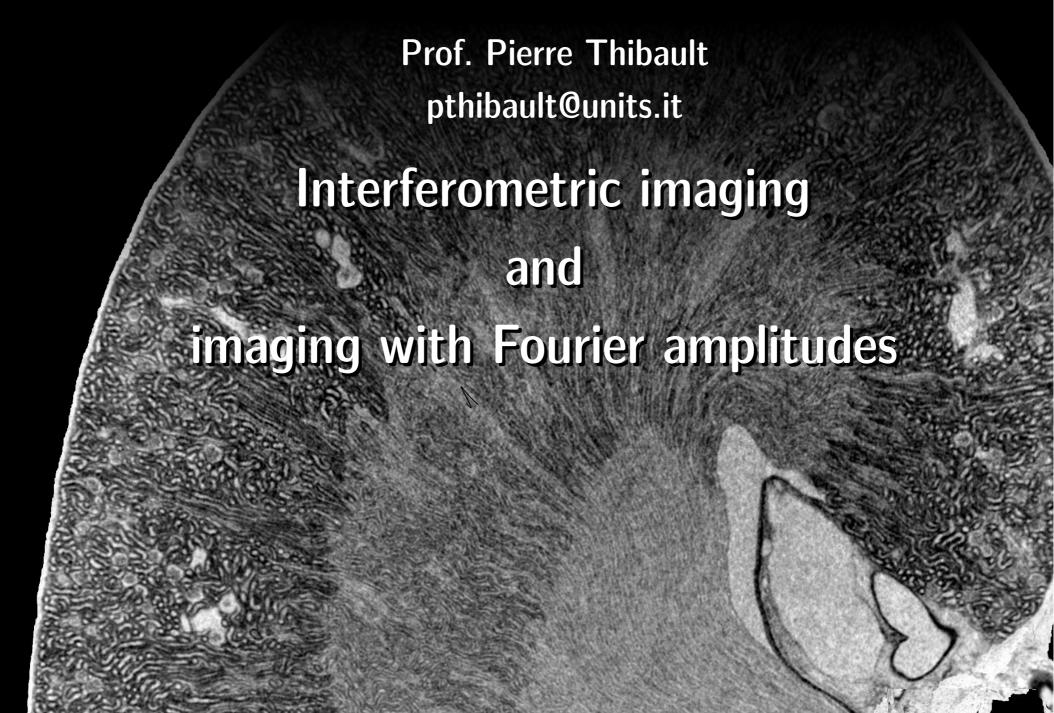
Image Processing for Physicists



Overview

- The phase problem
- Holography: on/off-axis
- Grating interferometric imaging
- Imaging using far-field amplitude measurements
 - Fourier transform holography
 - Coherent diffraction imaging
 - Ptychography

Wave propagation

$$\Psi(\vec{r};z) = \int \left\{ \int \left\{ \Psi(r;z=0) exp\left(-i\pi u^2 \lambda z\right) \right\} \right\}$$
unitless

$$\psi_{o}(z=0)$$
 $\downarrow a \rightarrow \downarrow a$

f << 1: far-field s >> 1: near-field

$$\frac{1}{a_0}\sqrt{\lambda_0 z_0} = \frac{1}{a_1}\sqrt{\lambda_1 z_1}$$

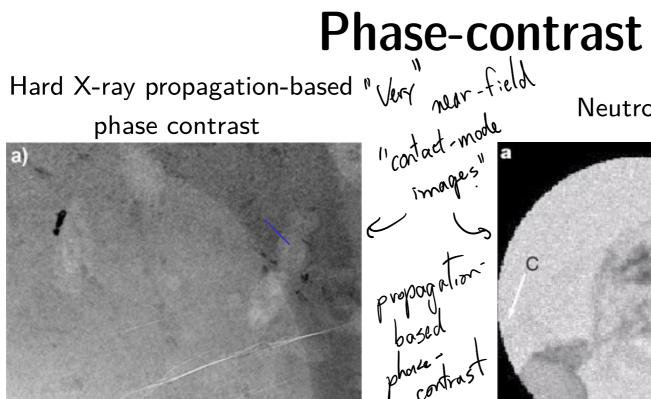
$$\frac{\lambda^2}{\sigma^2}$$

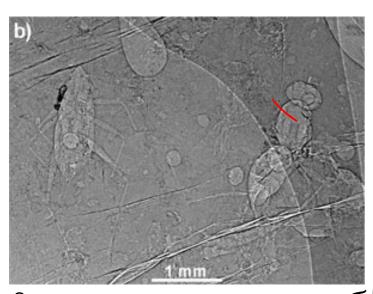
Jaz: charactersitie

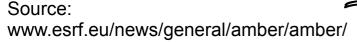
Complex-valued images

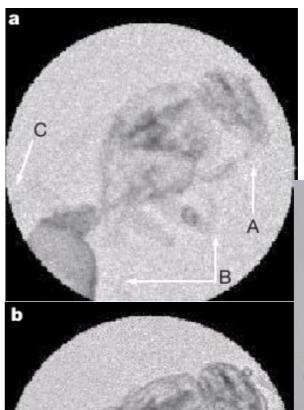
X-ray transmission Synthetic aperture radar SAR Amplitude attenuation of the wave as it travels through unwapped phase the object phase delay of the phase is wave as it travel through the "wrapped" object -> refraction "phase unwrapping" requires spatial information

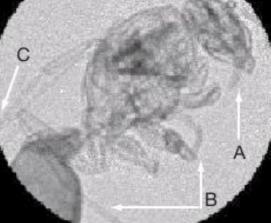
Neutron phase contrast valuation





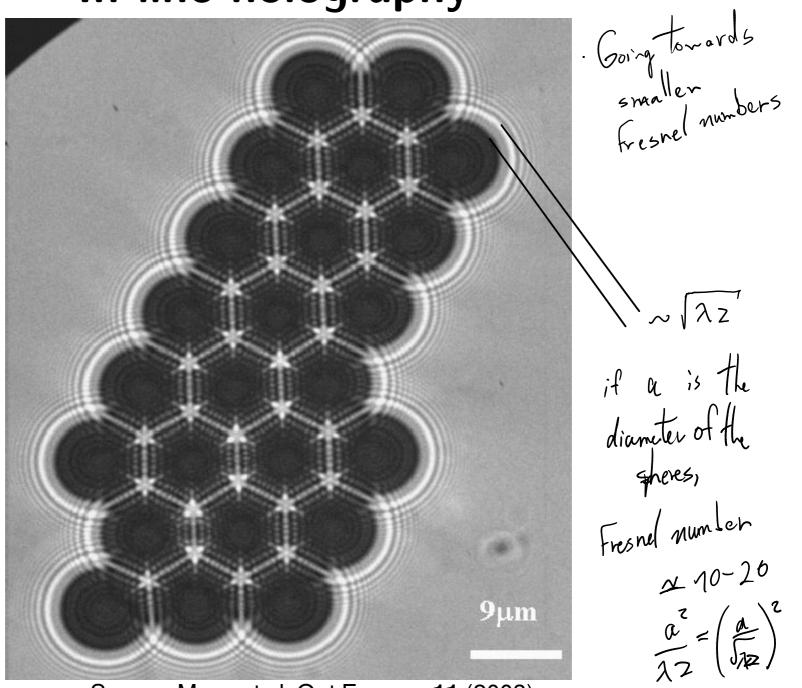






Source: Allman et al. Nature 408 (2000).

