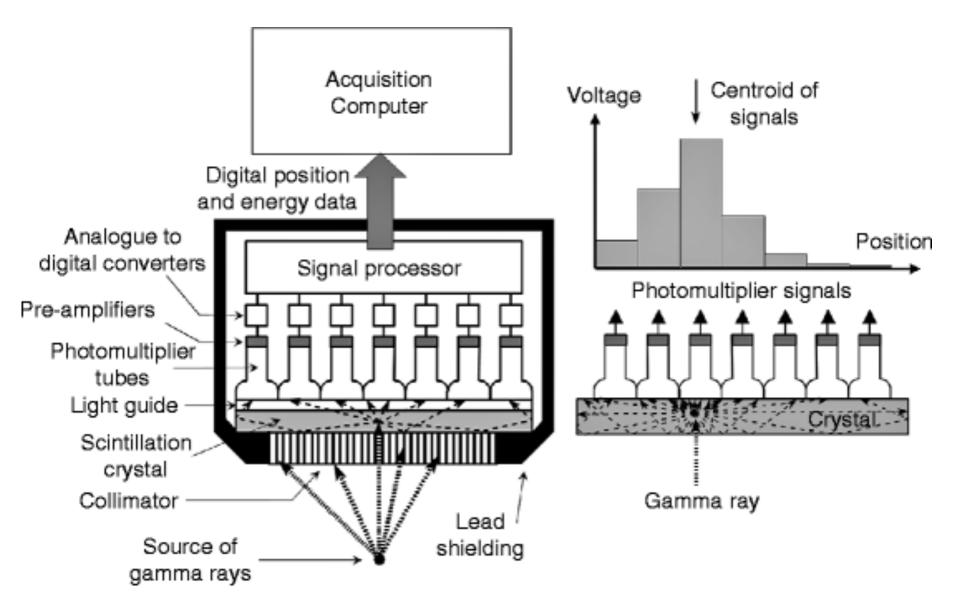
FISICA NUCLEARE


- Radioisotopi e medicina nucleare
 - Diagnostica per immagini
 - ➤ La SPECT
 - ➤ La PET
 - > Attività tipiche
 - Produzione di radioisotopi

Radioisotopi e medicina nucleare

- Diagnostica con raggi $X \Rightarrow$ attenuazione fasci \Rightarrow informazioni anatomiche
- Introducendo nel corpo sorgenti radioattive in quantità minime ($\sim 10^{-9}$ g) per evitare effetti tossici, ma sufficienti a rivelare radiazione $\gamma \Rightarrow anche$ informazioni *fisiologiche*
- Radionuclide legato a molecole, tracciatori, che lo veicolano nel corpo e sono assorbite da organi e tessuti che si vogliono studiare
- Radionuclide può essere di per sé selettivo per l'organo in studio, come lo iodio per la tiroide. Radioisotopi non selettivi, come $^{99}_{43}\mathrm{Tc}$, devono essere legati a opportune sostanze veicolanti. La miscela radioisotopo + sostanza veicolante è il radiofarmaco
- Quando radiofarmaco ha raggiunto condizione bio-equilibrio con organo da studiare, si rilevano i γ per ottenere immagini diagnostiche utilizzando una γ -camera
- Radiofarmaco è trasportato nell'organismo meccanicamente (... flusso sanguigno) o con processi metabolici, come per lo iodio
- Assorbimento tracciatore in un organo può dipendere da patologie. Misura radiazione emessa dà quantità tracciatore assorbito e sua distribuzione nei tessuti

- $\frac{X}{X}$ fortemente assorbiti da tessuto osseo \Rightarrow difficile usarli per indagare cervello. $\frac{y}{Y}$ da radioisotopi presenti nel cranio attraversano invece una sola volta tessuto osseo per essere raccolti a formare immagine
- In radiografia X assorbimento radiazione è essenziale per ottenere immagini, basate su contrasto dai diversi livelli di assorbimento nei diversi tessuti
- Il soddisfare a queste condizioni concomitanti si abbina a quella fondamentale di danneggiare meno possibile i tessuti interessati con la radioattività dei radionuclidi utilizzati:
 - radionuclide resti nel corpo solo tempo necessario ad effettuare esame, o comunque il meno possibile
 - sia poi espulso, o comunque abbia vita media breve, compatibile con tempi necessari all'esame medico, e
 anche per evitare inquinamento radioattivo ambientale una volta espulso.

