [94]. Recent evidence suggests that Airn 
mediates the silencing of non-overlapped distant genes via 
recruiting chromatin-modifying complexes, including PRC2 
[95]. Furthermore, the spreading of Airn from the transcrip-
tion site to the genes to be silenced appears to occur due to 
a spatial proximity of these regions [95]. The similarity to 
the mechanism of X-chromosome inactivation directed by 
Xist RNA seems clear. Of note, both Kcnq1ot1 and Airn 
act strictly in cis. It is, thus, possible that being complexed 
with proteins, these lncRNAs also form condensates, which 
restrict their diffusion.

The scaffolding function of RNA is not limited to the 
listed examples. Many lncRNAs were found to bind PRC2 
and other histone-modifying complexes [96]. The best-
studied example is HOTAIR, which serves as a scaffold for 
polycomb repressive complex 2 (PRC2) and the LSD1/CoR-
EST/REST complex [97]. In contrast to cis-acting lncRNAs, 
HOTAIR shuffles away from its parental locus (HOXC) and 
delivers chromatin-repressive complexes to HOXD genes 
located on another chromosome, thus fulfilling its function 
in trans [98]. In gastric cancer cells, lncRNA GCAWKR 
acts as a molecular scaffold of WDR5/KAT2A complexes 
involved in H3 Lys 4 (H3K4) trimethylation and H3K9 
acetylation [99], whereas lncRNA HOXA11-AS provides 
scaffolding for the chromatin modification factors PRC2, 
LSD1, and DNMT1 [100].

The mechanisms of attracting RNA complexes with vari-
ous enzymes to specific sites of the genome are not fully 

understood. Several studies have demonstrated that the for-
mation of RNA–DNA triplexes and R-loops directs lncRNA-
mediated genome targeting of the enzymes modifying epi-
genetic profiles (Fig. 3b) [101–106].

Establishing links between remote genomic 
elements

Several mechanisms can be considered by which lncRNAs 
establish contacts between distant regions of the genome: 
(i) direct bridging of two or more genomic regions via an 
RNA molecule, the different parts of which establish con-
tacts with these regions; (ii) assembly of a small liquid com-
partment (condensate) around an RNA cloud at the site of 
transcription and the subsequent fusion of this compartment 
with another compartment of a similar nature assembled at 
a remote genomic site; (iii) the contribution of lncRNA to 
the positioning of architectural proteins at specific genomic 
sites and the modulation of the architectural proteins’ activ-
ity (Fig. 4). There are experimental data suggesting that all 
three scenarios are realized. The first scenario (Fig. 4a) is 
exemplified by lncRNA Firre, which bears multiple copies 
of a binding motif for the DNA-associated protein SAFA 
(also referred to as hnRNPU) and mediates contacts between 
several genomic regions located on different chromosomes 
[107]. Similarly, multiple interactions with RNA, which are 
essential for Polycomb localization to chromatin, may serve 
to bridge remote chromatin regions together and potentially 
form Polycomb bodies [108, 109]. Association of genomic 
regions repressed by Polycomb complexes followed by for-
mation of a Polycomb body (a phase-separated nuclear com-
partment [110, 111]) is typical for various cells [112, 113]. 
It is believed that a high local concentration of repressive 
protein complexes within such compartment provides more 
stable repression [112]. Whatever is the exact biological 
function of Polycomb bodies, association of remote genomic 
fragments within such nuclear compartments shapes the 3D 
genome.

The other two mechanisms of bridging remote genomic 
regions with participation of lncRNAs also appear to operate 
in eukaryotic cells. Most of the enhancers are transcribed, 
giving rise to short bidirectional transcripts termed enhancer 
RNA (eRNA) [114, 115]. eRNAs interact with a number of 
RNA-binding proteins [116–118]. At least at a fraction of the 
enhancers’ assembly of eRNA complexes with RNA-binding 
proteins results in the formation of a phase-separated liquid 
compartment [119]. The fusion of such a compartment with 
a similar compartment assembled on a target promoter is 
likely to contribute to establishing enhancer-promoter loops 
(Fig. 4b). In line with this mechanism, a number of studies 
have demonstrated that the suppression of eRNA production 
compromises enhancer-promoter looping [117, 120–122].
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Besides the scaffolding assembly of condensates at 
enhancers, lncRNAs are also likely to modulate the posi-
tioning and function of architectural proteins, such as CTCF. 
CTCF possesses an RNA-binding domain, and the associa-
tion with RNA was found to be essential for CTCF dimeri-
zation [123, 124]. Transcription arrest results in a change 
of the profile of CTCF binding to genomic DNA and the 