In-line holography



Source: Mayo et al. Opt Express 11 (2003).

Measured $I(\vec{r}) = |\psi(\vec{r};z)|^2$

In-line holography

Requirement: $I(\vec{r}) = |V(\vec{r};z)|^2$ monochromatic & plane incident wave

Common model:
$$\psi(\vec{r};z=0) = A \left(1 + \varepsilon(\vec{r})\right)$$
 weak object

$$\psi(\vec{r};z) = A(1+\xi(\vec{r};z))$$

$$\mathcal{I}(\vec{r}) = |A|^2 \left(1 + \varepsilon(\vec{r};z) + \varepsilon^*(\vec{r};z) + O(\varepsilon^2)\right)$$

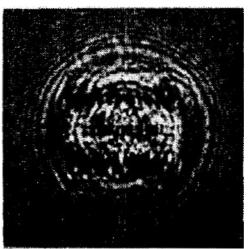
twin image problem

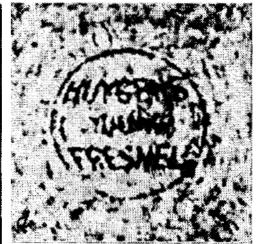
The phase problem

The problem: we can measure only the squared amptitude of a wave (E.N./matter) measurement I= 14/2 Sometimes: -phonse is the quantity of interest e.g. e.g. exp(ik(n-1)t)- phase is an auxiliary quality required

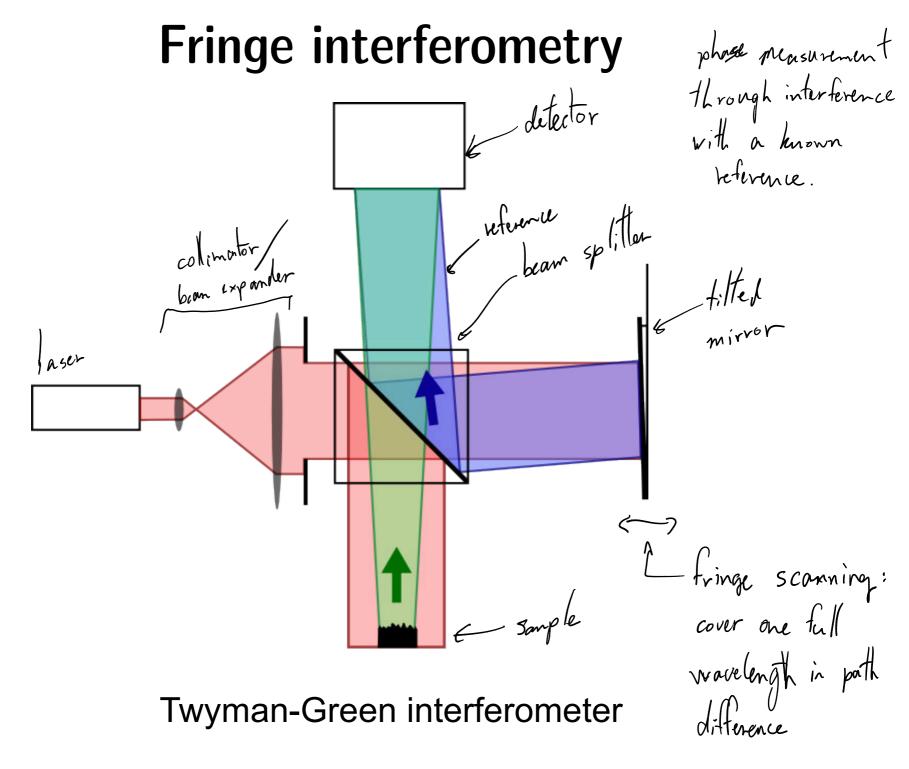
to extract the sought information (e.g. through propagation)

In-line holography

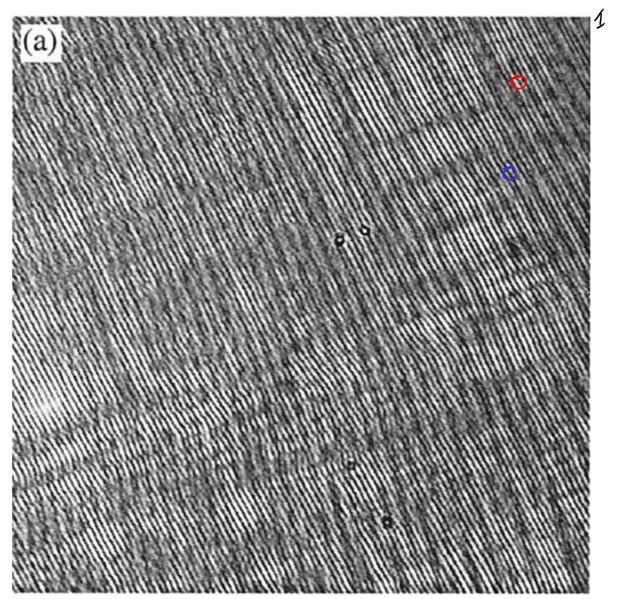




D. Gabor, Nature 161, 777-778 (1948).

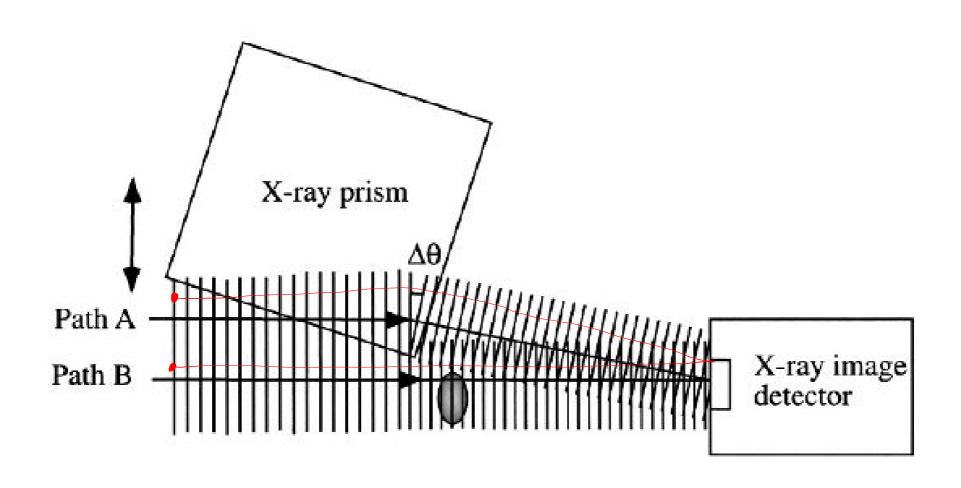


Fringe interferometry



Source: Cuche et al. Appl. Opt. **39**, 4070 (2000)