Gamma Camera

Diagnostica per immagini

La SPECT

- Tecnica tomografica imaging della medicina nucleare, utilizza γ da radiofarmaci rivelandoli con γ -camere
- Dà anche informazioni biotopologiche 3-d sotto forma di sezioni assiali 2-d dell'organo esaminato
- Immagini SPECT ruotando γ-camera attorno al paziente. Tempo per ogni proiezione ~ 15 ÷ 20 s.
 Tempo totale scansione per un esame ~ 15 ÷ 20 minuti.
- Con più γ -camere contemporaneamente operative tempo si riduce proporzionalmente.
- Risoluzione spaziale immagini può essere inferiore rispetto immagini X, ma con uso di radioisotopi informazioni fisiologiche su funzionalità di molti organi ⇒ importante poiché spesso modificazioni funzionalità precedono alterazioni anatomiche, evidenziabili con una radiografia X
- Esami con radioisotopi permettono quindi diagnosi anticipate

La PET

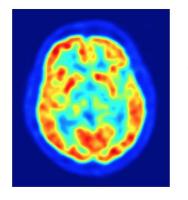


Immagine PET di sezione cerebrale

- Come SPECT informazioni fisiologiche e mappe processi funzionali globali o di specifici organi
- Studia patologie neoplastiche, diagnosi differenziali su demenze e neuro-imaging funzionale, indaga malattie reumatologiche e infettive, studia miocardio ibernato e perfusione cardiaca
- Quando radiofarmaco iniettato raggiunge una opportuna concentrazione nei tessuti, si posiziona il soggetto in apparato di scansione
- Isotopo a breve vita media decade β^+ con e^+ che entro pochi mm, annichila con e^- in una coppia di γ **b-to-b**, entrambi di 511 keV. γ poi rivelati da scintillatore accoppiato a p.m.
- Cruciale rivelazione coppie di $\frac{y}{v}$ coincidenti in $\frac{\Delta t}{v}$ di pochi $\frac{d}{dt}$. Da posizione in cui $\frac{d}{dt}$ colpiscono rivelatore \Rightarrow si ricostruisce posizione, nell'organo indagato, da cui sono stati emessi.
 - Risoluz. spaziale e contrasto immagini migliorano, correggendo per TOF dei due γ .

Attività tipiche

- Introduzione nel corpo di molecola o composto chimico cui è legato radioisotopo: radiomarcatura
- Radioisotopi utilizzati per imaging devono avere vita media confrontabile con tempi di misura
- Questi dell'ordine delle decine di minuti o poche ore, comunque tali da non implicare danni ai tessuti ⇒
 i radioisotopi non sono disponibili in natura ma devono essere prodotti artificialmente
- Tempi di trasporto da luogo produzione a quello d'utilizzo devono essere brevi, comunque tali da evitare
 eccessiva riduzione dell'attività specifica prima dell'immissione nei tessuti da studiare

Tabella $_{-}$ Radioisotopi emettitori γ di uso comune

Nuclide	Isotopo	$t_{1/2}$	Energia dei γ (KeV)
Tecnezio	$^{99m}_{43}$ Tc	6 h	140
Gallio	$_{31}^{67}$ Ga	78.3 h	98, 184, 300
Indio	$^{111}_{49}\mathrm{In}$	2.8 d	171,245
Iodio	$^{123}_{53}{ m I}$	13 h	159
Iodio	$^{131}_{53}{ m I}$	8 d	364
Xeno	$_{54}^{133}{ m Xe}$	$5.27~\mathrm{d}$	81
Tallio	$^{201}_{81}{ m Tl}$	73 h	68, 80.3

