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A significant portion of the mammalian genome encodes
numerous transcripts that are not translated into proteins,
termed long non-coding RNAs. Initial studies identifying long
non-coding RNAs inferred these RNA sequences were a
consequence of transcriptional noise or promiscuous RNA
polymerase II activity. However, the last decade has seen a
revolution in the understanding of regulation and function of
long non-coding RNAs. Now it has become apparent that
long non-coding RNAs play critical roles in a wide variety of
biological processes. In this review, we describe the current
understanding of long non-coding RNA-mediated regulation
of cellular processes: differentiation, development, and
disease.

Introduction

Since the discovery of the structure of DNA and the
genetic code, the primary paradigm for gene expression has
been that of a DNA blueprint encoding RNA messengers,
which are then translated into functional proteins. This para-
digm became strongly embedded into the collective con-
sciousness of molecular biology with the coining of the term
“The Central Dogma of Molecular Biology”by Francis Crick,
and held true across all species.1 In the last 2 decades, how-
ever, exceptions have been emerging to the concept of pro-
teins as the sole effectors of the genetic code in organisms.
With the release of the human genome sequence, it became
clear that only a small fraction of DNA encodes proteins.2

However, a large proportion of the non-protein-coding

genome is transcribed temporally and spatially in a well-regu-
lated manner.3 The transcribed pool of this non-coding RNA
has given rise to a variety of new classes of regulatory RNA
molecules, which appear to have numerous functions in cellu-
lar differentiation, development, and disease (Table 1).4-7

In retrospect, the concept of functional RNA should
hardly be surprising; ribosomal RNAs (rRNAs) and transfer
RNAs (tRNAs) were discovered in the 1950s as the most
basic and essential components of cellular machinery of pro-
tein synthesis in all organisms.8 The discovery of small-inter-
fering RNAs and microRNAs established non-coding RNAs
as powerful regulators of development that could alter the
expression of hundreds of targets, and hold equal footing
with transcription factors as powerful controllers of gene
expression.9-12 Still, the functional categories of the majority
of the transcribed non-coding RNAs are difficult to predict
and they have poor evolutionary sequence conservation, indi-
cating either that a high level of transcriptional noise is pres-
ent in the cell, or that numerous uncharacterized, species-
specific classes of non-coding RNA exist.

Long non-coding RNAs (lncRNAs) are >200 bases long
with low or no protein coding potential. These RNAs often
regulate epigenetic silencing through chromatin remodeling.
They are also now known to regulate splicing, recruit tran-
scription factors, and regulate mRNA stability.13 Intersections
of ChIP-seq and RNA-seq studies have found thousands of
lncRNAs in both mice and humans.14-16 Since sequence con-
servation across species is poor, predicting the function of
these molecules is difficult, but contemporary experimental
approaches allow their genetic manipulation in vitro and in
vivo and the discovery of protein- and genomic-binding part-
ners. Such studies have established lncRNA molecules as
important regulators of diverse biological functions. This
review provides an update on the roles lncRNAs play during
cellular differentiation, development, and disease.
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Various Modes of Action of Long Non-coding RNA
in Regulating Gene Expression

Many long non-coding RNAs are encoded in regions proxi-
mal to the promoters of known coding genes, or as antisense
transcripts to coding genes. lncRNAs are regulated independently
of adjoining genes and have their own specific histone modifica-
tions and splicing signals; in some cases, lncRNAs are located in
genomic regions distant from known protein coding genes.13

Genomic maps of long intergenic non-coding RNAs now include
thousands of these RNAs in mice and humans. These non-coding
genes contain histone H3K4me3 marking transcriptional start
sites and H3K36me3 indicating actively transcribed regions.
RNA sequencing reveals that many of these genes produce tran-
scripts encoded by exons that are separated by introns, which are
spliced out using conventional splicing signals. However, as men-
tioned above, sequence conservation of lncRNAs between species
is much lower than that of protein-coding sequences; some of the
lncRNA sequences show higher evolutionary conservation than
that of non-expressed genomic sequences. In addition, many
lncRNAs are regulated by a number of important developmental

and homeostatic transcription factors.14,15 We describe below
several examples of how these lncRNAs regulate gene expression,
highlight their diverse modes of action, and their significance in
development and disease. A number of these examples are shown
in Table 1 and Figure 1.