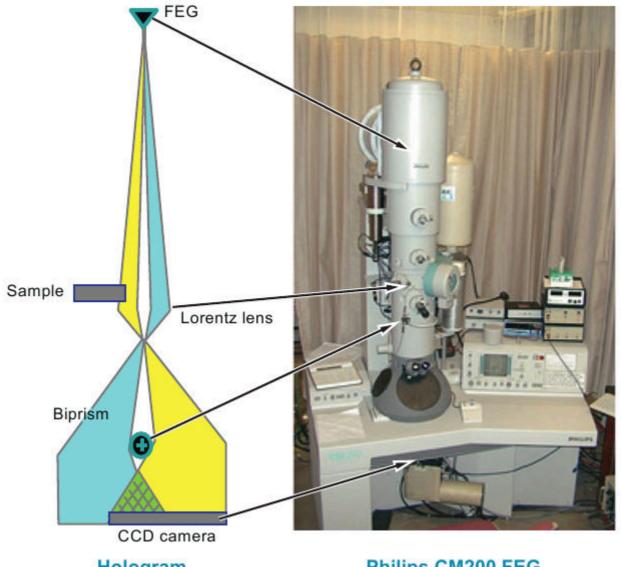
Off-axis X-ray holography



Source: Y. Kohmura, J. Appl. Phys. **96**, 1781-1784 (2004)

Off-axis electron holography

Electron microscopy

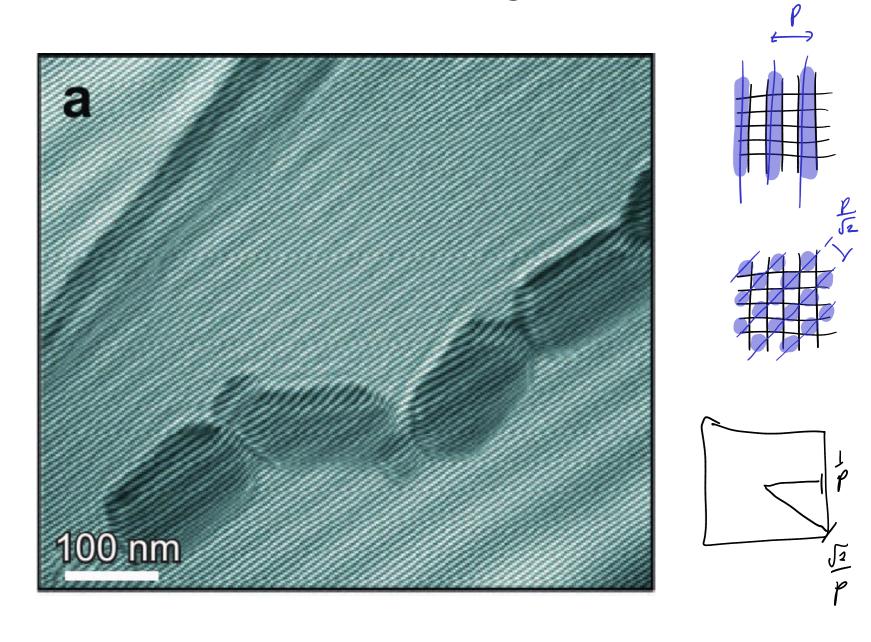


Hologram

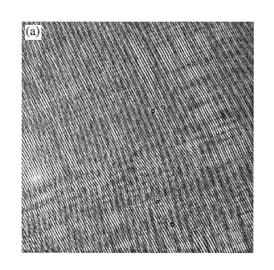
Philips CM200 FEG

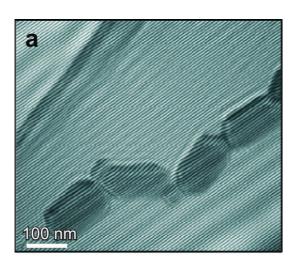
Source: M. R. McCartney, Ann. Rev. Mat. Sci. **37** 729-767 (2007)

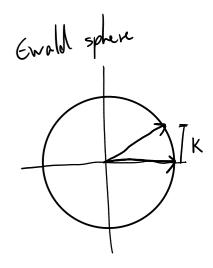
Off-axis electron holography



Fringe interferometry



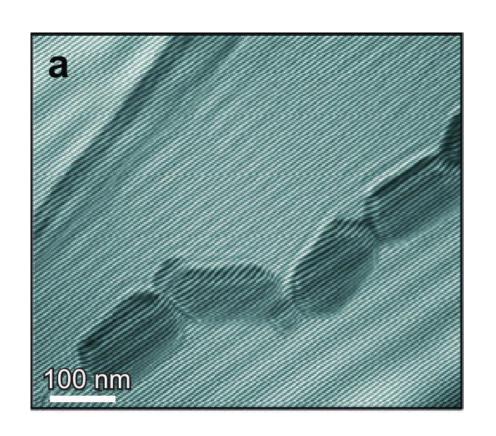


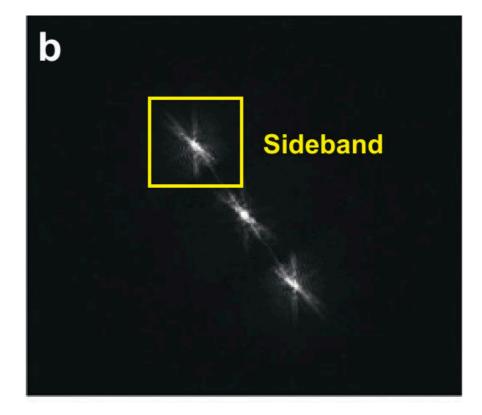


$$V(\vec{r}) = A e^{i\vec{k}\cdot\vec{r}}$$
 phase shift
(refraction)
 $V(\vec{r}) = A a(\vec{r}) e$ complex valued
2 absorption transmission
function