disruption of at least some of the chromatin loops. Similar 
effects were observed when mutations were introduced in 
the DNA sequence encoding Zn fingers involved in RNA 
binding [124, 125]. These observations suggest that interac-
tion with RNA may ensure preferential CTCF binding to a 
subset of recognition sites (Fig. 4c). However, it is still not 
clear whether there is any specificity of CTCF interaction 

Fig. 4   RNA supports 3D genome architecture. a Trans-chromosomal 
contacts mediated by lncRNA Firre. b A mechanism of RNA-assisted 
promoter–enhancer communication based on fusing of phase conden-
sates formed around superenhancer and promoter with the assistance 

of RNA produced from superenhancer and promoter. c Preferential 
association of a DNA-binding protein with a subset of recognition 
sites in DNA modulated by association with lncRNA
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with particular RNAs. Of note, a special group of lncRNAs 
termed tapRNAs, which are enriched at TAD boundaries 
and DNA loop anchorage regions have been described. The 
tapRNA promoters frequently overlap CTCF binding sites, 
whereas tapRNAs themselves contain specific nucleotide 
sequence motives that are recognized by Zn fingers [126]. 
One may speculate that tapRNAs contribute to the position-
ing and dimerization of CTCF.

The cohesin complex plays an important role in the 3D 
genome organization [127]. This complex comprises a tri-
partite ring assembled from SMC1, SMC3, and RAD21 and 
an additional stromal antigen subunit STAG1 or STAG2. 
A recent study demonstrated that both STAG1 and STAG2 
possess the ability to bind RNA and directly interact with 
regions containing R loops on dsDNA substrates. Further-
more, in living cells, R loops and SA1/SA2 colocalize at 
a substantial subset of promoter sites. Taking into account 
some previous observations [128], the authors propose that, 
being recruited by promoter and enhancer RNAs, cohesin 
complexes containing a STAG2 subunit may contribute to 
the formation of enhancer–promoter loops independently of 
CTCF [129].

Methods for genome‑wide analysis of RNA–
DNA interactions

Progress in studying nuclear lncRNAs and their functions 
in the nuclear architecture and 3D genome organization 
depends on the ability to identify a genome-wide spec-
trum of contacts between lncRNAs and genomic DNA. 
Until recently, only one group of “one-vs-all” biochemi-
cal approaches (ChIRP [130], Chart [131], and RAP [90]) 
had been widely used for addressing this question. These 
methods are based on the chemical or UV cross-linking of 
the DNA–protein–RNA complexes in vivo with subsequent 
purification of the specific complexes that contain a particu-
lar RNA with biotinylated complementary oligonucleotides 
and analysis of the associated DNA fragments via sequenc-
ing (Fig. 5a). The application of these methods allowed 
an extensive study of various lncRNAs, including those 
involved in the regulation of transcription, particularly in 
the context of dosage compensation (reviewed in [132]). A 
drawback of the above-cited methods is that only one RNA 
can be examined in one experiment. Besides, the experimen-
tal design requires that the target RNA be known beforehand 
(i.e., new RNAs associated with particular genome regions 
cannot be identified).

To address these problems, a group of “all-vs-all” meth-
ods (MARGI [133], GRID-seq [134], ChAR-seq [135], 
RADICL-seq [136], and Red-C [137]) has been developed 
recently, thanks to an increased cost-effectiveness of next-
generation sequencing, for the simultaneous identification 