X-chromosome-inactivating long non-coding RNAs
Xist is one of the earliest examples of lncRNA with a promi-

nent role in regulating X-chromosome inactivation (Fig. 1A). In
mammalian females, the majority of genes contained on one of
the 2 X-chromosomes in each cell are silenced, accounting for
the similar level of expression of these genes between females and
males. During female development, the non-coding RNA Xist is
transcribed from the X-chromosome that is destined to become
inactivated in each cell.17 Xist associates with the regions of the
chromosome that are to be silenced, resulting in the formation of
“Xist clouds” and recruitment of Polycomb Group Repressive
complex 2 (PRC2).18,19 PRC2 is comprised of Suz12, Eed/
Ezh1/Ezh2 (H3K27 methyltransferase) and RbAp48, and
represses promoters by trimethylation of H3K27. Another

Table 1. Prominent lncRNAs and their functions in development and disease

lncRNAs Organisms Functions Phenotypes/disease References

ANRIL/CDKN2B-AS1 Human Transcriptional regulation Prostate cancer, leukemia 5

Airn, Kcnq1ot1 Mouse Epigenetic regulation; Embryonic gene
activation

Growth defects; breast, colon carcinoma 57,58

Malat1 Mouse, Human Splicing, gene regulation Tumor; myoblast differentiaiton 5,34,35,38,71

HOTAIR Mouse, Human Hox gene regulation; Recruitment of
PRC2 and LSD1

Tumor formation; cancer metastasis 76-80

Hottip Chicken HoxA gene regulation Defect in limb formation 25

Xist, Tsix Mouse Dosage compensation Loss of function causes embryonic lethality 17-21

Fendrr, Braveheart Mouse, Human Heart development Loss of function causes embryonic lethality 73-75

Miat, Six3os1, Tug1, Vax2os Mouse Retinal development Defects in retinal specification;
photoreceptor differentiation

49,50,53,54,56

Dlx1os, Dlx6os1 Mouse Brain development Neurological deficit 51,52

Megamind Zebrafish Brain and eye development Defects in brain and eye development 55

H19 Mouse, Human Posttranscriptional regulation by
producing microRNAs

Skeletal muscle differentiation, regeneration,
cancer

65,67,81

SRA Mouse, Human Transcriptional activity of MyoD and
p53

Skeletal muscle differentiation; breast, uterus,
ovary tumor

30-33

Linc-MD1 Mouse, Human Sequestration of microRNAs Myogenic differentiation, Duchenne
Muscular Dystrophy

42

SINE-containing lncRNAs Mouse Staufen-mediated mRNA degradation Myogenic differentiation 72

bII NAT Mouse Suppress MHC IIb transcription Skeletal muscle development 70

CE, DRR lncRNAs Mouse Transcriptional regulation of MyoD Skeletal muscle differentiation 62

YAMS Mouse Transcriptional regulation Myogenic differentiation 69
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lncRNA, Tsix, is produced from
the Xist gene in the antisense
direction on the active X chromo-
some. Tsix antagonizes Xist to pre-
vent inactivation of the active X
chromosome.20 Interestingly, Xist
was recently used as an approach
for therapeutic intervention for
Down syndrome, a genetic disor-
der caused by trisomy of chromo-
some 21.21 In this work, the
authors introduced an inducible
Xist transgene into the DYRK1A
locus on chromosome 21 of
induced pluripotent stem (iPS)
cells derived from
Down syndrome patients and suc-
cessfully inactivated the extra
chromosome 21 by stable hetero-
chromatin formation.21 This find-
ing raises hope that lncRNAs will
have therapeutic applications,
especially when considered in tan-
dem with regenerative medicine.