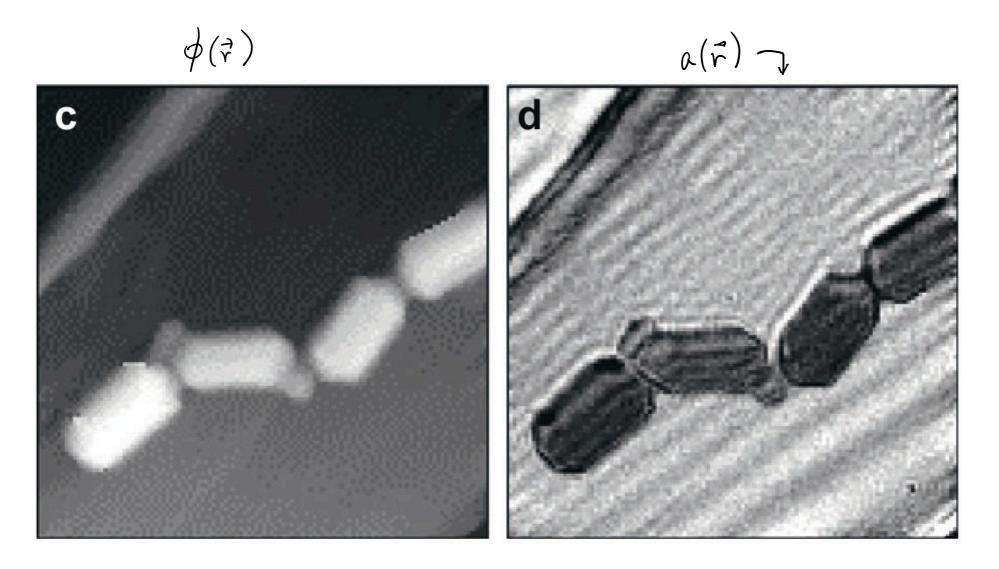
Marguredi

Off-axis holography





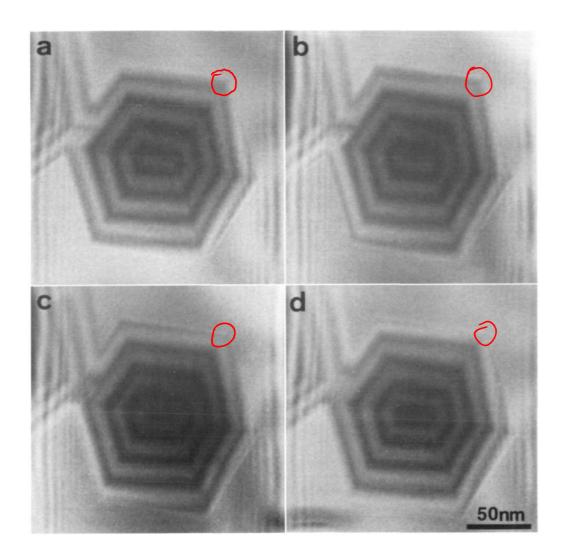
Off-axis holography

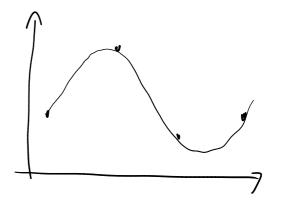


Phase stepping

- Encoding phase and amplitude in a single image has a price: resolution
 - \rightarrow Take more than one image, changing the reference in each.

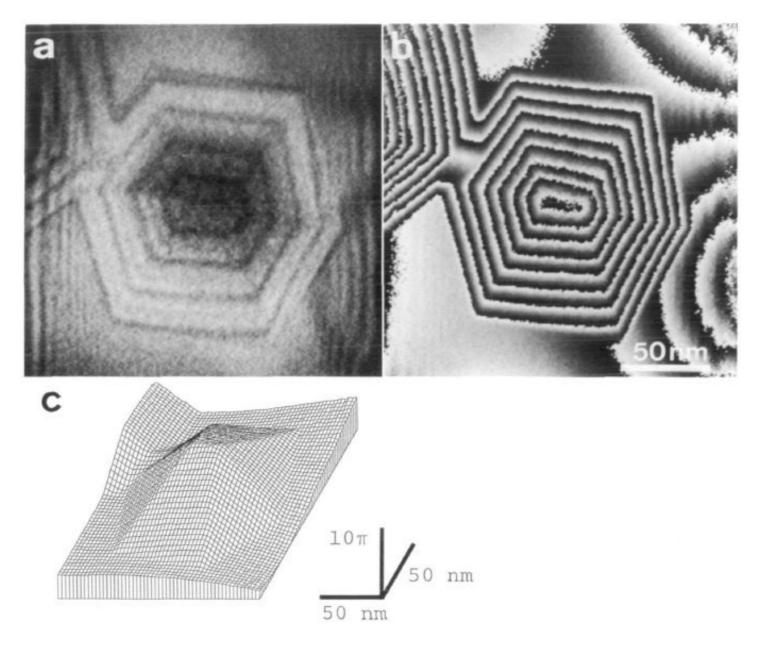
Fringe scanning





Source: K. Harada, J. Electron Microsc. 39 470-476 (1990)

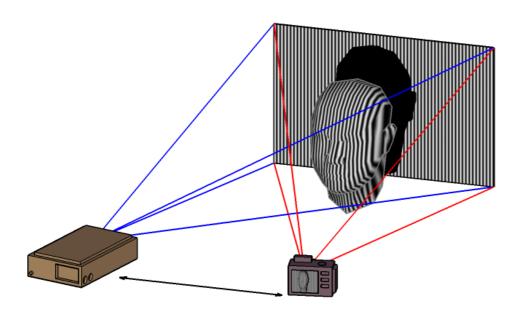
Fringe scanning



Source: K. Harada, J. Electron Microsc. 39 470-476 (1990)

Structured light sensing

- Project a structured light pattern onto sample
- Distortions of light pattern allow reconstruction of sample shape

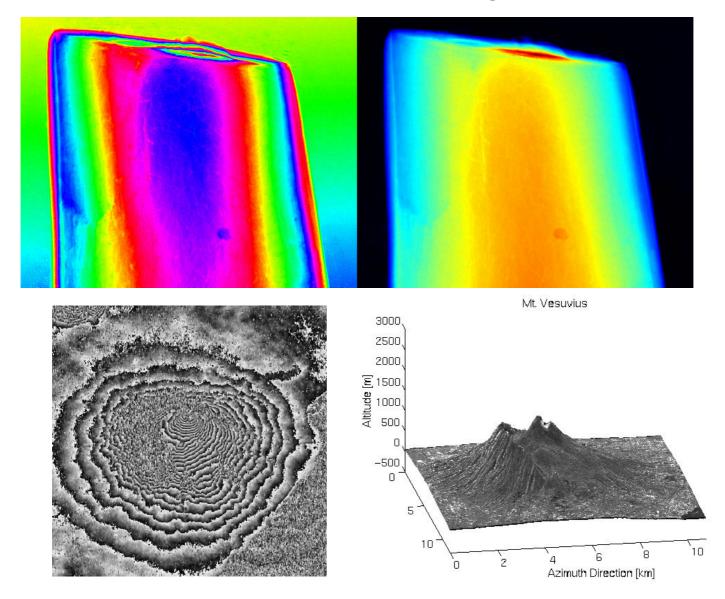


Phase unwrapping

- Phase is measured only in the interval $[0, 2\pi)$
- Physical phase shifts (which can be larger) are wrapped on this interval
 - \rightarrow Any multiple of 2π is possible
- Unwrapping: use correlations in the image to guess the total phase shift.
- Main difficulties:
 - aliasing: phase shifts are too rapid for the image sampling
 - noise: produces local singularities (vortices)
- Many strategies exist

