FISICA NUCLEARE

Decadimenti nucleari

- Generalità
- Radioattività α
 - Energetica dei decadimenti α
 - Soglia di instabilità
 - Teoria del decadimento α

Generalità

Un nucleo è stabile rispetto al decadimento
$${}^{A}_{Z}X \longrightarrow {}^{A-A'}_{Z-Z'}X + \sum_{i=1}^{n}{}^{A^{i}_{i}}b$$
 se
 $\Delta M_{b}(A, Z) = M_{X}(A, Z) - M_{X}(A - A', Z - Z') - \sum_{i=1}^{n}{}^{M}_{b}(A^{i}, Z^{i}) < 0$

• Se invece $\Delta M_b > 0 \Rightarrow$ decadimento può avvenire **spontaneamente**. Energia rilasciata nel decadimento $\propto Q$ -valore: decadimento spontaneo solo se Q > 0. Dai valori sperimentali delle masse $\Rightarrow Q < 0$ per emissione spontanea di p, $n \circ d$ da ogni nuclide **naturale**. Talora **emissione ritardata** di $n \circ p$, sempre però a ridosso di emissione di $e^- \circ e^+$ conseguenti a decadimento β , o dopo una cattura K.

• Per alcuni nuclei pesanti $\frac{Q_a(A,Z) > 0}{\Rightarrow}$ energeticamente possibile emissione spontanea di particelle α

Dec.
$$\boldsymbol{\alpha}$$
 : $\stackrel{A}{_{Z}}X \longrightarrow \stackrel{A-4}{_{Z-2}}Y + \stackrel{4}{_{2}}He$
Dec. $\boldsymbol{\beta}^{-}$: $\stackrel{A}{_{Z}}X \longrightarrow \stackrel{A}{_{Z+1}}X + e^{-} + \overline{\nu}$
Dec. $\boldsymbol{\beta}^{+}$: $\stackrel{A}{_{Z}}X \longrightarrow \stackrel{A}{_{Z-1}}X + e^{+} + \nu$
Legge dello *spostamento*
radioattivo di Soddy-Fajans

Radioattività α _ Energetica

Decadimento $\alpha \sim fissione spontanea$ del nucleo genitore G.

- Importanza cresce con $\frac{A}{P}$ \Rightarrow rep. coulomb. cresce più rapidamente del legame nucleare che satura al crescere di $\frac{A}{P}$.
- E_k delle $\alpha < 10$ MeV, quindi essendo $M_a c^2 \simeq 3.73$ GeV, trattazione non relativistica. G a riposo in SL.

$$\begin{array}{ll} \text{Conservatione energia:} & M_{\text{X}}c^2 = M_{\text{Y}}c^2 + E_{k,\text{Y}} + M_{\alpha}c^2 + E_{k,\alpha} & \text{da cui:} \\ E_{k,\text{Y}} + E_{k,\alpha} = (M_{\text{X}} - M_{\text{Y}} - M_{\alpha})c^2 = \Delta M \ c^2 \equiv Q_{\alpha} & E_{k,\text{Y}} = \frac{1}{2}M_{\text{Y}}v_{\text{Y}}^2 & , & E_{k,\alpha} = \frac{1}{2}M_{\alpha}v_{\alpha}^2 \\ \text{Conservatione impulso:} & M_{\text{Y}} \ v_{\text{Y}} = -M_{\alpha} \ v_{\alpha} & \text{da cui,} & v_{\text{Y}} = \frac{M_{\alpha}}{M_{\text{Y}}} \ v_{\alpha} \\ E_{k,\text{Y}} + E_{k,\alpha} = \frac{1}{2}M_{\text{Y}}v_{\text{Y}}^2 + \frac{1}{2}M_{\alpha}v_{\alpha}^2 = \frac{1}{2}M_{\text{Y}} \left(\frac{M_{\alpha}}{M_{\text{Y}}}v_{\alpha}\right)^2 + \frac{1}{2}M_{\alpha}v_{\alpha}^2 = \\ & = \frac{1}{2}M_{\alpha}v_{\alpha}^2 \ \left(\frac{M_{\alpha}}{M_{\text{Y}}} + 1\right) = E_{k,\alpha} \ \left(\frac{M_{\alpha}}{M_{\text{Y}}} + 1\right) = Q_{\alpha} \\ \text{e ancora} & \overline{E_{k,\alpha} = \frac{M_{\text{Y}}}{M_{\alpha} + M_{\text{Y}}} \ Q_{\alpha} & \text{ed} & \overline{E_{k,\text{Y}} = \frac{M_{\alpha}}{M_{\text{Y}}} \ E_{k,\alpha} & \overline{E_{k}} \ \text{delle α non pub essere < 0, quindid decadimento esotermico} \ (Q_{\alpha} \ge 0) \\ \end{array}$$

- Pur essendo decadimento in *due corpi* lo spettro *α* ha una *struttura fine*.
- Le α del picco più intenso dello spettro sono prodotte da sole, le altre sempre accompagnate da γ.