Cis-acting long non-coding
RNAs

lncRNAs have important roles
in regulating transcription of
protein coding genes. lncRNAs
transcribed from enhancer
regions of protein coding genes,
called e-RNAs, often regulate the expression of adjoining protein
coding genes in cis through the recruitment of transcription fac-
tors.22-24 For example, Hottip lncRNA is a well-studied cis-acting
lncRNA expressed from the HOXA cluster.25 It activates tran-
scription of nearby genes by binding the MLL-WDR5 complex
and facilitating the addition of activating histone marks
(H3K4me3) to the gene promoter (Fig. 1C). The expression of
the bHLH transcription factor Neurogenin1 is dependent on the
expression of an e-RNA, utNgn1, encoded 7 kb upstream of the
Neurogenin1 transcriptional start site. Polycomb group proteins
suppress the expression of both utNgn1 and Neurogenin1, and
knockdown of utNgn1 results in reduction in Neurogenin1, sug-
gesting that the expression of Neurogenin1 is positively regulated
by the expression of the utNgn1 e-RNA.26

A group of these cis-acting e-RNAs, termed non-coding RNA
activating (ncRNAa), acts through recruitment of the transcriptional
co-activator Mediator (Fig. 1D). Mediator physically interacts with a
number of these lncRNAs, and depletion of these lncRNAs or of
Mediator decreases expression of adjacent target genes. This interac-
tion was found to facilitate chromatin looping of the adjacent genes,
leading to their transcriptional activation and expression.27 These
examples suggest that many enhancer-encoded lncRNAs in the
mammalian genome are essential for the cis-activating function of

their corresponding enhancers, at least in part, by facilitating DNA
looping so as to bring their target genes in proximity to protein fac-
tors required for transcription.

Trans-acting long non-coding RNAs
In addition to cis-acting lncRNAs, there are interesting exam-

ples of gene expression regulation by lncRNAs in trans, e.g., 7SK
and B2 lncRNAs.28,29 These lncRNAs impact global transcrip-
tion by negatively regulating RNA polymerase II (RNAP II)
activity. 7SK lncRNA negatively regulates transcription elonga-
tion factor PTEFb, while B2 lncRNA represses RNAP II activity
by binding RNAP II C-terminal domain (CTD) and inhibiting
its phosphorylation.28,29 Both of these lncRNAs are upregulated
in response to stress signals and, thus, shut down global transcrip-
tion, most likely for cellular protection.

A fascinating case of an lncRNA regulating transcription in trans
is that of the steroid receptor activator (SRA) gene, which encodes
both a protein (SRAP) and a functional lncRNA (SRA) that act as co-
regulators of nuclear receptor transcriptional activity (Fig. 1E).30 In
addition to nuclear receptors, SRA facilitates the transcriptional activ-
ity of p5331 and MyoD32 in different cellular and developmental
contexts. Overexpression of SRA RNA, but not SRA protein
(SRAP), along with MyoD, facilitates trans-differentiation of mouse
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Figure 1. lncRNAs regulate gene expression using diverse modes of action.
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fibroblasts to skeletal muscle. SRAP, on the other hand, inhibits mus-
cle differentiation by binding SRA RNA and preventing it from acti-
vating MyoD.33 This is a remarkable example of a gene encoding 2
products with opposing effects on transcription: a stimulatory
lncRNA and an inhibitory protein.

Long non-coding RNAs in alternative splicing of pre-
mRNAs

Alternative splicing of pre-mRNAs is an important event in
the regulation and diversification of gene function, with a major-
ity of multi-exonic human transcripts known to undergo alterna-
tive splicing. Several lncRNAs regulate alternative splicing. The
lncRNA Metastasis Associated Lung Adenocarcinoma Transcript 1
(Malat1), also known as Nuclear-Enriched Abundant Transcript 2
(Neat2) is an example of such a lncRNA (Fig. 1F).34 Malat1 was
originally discovered as a prognostic factor for metastasis in sev-
eral human cancers, including lung cancer, but its role in cellular
physiology remained elusive for many years.35 Alternative splic-
ing is regulated by several trans-acting protein factors including a
well-characterized class of RNA-binding proteins called the Ser-
ine Arginine (SR) family proteins.36,37 Malat1 is now known to
predominantly localize to nuclear speckles, the sites where other
splicing factors are often located, and believed to regulate the
alternative splicing of a large set of genes by recruiting SR splicing
factors to these nuclear speckles. Malat1 interacts with SR splic-
ing factors and both Malat1 and the interacting SR splicing fac-
tors are conserved among species.34 Despite this conservation,
however, alternative splicing is still seen in Malat1 knockout
mice or human knockout cell lines, suggesting the presence of
unidentified molecules or pathways that can substitute for
Malat1 in alternative splicing.38