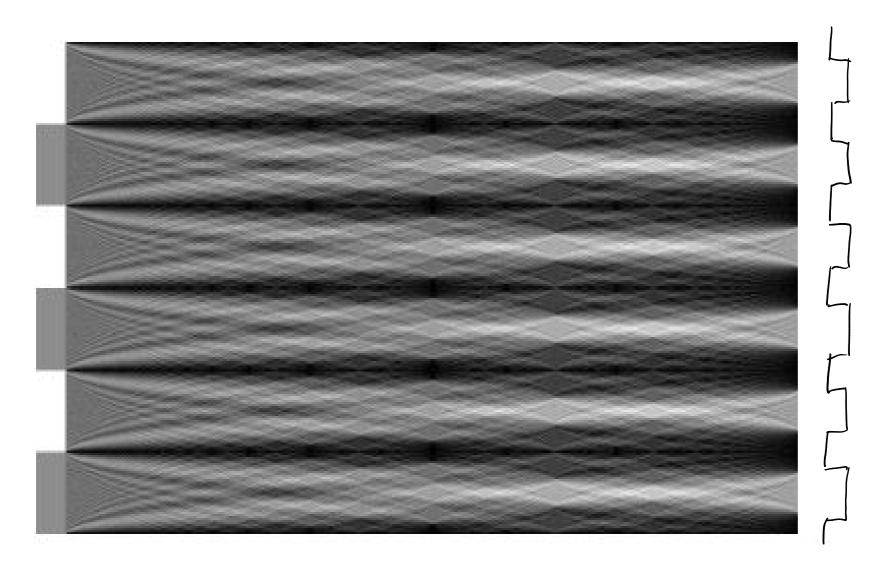
Complex-valued images

Phase unwrapping



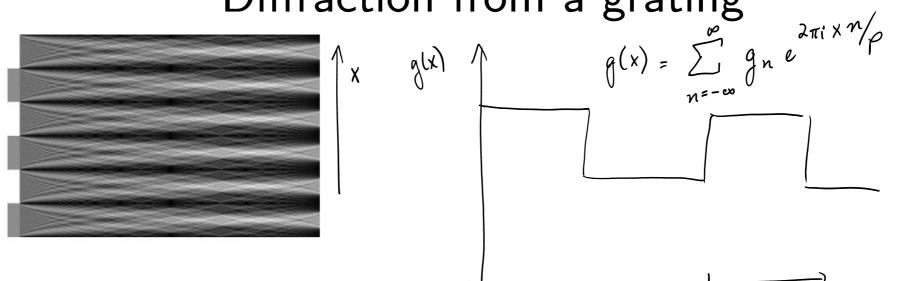
Source: http://earth.esa.int/workshops/ers97/program-details/speeches/rocca-et-al/

Grating interferometryDiffraction from a grating

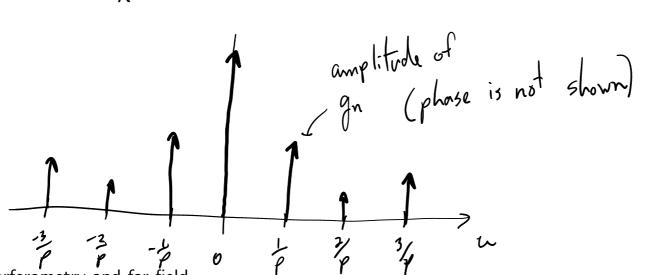


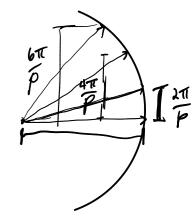
Grating interferometry

Diffraction from a grating



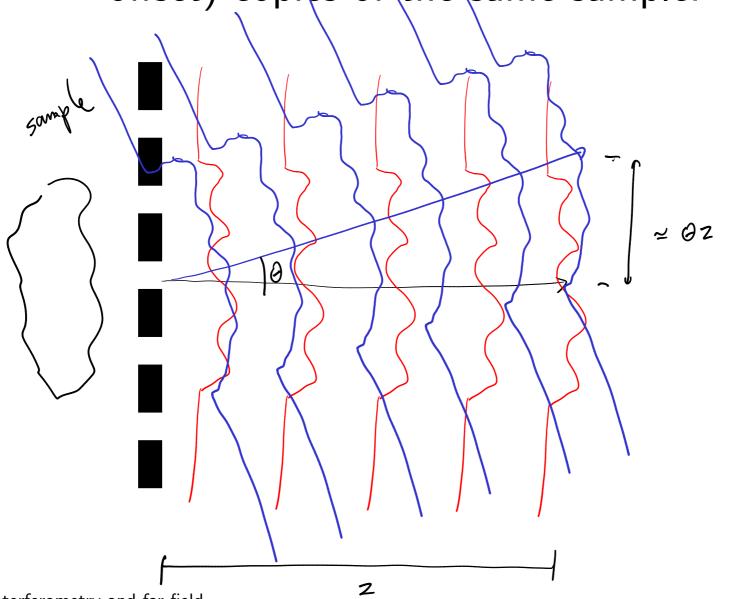
$$G(u) = \int_{n=-\infty}^{\infty} g_n \delta(u - \frac{n}{p})$$





Grating interferometry

Observing the interference between two (slightly offset) copies of the same sample.



 $\theta = \frac{2\sqrt{p}}{2\sqrt{\chi}} = \frac{\lambda}{p}$

Grating interferometry

Observing the interference between two (slightly offset) copies of the same sample.

e.g. if ant orders
$$\pm 1$$
 are relevant.

$$\psi(\vec{r},z) = \psi(\vec{r} + \lambda z \hat{x}) e^{2\pi i x \rho} + \psi(\vec{r} - z \frac{\lambda}{\rho} \hat{x}) e^{-2\pi i x / \rho}$$

$$= \frac{1}{\sqrt{r}} (\vec{r},z) = 2 a^{2}(\vec{r}) + 2a(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) a(\vec{r} - \lambda z \hat{x}) \cos \left(\varphi(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) - \varphi(\vec{r} - z \frac{\lambda}{\rho} \hat{x})\right)$$

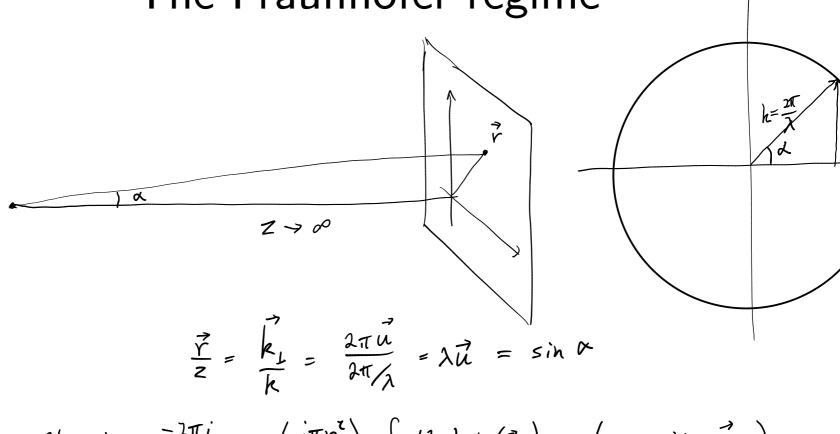
$$= 2 a^{2}(\vec{r}) + 2a(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) a(\vec{r} - \lambda z \hat{x}) \cos \left(\varphi(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) - \varphi(\vec{r} - z \frac{\lambda}{\rho} \hat{x})\right)$$

$$= 2 a^{2}(\vec{r}) + 2a(\vec{r}) + 2a(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) a(\vec{r} - \lambda z \hat{x}) \cos \left(\varphi(\vec{r} + z \frac{\lambda}{\rho} \hat{x}) - \varphi(\vec{r} - z \frac{\lambda}{\rho} \hat{x})\right)$$