Ciò suggerisce presenza livelli energetici nel nucleo con struttura a stati discreti. α più energetiche da \mathbf{G} eccitato, α meno energetiche da \mathbf{F} eccitato.

Soglia di instabilità

Nel decadimento α *nucleoni non cambiano natura* \Rightarrow esso può avvenire solo se accompagnato da aumento energia di legame per nucleone nei prodotti finali.

• Energia media di legame per nucleone $\langle B(A) \rangle \Rightarrow$ decadimento α possibile solo dove $\partial \langle B \rangle / \partial A < 0$ e contemporaneamente A > 60. [56(Fe) + 4(He) = 60] Q_{lpha} può essere scritto in termini delle energie medie di legame per nucleone $\langle {
m B}
angle_{X,Y,a}$ dei nuclei coinvolti.

$$Q \equiv [M(A,Z) - M(A - 4, Z - 2) - M_{\alpha}]c^{2} =$$
$$= A(\langle B_{Y} \rangle - \langle B_{X} \rangle) - 4(\langle B_{Y} \rangle - \langle B_{\alpha} \rangle) > 0$$

 $\langle B_{\alpha} \rangle \simeq 7.1 \text{ MeV}$, quindi < che per i nuclei pesanti coinvolti \Rightarrow il secondo termine è > 0, e la soglia di instabilità è decisamente > A = 60.

Da Weizäcker trascurando accoppiamento, con $Z(Z-1) \simeq Z^2$, e sviluppando in serie troncata al 1º term.

Geiger Nuttal

 Dai dati ⇒ prob. decadimento α del G è funz. rapidamente crescente di E_{k,α} quindi del Q_α.
 Per organizzare dati, Geiger e Nuttal suggerirono (1911) una relazione empirica fra prob. di decadimento λ_α ed energia totale, ovvero il Q_α, per ogni *catena isotopica*

 $\log \lambda_{\alpha} = A(Z) \ Q_{\alpha}^{-1/2} + B(Z)$

con A(Z) e B(Z) da determinare con **fit sui dati**. Prendendo l'esponente si ha

 $\lambda_lpha(Q_lpha)~\propto~e^{D(Z)~Q_lpha^{-1/2}}$

che descrive \sim bene i dati finché la dipendenza di $\log \lambda_{\alpha}$ dal numero di neutroni si mantiene *lineare*, e per A e Z pari.

Risultato che teoria del decadimento **a** deve riprodurre.

Teoria del decadimento α

Gamow _ 1928 α non esistono come tali nei nuclei prima del decadimento, ma si formano a inizio processo. A sufficiente distanza dal **CM** del sistema, poco prima del decadimento, **G** descrivibile come un sistema $\alpha + \mathbf{F}$, con α che si muove in buca di potenziale.

– Barriera coulombiana per $\mathbf{A} \simeq 200$ è $\sim 20 \div 25$ MeV, e $\boldsymbol{\alpha}$ con energie di pochi MeV, come quelle del decadimento alfa, non dovrebbero superarla.

Emissione **α** da un nucleo è fenomeno <mark>squisitamente quantistico</mark>, legato all'**effetto tunnel**.

Trasmissione attraverso una barriera rettangolare

Attraversamento barriera 2-dim, rettangolare estesa da 0 a b. Particella descritta con funz. d'onda d'ampiezza A_1 e lunghezza ridotta $\chi = \pi / mv = \pi / \sqrt{2mE}$ m è massa ridotta. In x = 0 parte della funz. d'onda con ampiezza $B_1 < A_1$ è riflessa nella zona Ie parte con ampiezza $A_2 < A_1$ è trasmessa nella zona II. Similmente in x = b.

Problema per barriera di **forma arbitraria**; la si sostituisce con una rettangolare equivalente d'altezza U_{eff} e larghezza (b-a)in modo che

$$T \approx e^{-2} \sqrt{\frac{2m\left(U_{eff} - E\right)}{\hbar^2}} (b-a) = e^{-2} \int_a^b \sqrt{\frac{2m\left[V\left(x\right) - E\right]}{\hbar^2}} dx$$

Trasmissione attraverso la barriera di potenziale nucleare

Particelle confinate da barriera a simmetria sferica.

Si fattorizza la funzione d'onda $\psi(r, \vartheta, \varphi) = f(r) \Theta(\vartheta) \Phi(\varphi) = f(r) Y(\vartheta, \varphi)$

Eq. Schrödinger si scinde in parte radiale e parte angolare, come per atomo di idrogeno.

Soluzioni parte angolare: armoniche sferiche

$$Y_{lm}\left(\vartheta,\varphi\right) = \left(-1\right)^{m} \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-\mid m \mid)!}{(\ell+\mid m \mid)!}} P_{\ell}^{m}\left(\cos\vartheta\right) e^{im\varphi}$$

Fisica del problema è nell'equazione radiale che posto u(r) = rf(r)

diventa

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \frac{2m}{\hbar^2} \left[(E_{tot} - V) - \frac{\ell \left(\ell + 1\right) \hbar^2}{2mr^2} \right] u = 0$$

che ha anche un termine di **potenziale centrifugo** che concorre ad accrescere la barriera se $l \neq 0$ e **vale anche per particelle neutre, essendo svincolato dalla carica**.