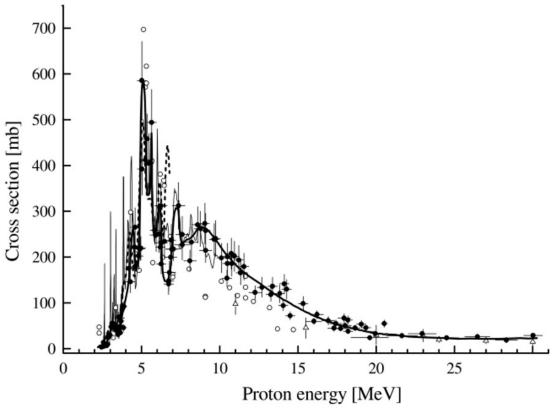
Importante calcolare attività radioisotopi utilizzati.

Numero di disintegrazioni/s d'un grammo di materiale radioattivo, ovvero sua attività specifica, è

$$A_{sp} = \frac{\mathcal{N}\lambda}{A} = \frac{\mathcal{N} \ln 2}{A t_{1/2}} \simeq \frac{4.16 \times 10^{23}}{A t_{1/2}}$$

$$A_{sp} \left(^{99m}_{43} \text{Tc} \right) = \frac{4.16 \times 10^{23}}{99 \times 2.16 \times 10^4} \simeq 1.95 \times 10^{17}$$
 disintegrazioni $s \times g$

Un nano grammo (10^{-9} g) di $^{99m}_{43}$ Tc produce quindi $\sim 2 \times 10^8$ disintegrazioni al secondo, ovvero un'attività di 200 MBq, equivalente a ~ 5.4 mCurie.


Un tipico esame con uso del tecnezio richiede un'attività dell'ordine di 600 MBq, con utilizzo quindi di circa **3 nano grammi** di radioisotopo, nel tessuto da esaminare.

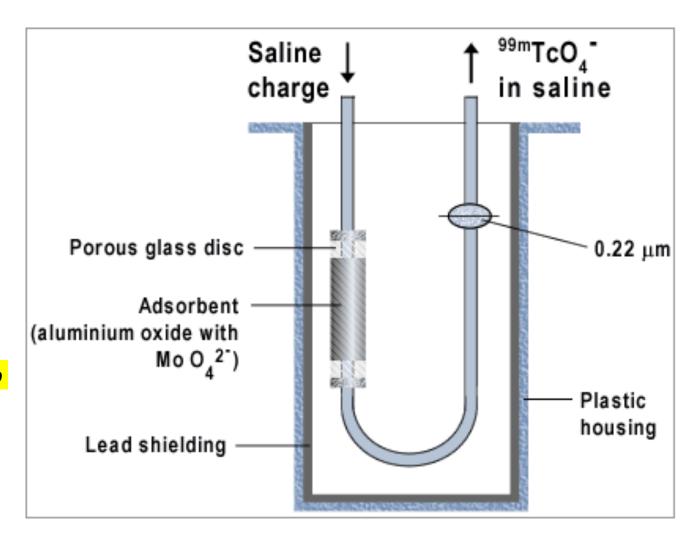
Produzione di radioisotopi

• Irradiano nuclei stabili con fasci di p o altri nuclei leggeri da circa $\frac{ciclotrone}{1}$. Il tracciatore $\frac{18}{9}$ F, con vita media $\frac{\beta^+}{1}$ di circa $\frac{2h}{1}$, si ottiene da

$$\begin{array}{ccc} ^{18}_{8}\mathrm{O} + p & \longrightarrow & ^{18}_{9}\mathrm{F} + n \\ \\ ^{16}_{8}\mathrm{O} + \alpha & \longrightarrow & ^{18}_{9}\mathrm{F} + p + n \\ \\ ^{16}_{8}\mathrm{O} + \alpha & \longrightarrow & ^{18}_{9}\mathrm{F} + d \end{array}$$

Reazioni su ¹⁶O con energie di soglia 23.2 MeV e 20.4 MeV. Sezione d'urto della prima, in figura; per le altre due, a energie ~ 30 MeV, sezione d'urto ~ 100 mb. Bersaglio è acqua arricchita in ¹⁸O nel primo caso e sola acqua negli altri due.