$$= 2 a^{2}(\vec{r}) + 2a(\vec{r}) + 2$$

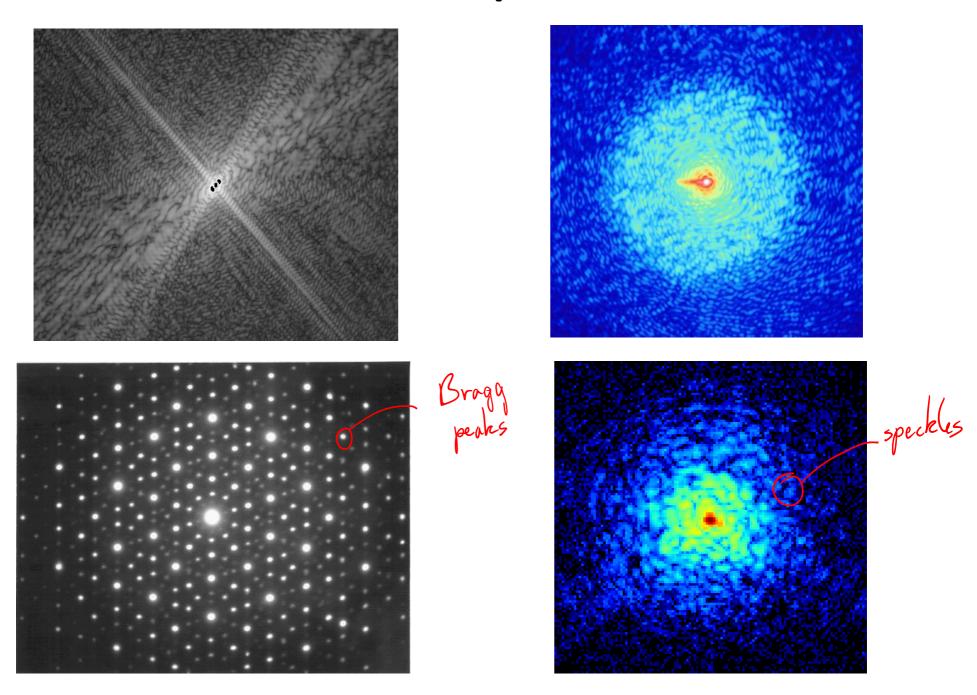
Far-field diffraction

The Fraunhofer regime



$$\psi(\vec{r}) = \frac{-2\pi i}{\lambda z} \exp\left(\frac{i\pi r^2}{\lambda z}\right) \int d^2r' \psi(\vec{r}') \exp\left(-2\pi i \vec{r}', \frac{\vec{r}'}{\lambda z}\right)$$

Diffraction patterns



Imaging with interferometry and far-field

Diffraction and autocorrelation

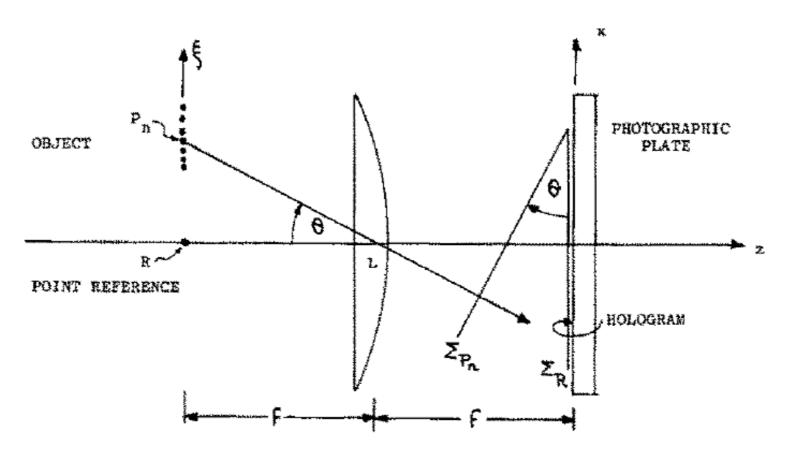
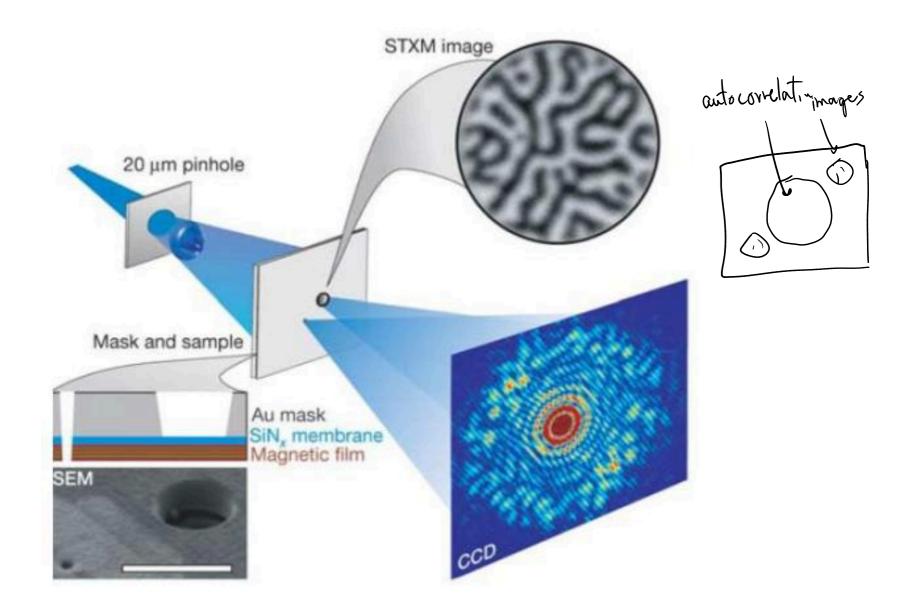


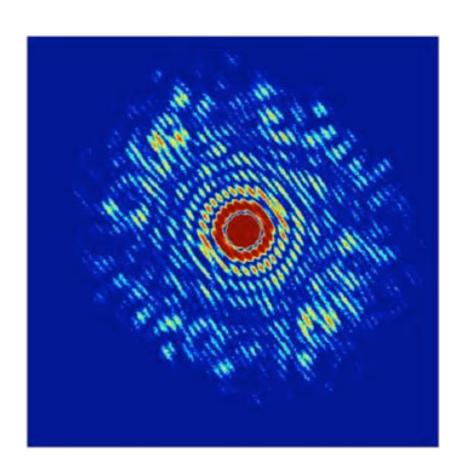
Fig. 1. Recording of a Fourier-transform hologram with a lens L. Σ_R = reference wavefront.



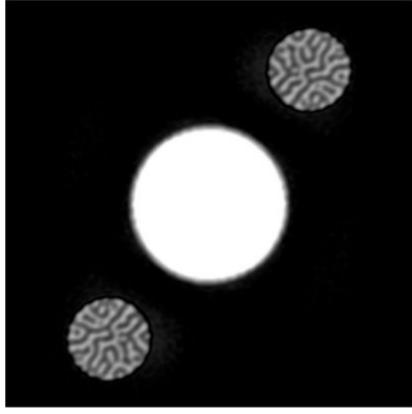
Source: S. Eisebitt et al., Nature **432**, 885-888 (2004).

$$\psi(\vec{r}) = \psi_{R}(\vec{r}) + \psi_{\bullet}(\vec{r})$$

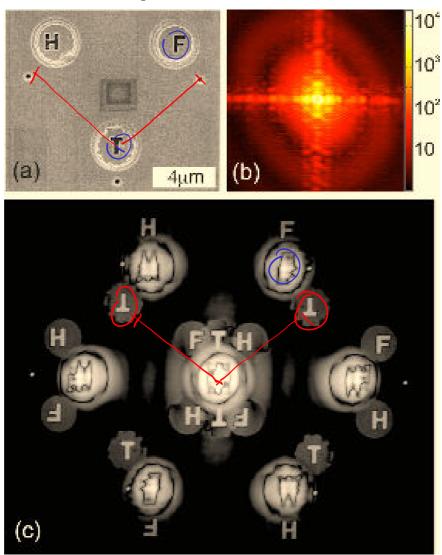
$$\psi(\vec{u}) = \psi_{R}(\vec{u}) + \psi_{\bullet}(\vec{u}) \leftarrow \text{Fourier transform (far-field or back focal plane of } 1(\vec{u}) = |\psi_{R}(\vec{u})|^{2} + |\psi_{\bullet}(\vec{u})|^{2} +$$