Relazione fra T e $\lambda_{\alpha} = 1/\tau_{\alpha}$. ٠ Si considerino molti nuclei pronti a decadere $\alpha \Leftrightarrow$ moltitudine di α confinate da barriera descrivibile come onda di intensità I_0 . Si suppone che a $\frac{t=0}{t=0}$ ogni α incida sulla barriera e una frazione $\frac{T}{T}$ di esse la attraversi. Intensità dell'onda riflessa dalla barriera al primo tentativo d'attraversamento è $(1-T)I_0$. Dopo $\frac{n}{t}$ tentativi nel tempo $\frac{t}{t}$ $\lim_{T \to 0} I_n = I_0 \ e^{-nT}$ $I_n = (1 - T)^n I_0 = I_0 e^n \ln(1 - T)$ con Se v = velocità media di α in nucleo di raggio R, il tempo medio fra due successivi tentativi d'attraversamento è $\Delta t = 2R/v$, e il numero medio $\frac{n}{n}$ di tentativi nel tempo $\frac{t}{t}$ è $\frac{n = t/\Delta t = vt/2R}{t}$. Quindi: Con un'energia realistica di ~ 8 MeV per le $\alpha \Rightarrow dn/dt = v/2R \simeq 10^{21}$ e si può $I_n = I_0 \ e^{-T\frac{v}{2R}t}$ esprimere I_n come funz. continua di t $\lambda_{lpha} = T rac{v}{2R} = T rac{\mathrm{d}n}{\mathrm{d}t} = T \lambda_0$ $I_n \longrightarrow I(t) = I_0 e^{-\lambda_{\alpha} t}$ con $oldsymbol{\lambda_0}$ cambia poco da nucleo a nucleo, mentre la trasparenza $~oldsymbol{T}$ cambia sensibilmente

21/03/22

$$V(r) = \frac{E_{\alpha}}{E_{\alpha}} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{zZe^{2}}{b} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{zZe^{2}}{b} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{zZe^{2}}{b} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{zZe^{2}}{b} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{E_{\alpha}}{b} + \frac{zZe^{2}}{b} + \frac{E_{\alpha}}{E_{\alpha}} + \frac{E_{\alpha}}{b} + \frac$$

- Calcolando ad es. vita media d'emissione α per 232 Th, che emette α da $\frac{4.05 \text{ MeV}}{4.05 \text{ MeV}}$ con vita media di $\frac{1.39 \times 10^{10} \text{ y}}{1.3 \times 10^{10} \text{ y}}$, si ottiene un valore di $\frac{1.3 \times 10^{10} \text{ y}}{1.3 \times 10^{10} \text{ y}}$.
- Probabilità emissione dipende dall'inverso della massa della particella emessa, come si vede dal fattore di Gamow (da ricordare per la fissione).

	Q_{lpha}	r_s	r_c	G	$ au_{exp}$	$ au_{th}$	Ē
	(MeV)	(fm)	(fm)		(s)	(s)	
$^{238}_{~92}{\rm U} \rightarrow {}^{234}_{~90}{\rm Th}$	4.27	8.52	60.7	0.53	$2.0\ \times 10^{17}$	3.3×10^{17}	
		$(^{234}_{90}{ m Th}$	$ ightarrow {234 \over 91} { m F}$	$a \rightarrow \frac{23}{9}$	$^4_2\mathrm{U})$		
$^{234}_{~92}{\rm U} \rightarrow ^{230}_{~90}{\rm Th}$	4.86	8.49	53.3	0.51	$1.1~\times 10^{13}$	$1.1~\times 10^{13}$	
$^{230}_{~90}{\rm U} \rightarrow {}^{226}_{~88}{\rm Ra}$	4.77	8.45	53.1	0.51	$3.5~\times10^{12}$	$3.9~\times10^{12}$	
$^{226}_{88}\mathrm{Ra} \rightarrow ^{222}_{86}\mathrm{Rn}$	4.87	8.41	50.9	0.50	7.4×10^{10}	$7.4\ \times 10^{10}$	
$^{222}_{~86}\rm{Rn} \rightarrow {}^{218}_{~84}\rm{Po}$	5.59	8.37	43.3	0.46	4.8×10^5	4.2×10^5	
$^{218}_{84}\mathrm{Po} \rightarrow ^{214}_{82}\mathrm{Pb}$	6.11	8.33	38.7	0.43	2.6×10^2	1.6×10^2	(*)
$^{214}_{84}\mathrm{Po} \rightarrow ^{210}_{82}\mathrm{Pb}$	7.84	8.28	30.1	0.36	$2.3 \ \times 10^{-4}$	$1.1~\times 10^{-4}$	(*)
$^{210}_{~84}{\rm Po} \rightarrow {}^{206}_{~82}{\rm Th}$	5.41	8.24	43.7	0.47	1.7×10^7	5.8×10^5	(*)

(*) Gli isotopi leggeri del Polonio si scostano notevolmente dalle predizioni della teoria di Gamow, a causa della asimmetria dei loro stati fondamentali ...