Competing endogenous long non-coding RNAs
microRNAs bind to the 3’UTR of their target genes and nega-

tively regulate gene expression either by repressing translation or
by promoting mRNA decay in P bodies.39 microRNA sponging
was developed as an experimental strategy in which a designed
exogenous RNA with multiple target sites for a particular micro-
RNA is expressed to "sponge up" the cellular microRNA and
inhibit the repression of other cellular targets by the micro-
RNA.40 Interestingly, recent studies report naturally occurring
microRNA sponges, termed competing endogenous RNAs
(ceRNAs) (Fig. 1G).41 These ceRNAs consist of a variety of
RNA species that include protein-coding mRNAs, pseudogenes,
lncRNAs, and circular RNAs. These ceRNAs also cross-talk and
co-regulate each other by competing for binding of microRNAs
for which they share common target sites.41

linc-MD1 is a ceRNA with a role in skeletal muscle development
and disease. linc-MD1 plays a critical role in skeletal muscle differen-
tiation by titrating away miR-133 and miR-135 from their targets,
theMAML1 andMEF2CmRNAs.42MAML1 andMEF2CmRNAs
encode transcription factors that are induced during muscle differen-
tiation and are required for proper development. Excess linc-MD1
titrates away the microRNAs, de-repressesMAML1 andMEF2C and

thus promotes differentiation. Conversely, differentiation is delayed
upon knockdown of linc-MD1. The importance of linc-MD1 in
myoblast differentiation is underlined by its decrease in Duchenne
muscular dystrophy (DMD), a devastating muscle degenerative dis-
ease.Myoblasts obtained fromDMDpatients show delay and defects
in differentiation.42 Restoration of linc-MD1 to DMD myoblasts
restored differentiation and, in particular, expression of MAML1
andMEF2C proteins.

Inhibition of microRNAs by titration by lncRNAs has also
been shown to be important in embryonic stem (ES) cell renewal.
OCT4, SOX2 and NANOG are essential transcription factors
required for ES cell self-renewal. linc-RoR is abundantly expressed
in human ES cells, sequesters miR-145, and thus protects OCT4,
SOX2 and NANOG from miR-145-mediated repression.43,44

Introduction of mutations in miR-145-binding sites in linc-RoR
lncRNA abolished its ability to repress miR-145. Recently, a
large number of natural circular transcripts, termed circRNAs,
containing multiple target sites of the same microRNA have been
reported, suggesting that circRNAs can sequester highly abun-
dant microRNAs.45,46 One such circRNA, circular RNA sponge
for miR-7 (ciRS-7), contains multiple putative miR-7 target sites
and is expressed in the human and mouse brain.45,46 Overexpres-
sion of ciRS-7 impaired brain development in zebrafish, a similar
phenotype to that seen in miR-7 knockdown.45,46 The same
research group has shown that the testis-specific circRNA sex-
determining region Y (Sry) sponges miR-138, indicating
that the phenomenon of microRNA sponging is not an isolated
example.45 Together, these findings suggest that ceRNAs are
important regulators of diverse biological functions, and that
unraveling the cross-talk between these lncRNAs will provide
valuable insights into a number of developmental and pathologi-
cal processes.45

Long Non-coding RNAs in Cellular Differentiation
and Development

A large number of lncRNAs are involved in cellular differenti-
ation, maintenance of stem cell pluripotency, and development
of tissues or organs. Several lncRNAs, such as lncRNA-ES1,
lncRNA-ES2, and Linc-ROR, are associated with the maintenance
of pluripotency of embryonic stem cells or iPS cells.43,44,47 A
number of lncRNAs are involved in organ development, such as
brain and eye,48-56 and growth.57,58 We will now focus on the
role of lncRNAs in skeletal and cardiac muscle development as
examples of the importance of these molecules in differentiation
and development.