• Neutroni da reattore: $^{98}_{42}{
m Mo}(n,\gamma)\longrightarrow ^{99}_{42}{
m Mo}$, $^{235}_{92}{
m U}(n,fissione)\longrightarrow ^{99}_{42}{
m Mo}$ dove $^{99}_{42}{
m Mo}$ ${\it eta}$ instabile con vita media \sim 67 ${
m h}$


 ^{99}Mo poi utilizzato per produrre ^{99m}Tc tramite **generatore di tecnezio**, contenitore a colonna in cui ^{99}Mo , che funge da nucleo genitore, è adsorbito in ossido di alluminio

$$^{99}\mathrm{Mo} \xrightarrow{\beta^{-}} ^{99m}\mathrm{Tc} + e^{-} + \overline{\nu}$$

⁹⁹Mo decade β[−] in tecnezio metastabile che a sua volta decade γ con τ = 6 h: γ^{99m}Tc → γ⁹⁹Tc + γ

Tc che non è adsorbito nell'ossido di alluminio come Mo, viene poi estratto introducendo nel contenitore una soluzione salina che prelevata, risulta ricca di sodio pertecnetato

Generatore permette trasporto verso zone di utilizzo del $^{99m}{\rm Tc}$ sfruttando intermediazione $^{99}{\rm Mo}$, che ha $au\sim 10$ volte superiore

Produzione di radioisotopi coinvolge posizionamento rispetto ad equilibrio, per produzione e concomitante decadimento del prodotto

Come visto si può raggiungere equilibrio se rateo R della produzione coincide col valore assoluto del rateo di decadimento $\frac{\lambda N(t)}{\lambda N(t)}$

Ad es. si bombarda campione di nuclei stabili con particelle, da reattore o da acceleratore, che inducano trasmutazioni su R atomi/s verso elemento radioattivo che poi decade con cost. λ

Bilanciamento fra
$$R$$
 e $-\lambda N(t)$ \Rightarrow $\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \mathcal{R} - \lambda N(t)$ che se $R = \mathrm{cost.}$ diventa

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = \mathcal{R} - \lambda N(t)$$

$$\frac{\mathrm{d}[\mathcal{R} - \lambda N(t)]}{\mathcal{R} - \lambda N(t)} = -\lambda \mathrm{d}t$$

Integrandola con la condizione N(t=0) = 0 , si ha

$$\mathcal{R} - \lambda N(t) = \left[\mathcal{R} - \lambda N(0)\right] e^{-\lambda t} \implies N(t) = \frac{\mathcal{R}}{\lambda} \left(1 - e^{-\lambda t}\right)$$

da cui

$$\mathcal{A}(t) = \lambda N(t) = \mathcal{R}\left(1 - e^{-\lambda t}\right)$$

andamento a saturazione, tipico quando formazione e decadimento sono in competizione

Se irraggiamento breve rispetto a τ ($t \ll \tau$) si espande exp. fino al termine lineare in $t \Rightarrow A(t) \simeq R\lambda t$: attività cresce a rateo \sim costante. Accumulo nuclei prodotti quindi \sim lineare nel tempo e non viene significativamente intaccato dai decadimenti.

Per $t \gg \tau$ exp. $\rightarrow 0$ e attività si mantiene \sim costante

$$\mathcal{A} \approx \mathcal{R}$$
, per $t \gg \tau$

Esempio di **equilibrio secolare**!

- Se si irradia un campione per un certo tempo e poi lo si toglie dalla zona d'irraggiamento, da quel momento mostrerà diminuzione dell'attività con andamento exp. decrescente
- Per produrre un campione utilizzabile quindi sufficiente irradiare per un tempo di ~ di 2 ÷ 3 vite medie