autocorrelation is always centrosymmetric because IT. of a red quantity



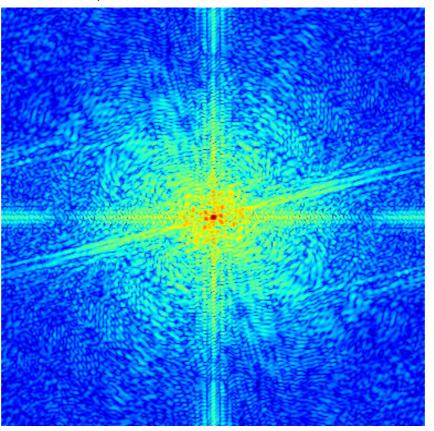
Multiple references



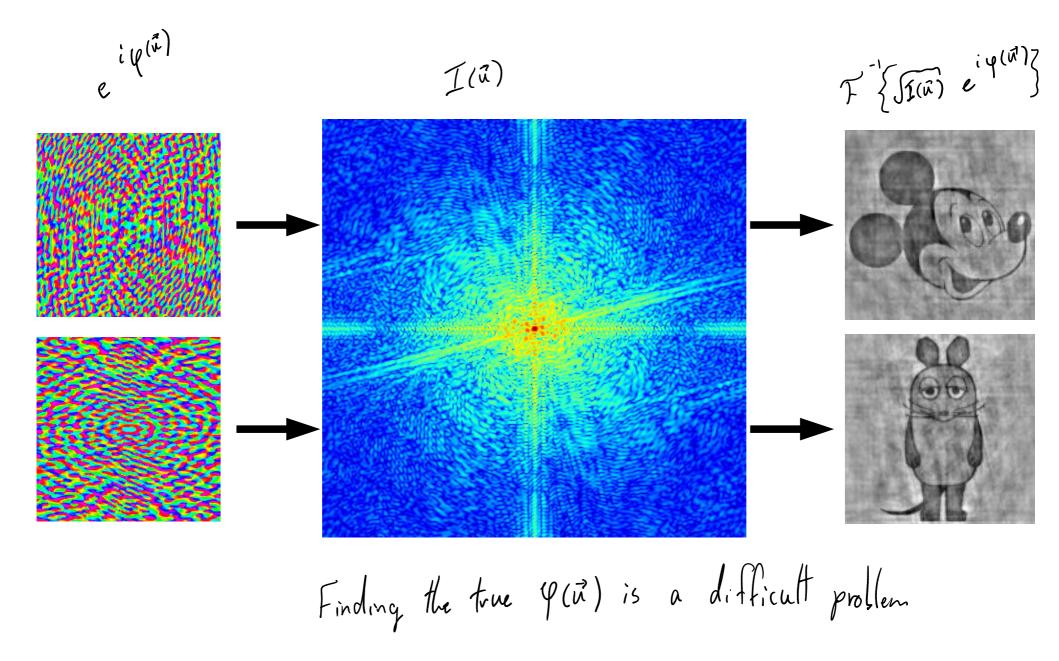
Source: W. Schlotter et al., Opt.. Lett. 21, 3110-3112 (2006).

Coherent diffractive imaging

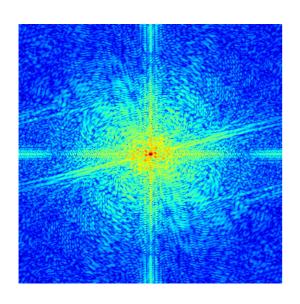
Diffraction patern of an isolated sample