The role of long non-coding RNAs in skeletal muscle
development

Skeletal muscle differentiation and development are well coor-
dinated and tightly regulated processes. A well characterized
family of transcription factors known as Myogenic Regulatory
Factors (MRFs), comprised of MyoD, Myf5, Myogenin, MRF4,
and the Myocyte Enhancer Factor-2 (MEF2A-D), are known to

e944014-4 Volume 5 Issue 2Transcription



play key roles in these
processes.59,60 Recent
studies have identified
a number of lncRNAs
upregulated during
muscle differentiation
that play important
roles in regulating sev-
eral of these important
transcription factors,
including MyoD
expression and activity.

lncRNAs overlap
with a number of
MyoD binding sites
across the genome, and
are transcribed in a
MyoD-dependent
manner.61 Such
lncRNAs are enriched
in the enhancer regions
of MyoD target genes
and appear to play a
role in myogenesis. In
a recent study, 2
eRNAs, referred to as
CE and DRR lncRNAs,
generated from the
upstream regulatory
regions of MyoD,
were shown to regulate MyoD and myogenin expression by alter-
ing chromatin accessibility and recruitment of RNAP II.62 SRA
lncRNA is another example of a lncRNA that regulates myogene-
sis. As described earlier, SRA and its protein isoform SRAP have
opposite roles in facilitating MyoD activity. The ratio of SRA to
SRAP increases during myogenesis, which rescues SRA from rep-
ression by SRAP and allows SRA to act as a co-activator of
MyoD.33 MyoD has also been shown to regulate the lncRNA
H19, which is located at the Igf2 imprinted locus and expressed
only from the maternal allele. H19 expression represses transcrip-
tion of the adjoining gene Igf2. Igf2 protein interacts with MyoD
in vitro and indirectly inhibits MyoD expression.63 Thus, MyoD
de-represses its own expression by inducing H19 and thus repres-
sing Igf2 RNA and protein.63

H19 was previously called MyoH when identified in the same
screen for inducers of myogenic differentiation that identified
MyoD.64 H19 is abundantly expressed during embryonic devel-
opment but strongly repressed in all adult tissues, except skeletal
muscle. We have recently demonstrated that H19 has a direct
role in skeletal muscle differentiation and regeneration (Fig. 2).65

H19 encodes 2 conserved microRNAs, miR-675-3p and -5p.
We showed that the biological function of H19 is mediated
through miR-675-3p and -5p in both muscle differentiation in
vitro and muscle regeneration in vivo.65 miR-675-3p represses
the anti-myogenic bone morphogenetic protein (BMP) pathway
by directly targeting the transcription factors Smad1 and Smad5.

Thus, H19 lncRNA promotes myogenesis by generating a micro-
RNA to inhibit this negative regulator of muscle differentiation.
The other microRNA, miR-675-5p, directly targets and represses
the DNA replication initiation factor Cdc6. Cdc6 was shown to
be activated by MyoD during the myoblast stage,66 but the
mechanism by which it is downregulated during myogenesis was
previously unknown.

Paradoxically, a recent study reports that H19 sponges let-7 in
the 293T kidney cell line and suggests that H19 inhibits C2C12
myoblast differentiation by sponging let-7.67 However, our data
strongly support a role of H19 as a pro-myogenic factor both for
myoblast cells differentiation in vitro and muscle regeneration in
vivo.65 In contrast to their finding, we did not observe a marked
upregulation of let-7 in our differentiation system. These results
indicate that sponging of let-7 by H19 may not be physiologi-
cally relevant in skeletal muscle differentiation and regenera-
tion,65 but it does not rule out the possibility that H19 may
function by other mechanisms in different tissue types and devel-
opmental contexts. It is also possible that, in other contexts, H19
can act as a lncRNA independently of the creation or sponging
of microRNAs.

Our findings provide a new insight into how lncRNAs func-
tion through production of embedded microRNAs. Consistent
with this, a genome-wide study predicted that a large number of
lncRNAs encode microRNAs.68 It will be interesting to identify
how many in the rapidly expanding compendium of lncRNAS
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Figure 2. H19 lncRNA generates miR-675-3p and -5p and promotes skeletal muscle differentiation and regeneration by
inhibiting repressors of myogenesis.
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act through microRNA pathways to regulate gene expression in
different cellular contexts.

