Esame di Analisi matematica I: esercizi A.a. 2021-2022, sessione invernale, primo appello

COGNOME		NOME			
N. Matricola		Anno di	corso		
	Corso di	S. CUCCAGNA			
ESERCIZIO N. 1. Al variare di $a \in (0, +\infty)$ si calcoli					
	$\lim_{x \to 0^+} \frac{\log\left(e - 2ex\right)}{\ln x}$	$\frac{-a + x^{-2a}) - \tanh(\log x)}{\int_{1}^{e^{x^4}} \sin(\frac{1}{t}) dt}$			

2	Università degli Studi di Trieste – Ingegneria. Trieste, 10 gennaio 2022
ESERO inoltre l	CIZIO N. 2. Si determini l'insieme $E = \{z \in \mathbb{C} : Re\left(\frac{1}{1+z^2}\right) < 0\} \cap \{z \in \mathbb{C} : e^{Re(z)} < 1\}$ tracciando le soluzioni nel piano.

COGNOME e NOME	N. Matricola

ESERCIZIO N. 3. Studiare la funzione

$$f(x) = \begin{cases} \int_0^x e^{-\frac{1}{t}} \frac{1}{1+t} dt & \text{se } x > 0, \\ \int_0^x \frac{t}{t^3 - 1} dt & \text{se } x \le 0 \end{cases}$$

• si calcolino $\lim_{x \to \pm \infty} f(x)$;

 \bullet si calcoli f'(x) e si trovino eventuali punti di massimo e di minimo locali e assoluti;

 \bullet si stabilisca dove f(x) e' concava e dove e' covessa;

• si stabilisca se esistono rette asintotiche e si tracci il grafico .

$\int_0^\infty \log(1+\epsilon+\epsilon) d\epsilon$
(i) calcolare il polinomio di McLaurin $p_4(x)$ di $f(x)$ di ordine 4;
(ii) valutara l'arrora $ f(1) - g_1(1) $
(ii) valutare l'errore $ f(1) - p_4(1) $.