of the sites of chromatin association for all RNA mol-
ecules present in the nucleus. The above-mentioned meth-
ods are based on proximity ligation of RNA and DNA in 
fixed nuclei via a specific bridge adapter, followed by the 
analysis of the chimeric RNA–DNA molecules by high-
throughput sequencing (Fig. 5b). The application of these 
methods disclosed the global RNA–DNA interactome, the 
analysis of which allowed researchers not only to support 
conclusions about the localization of well-known lncR-
NAs such as MALAT1 [133, 134], RoX [134, 135, 137], 
and XIST [137] but also to reveal new candidates for the 
role of architectural RNAs supporting the spatial genome 
organization. For example, using the Red-C technique, we 
identified two miRNAs that associate with the repressed 
chromatin genome wide and may, therefore, contribute to 
the formation of the heterochromatin nuclear compartment 
[137]. Notably, the analysis of the RNA–DNA interactome 
also permitted the features of protein-coding gene tran-
scription to be investigated. Being focused on the contacts 
between mRNA and its own gene, we showed that introns 
are spliced out immediately during transcription, thus 
providing new evidence for a co-transcriptional splicing 
model [137]. We also demonstrated that the majority of 
structural genes remain linear in the course of transcrip-
tion, refuting a popular model suggesting that actively 
transcribed genes are circularized [138].

Another “all-vs-all” strategy for the identification of 
RNA–DNA interactions is realized within the framework 
of SPRITE technology [139], which uses barcodes to label 
DNA and RNA molecules present in one nucleoprotein com-
plex (Fig. 5c). Using SPRITE, the organization of genomic 
DNA around two major types of RNA-containing nuclear 
compartments was revealed—around speckles that contain 
spliceosomal RNAs (active compartment) and around the 
nucleolus that contains ribosomal RNA (inactive compart-
ment). The application of a recent modification of SPRITE 
technology that specifically focuses on RNA–DNA interac-
tions [140] identified hundreds of lncRNAs that form stable 
nuclear compartments in spatial proximity to their transcrip-
tional loci and regulate genes contained within these loci. 
In addition, the results of this study support a key role of 
lncRNAs in the assembly of heterochromatin and various 
nuclear compartments, including speckles, nucleolus, Cajal 
bodies, and histone locus bodies [140].

An important advantage of SPRITE over ligation-based 
approaches is that SPRITE can be used for the analysis of 
multiplex interactions that occur simultaneously in the cell, 
whereas ligation-based approaches can only be used to probe 
pairwise interactions. Another ligation-free method capable 
of probing multiplex chromatin interactions (GAM [141]) 
is based on the sequencing of DNA collected from ultrathin 
cryosections of fixed nuclei. Although this method has been 
developed for the analysis of DNA–DNA interactions, it 
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potentially could be used for studying RNA–DNA interac-
tions as well.

In the context of this section, RNA immunoprecipitation 
(RIP) technique is also worth mentioning. In this technique, 
RNA–protein complexes isolated from fixed cells are sub-
jected to immunoprecipitation with antibodies against a pro-
tein of interest followed by the analysis of associated RNA 
fragments via sequencing. Being coupled with antibodies 
against chromatin proteins, RIP has long been used for the 
identification of functional lncRNAs operating on chromatin 

[142, 143]. The method, however, does not report genomic 
sites to which chromatin-associated RNAs are recruited and 
even does not answer a question of whether an RNA is asso-
ciated with genomic DNA in principle or just bound to a free 
nucleoplasmic protein.

It should be noted that all of the about-mentioned meth-
ods rely on cross-linking, which can potentially introduce 
artifacts [144]. It would be important to develop technolo-
gies allowing an analysis of RNA–DNA interactions in a 
more native context. A step in this direction was taken in a 

Fig. 5   Methods for studying RNA–chromatin interactions at a 
genome-wide scale. a “One-vs-all” technologies for mapping sites of 
chromosomal location for one selected RNA based on the hybridiza-
tion with complementary biotinylated oligonucleotides. b “All-to-all” 
technologies based on proximity ligation for generating genome-wide 

binding profiles for all RNA molecules present in the nucleus (exem-
plified by Red-C technique). c SPRITE, an “all-to-all” ligation-free 
technology based on split-pool ligation for identification of multiplex 
RNA–DNA interactions. d Mapping sites of RNA–chromatin interac-
tion in vivo with RNA–DamID technique
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recent study where a lncRNA of interest (RoX) was tagged 
with MS2 stem loops and coexpressed with MS2 coat pro-
tein (MCP) fused with Dam methyltransferase. Under these 
conditions, genomic regions occupied by RoX were selec-
tively methylated at GATC sequences, enabling the detection 
of RoX–genome interactions in vivo with high sensitivity 
and accuracy [145] (Fig. 5d). New approaches will certainly 
be of assistance for the in vivo functional characterization of 
an expanding list of lncRNAs operating in the cell nucleus.
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