Other lncRNAs important for myogenesis are YAM 1-4 (YY1-associ-
ated muscle 1-4),Malat1, and bII NAT.69-71 YAMs 1-4 are regulated by
the myogenic transcription factor YY1. YY1 ChIP-seq data showed
that YY1 binds to the regulatory elements of these lncRNAs, facilitat-
ing their expression.69 Interestingly, Yam-2 and Yam -3were shown to
promote myogenic differentiation whereas Yam-1 and Yam-4 inhib-
ited differentiation. Malat1 lncRNA was originally discovered to be
involved in cancer metastasis, but was later found to play a role in
skeletal muscle differentiation.71 Malat1 expression is upregulated
during C2C12 myoblast differentiation, and siRNA-mediated
knockdown of this lncRNA arrests the cell cycle in G0/G1, sug-
gesting a role in differentiation. Malat1 is suppressed by myosta-
tin, a well known inhibitor of myogenesis. As discussed earlier,
Malat1 is believed to be a regulator of alternative splicing, but a
more detailed mechanism of the pro-myogenic function of
Malat1 remains to be elucidated. The myosin heavy chain
(MHC) proteins found in skeletal muscle have multiple isoforms
encoded at several locations on the genome. A natural antisense
RNA (termed bII NAT), encoded at the MHC IIb locus, was
found to suppress MHC IIb transcription, playing a role in
determining which MHC isoforms are expressed during postnatal
development.70 Recently, a study illustrated the role of short
interspersed element (SINE)-containing lncRNAs in regulating
myogenic differentiation.72 Briefly, a lncRNA called m1/2-
sbsRNA2(B2) contains a B2 element that pairs with the B2 ele-
ment present in the 3’ UTR of mTRAF6 and promotes the deg-
radation of mTRAF6, by Staufen-mediated degradation.
mTRAF6 is a pro-myogenic factor, making m1/2sbsRNA2(B2) an
anti-differentiation factor. Together, these studies establish that
lncRNAs are important contributors to the regulation of skeletal
muscle development.

The role of long non-coding RNAs in cardiac muscle
development

A large number of lncRNAs are expressed during cardiomyo-
cyte differentiation.73-75 Two such lnRNAs, braveheart (Bvht)
and a gene that is adjacent to Foxf1a called Fetal-lethal non-coding
developmental regulatory RNA (Fendrr), were recently shown to be
required in the development of the mammalian heart, and
strongly highlighted the importance of lncRNAs in organ devel-
opment.73,74 siRNA-mediated knockdown of Bvht in mouse
neonatal cardiomyocytes altered cardiac-specific gene expression
and blocked their differentiation into mature cardiomyocytes. In
cardiac progenitor cells, Bvht promotes expression of mesoderm
progenitor 1 (Mesp1), a critical transcription factor in the net-
work of genes that has to be activated for cardiac differentiation,
by sequestering PRC2 (a writer of the repressive histone modifi-
cation H3K27me3). However, Bvht is not conserved among
species and whether the functional role of Bvht in humans is
played by an equivalent molecule still remains to be determined.

Fendrr was also identified as a regulator of heart develop-
ment.73 Loss of function of Fendrr caused embryonic lethality
due to defective heart morphology and function. Loss of Fendrr

was associated with increased expression of a subset of cardiac
transcription factors, including NKx2.5 and Gata6. The increase
in the level of these transcripts was accompanied by a concomi-
tant increase in H3K4me3 level in their target promoters. Fendrr
is believed to regulate cardiac genes both in cis and in trans. Con-
sistent with its cis regulatory function, Fendrr regulates its neigh-
boring gene Foxf1a by interacting with and recruiting the PRC2
complex to the Foxf1a promoter. In addition, Fendrr interacts
with the TrxG/MLL activating complex (a writer of the activat-
ing histone mark H3K4me3) and is important for activating car-
diac-specific genes in trans. Thus, Fendrr is required for the
maintenance of a fine balance between repressive and activating
marks at promoters of various genes during cardiogenesis. In con-
trast to Bvht, Fendrr is conserved in humans, associates with
PRC2, and likely plays an important role in human heart
development.

Long Non-coding RNAs in Human Diseases

The list of lncRNAs implicated in human diseases is growing
very fast. As lncRNAs are being discovered in key biological and
developmental processes, it is likely that misregulation of
lncRNAs will lead to disease. A large number of studies have
implicated lncRNA expression in the pathophysiology of various
cancers.5 HOTAIR, a lncRNA encoded within the HOX gene
cluster, promotes metastasis in breast, hepatocellular, nasopha-
ryngeal, colorectal, pancreatic, and ovarian cancers.76-80

HOTAIR lncRNA is overexpressed in these metastatic cancers,
and alters the occupancy of PRC2 across the genome, rearranging
the landscape of repressive H3K27me3 in cells (Fig. 1B). In par-
ticular, HOTAIR acts in trans to alter the target specificity of
PRC2 and thus repress a number of anti-metastatic genes.77-80

The pro-myogenic role of H19 is consistent with previous
studies in which inactivation of H19 was linked to the develop-
ment of rhabdomyosarcoma (RMS).81 RMS is a childhood
tumor that arises from defective skeletal muscle differentiation.
As miR-675-3p and -5p can promote myogenic differentiation,
these 2 microRNAs might have a therapeutic potential for treat-
ment of RMS. Since H19 inactivation has also been linked to the
development of Wilms’ tumor,81 it is worth investigating
whether the tumor suppressor activity of H19 works, in this con-
text, via the production of the same 2 microRNAs. Several other
lncRNAs involved in the pathophysiology of various cancers have
been reviewed elsewhere.5

Apart from cancers, lncRNAs are also involved in other dis-
eases, particularly those in which defects in differentiation are
observed. For example, a few lncRNAs show altered expression
in various forms of muscular dystrophies, including DMD and
facioscapulohumeral muscular dystrophy (FSHD).42,82 The
expression of linc-MD1 is reduced in myoblasts isolated from
DMD patients. The abnormal kinetics of differentiation in myo-
blasts isolated from DMD patients was partly corrected by rein-
troducing exogenous linc-MD1, suggesting its important role in
DMD.42 As we have demonstrated a critical role of H19 lncRNA
in skeletal muscle differentiation and regeneration, we are inter-
ested in investigating whether H19 expression, or processing into
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microRNAs, is altered in differentiation-defective myoblasts
from DMD patients. A third example is the lncRNA encoded by
the D4Z4‑binding element (DBE‑T), which is selectively
expressed in FSHD patient samples.82 DBE‑T increases
H3K36me2 by recruiting the MLL1 complex and results in
excessive transcriptional activation of the FSHMD1A locus in
patients with FSHD.82

Conclusions and Future Perspectives

With the advent of ultra-high-throughput sequencing, the
universe of non-coding RNAs is getting bigger every day. It is
becoming clear that a significant part of the non-protein-coding
mammalian genome could be essential for development and
physiology through the expression of the various classes of
lncRNAs. lncRNAs play a critical role in various aspects of biol-
ogy, and many lncRNAs have now been found to direct differen-
tiation and development, while leading to disease when
misregulated. However, compared to coding genes, there are sig-
nificant gaps in the current understanding of lncRNA regulation
and mechanism of action. This is partly because lncRNA sequen-
ces are not evolutionarily conserved as well as protein-coding
sequences are. It remains difficult to classify lncRNAs into

categories beyond their genomic locations and expression pat-
terns. Therefore, careful study of loss- or gain-of-function
mutants of lncRNAs in cell lines and in appropriate animal mod-
els is essential to discern their function. However, since lncRNAs
are less conserved between humans and mice than protein-coding
genes are, it may not be possible to apply the findings generated
with animal models to humans. Indeed, this variability in
lncRNAs could explain many of the phenotypic differences in
higher eukaryotes. In that scenario, advances will need to be
made in computational algorithms predicting lncRNAs second-
ary structures, domains, and protein interactions in order to
determine the best in vitro models and developmental contexts
to study a given lncRNA. Importantly, lncRNAs are dysregulated
in numerous biological processes and are becoming rapidly
linked to numerous human diseases. The lncRNA field is still
very young, but new mechanistic insights into lncRNA function
are bound to emerge, and will lead to a greater understanding of
many complex and devastating disorders.
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