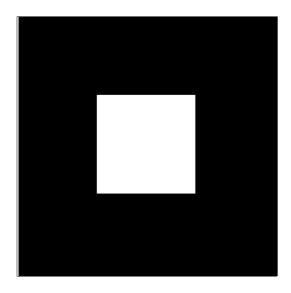
The phase problem



Coherent diffractive imaging

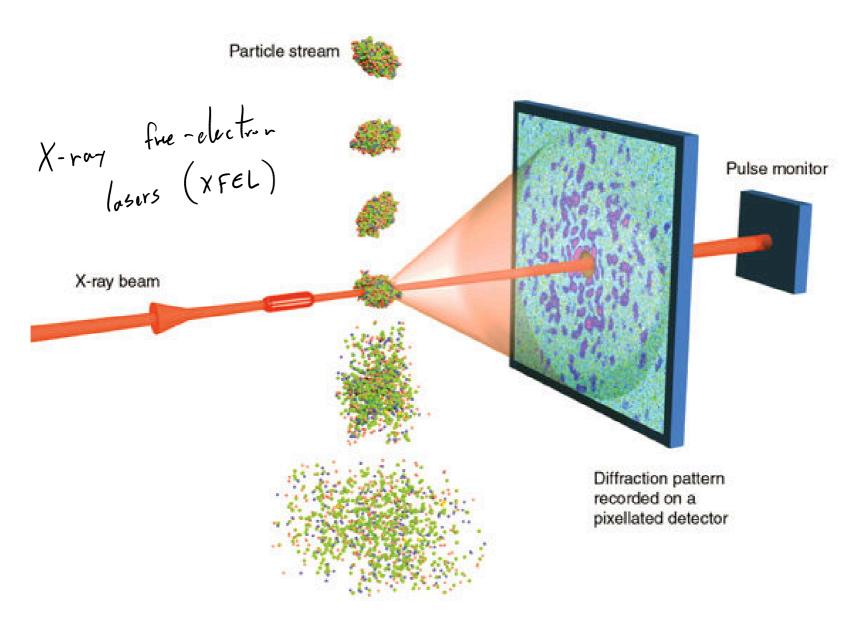


1. Solution has to be consistent with the measured Fourier amplitudes



2. Solution is isolated

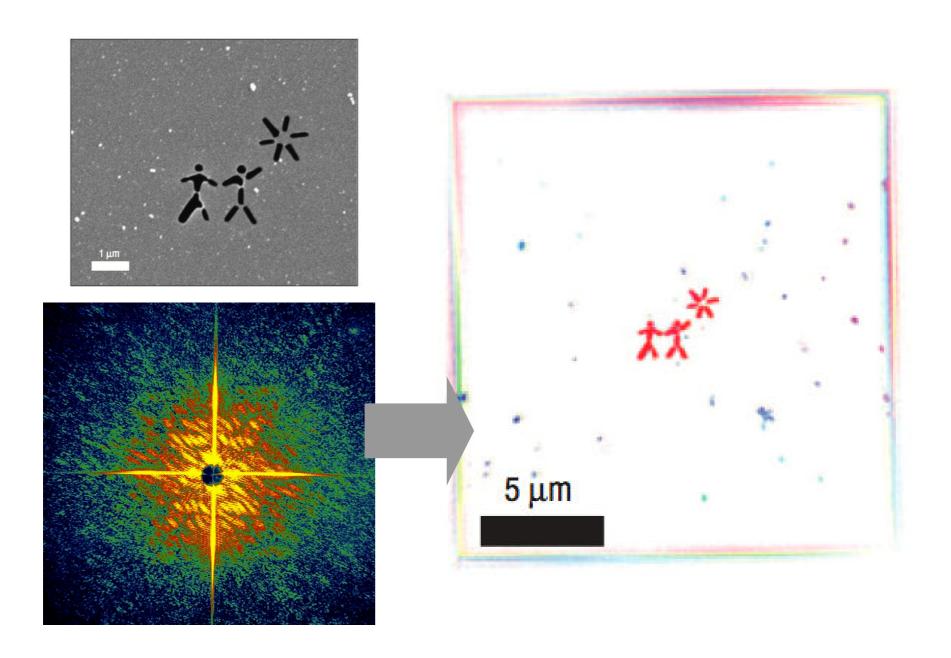
Radiation damage limits on radiation



R. Neutze *et al*, Nature **406**, 752 (2000)

K. J. Gaffney et al, Science **316**, 1444 (2007)

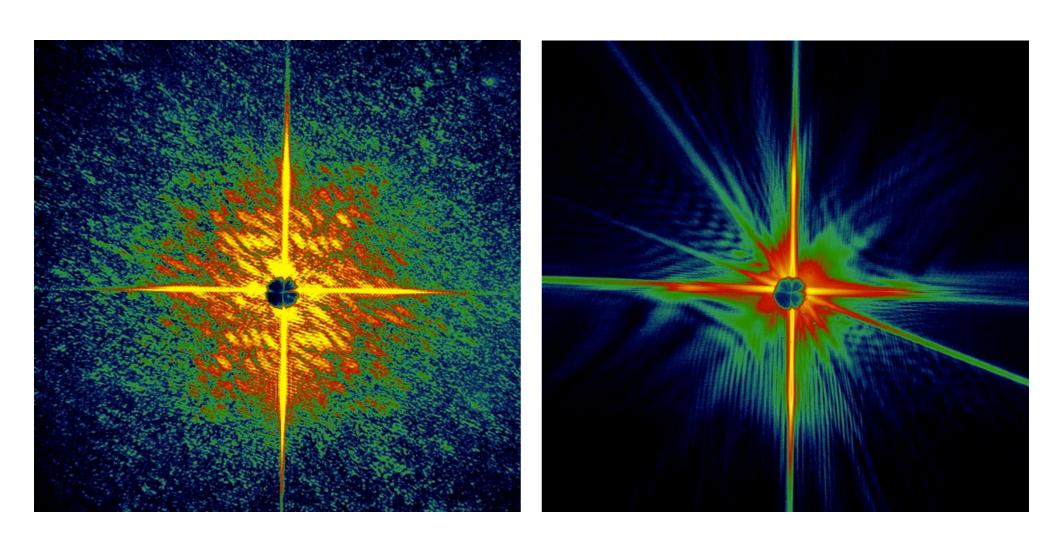
"Diffraction before destruction"



H. N. Chapman et al, Nat. Phys. 2, 839 (2006)

"Diffraction before destruction"

The imaging pulse vaporized the sample



H. N. Chapman *et al*, Nat. Phys. **2**, 839 (2006)

Ptychography

- Scanning an isolated illumination on an extended specimen
- Measure full coherent diffraction pattern at each scan point
- Combine everything to get a reconstruction

Dynamische Theorie der Kristallstrukturanalyse durch Elektronenbeugung im inhomogenen Primärstrahlwellenfeld

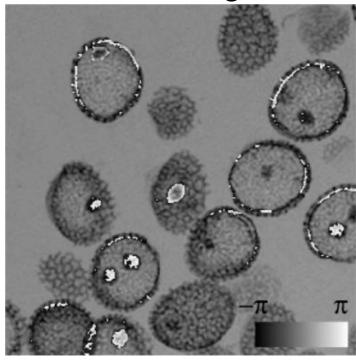
Von R. Hegerl und W. Hoppe

Some time ago a new principle was proposed for the registration of the complete information (amplitudes and phases) in a diffraction diagram, which does not—as does Holography—require the interference of the scattered waves with a single reference wave. The basis of the principle lies in the interference of neighbouring scattered waves which result when the object function g(x, y) is multiplied by a generalized primary wave function p(x, y) in Fourier space (diffraction diagram) this is a convolution of the Fourier transforms of these functions. The above mentioned interferences necessary for the phase determination can be obtained by suitable choice of the shape of p(x, y). To distinguish it from holography this procedure is designated "ptychography" ($\pi \tau v \xi = \text{fold}$) The procedure is applicable to periodic and aperiodic structures. The relationships are simplest for plane lattices. In this paper the theory is extended to space lattices both with and without consideration of the dynamic theory. The resulting effects are demonstrated using a practical example.

Ptychography

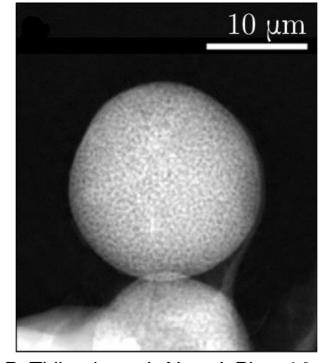
A few examples

Visible light



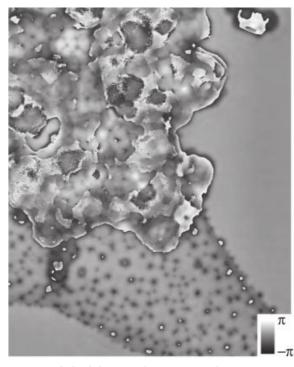
A. Maiden *et al.*, Opt. Lett. **35**, 2585-2587 (2010).

X-rays



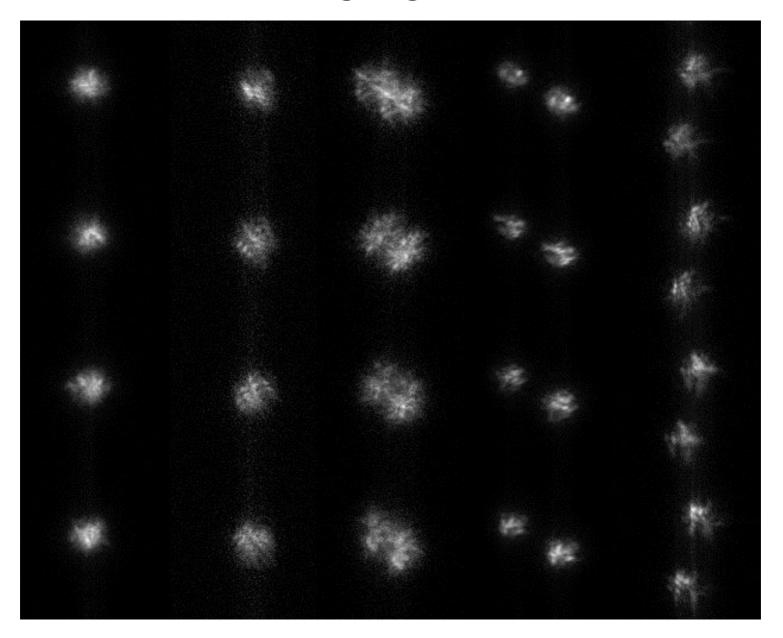
P. Thibault *et al.*, New J. Phys **14**, 063004 (2012).

electrons



M. Humphry *et al.*, Nat. Comm. **3**, 730 (2012).

Speckle imaging in astronomy



Source:http://www.cis.rit.edu/research/thesis/bs/2000/hoffmann/thesis.html

Speckle imaging in astronomy

Model

$$I(\vec{r}) = 0 * |P|^2$$
 "instancous PSF"

 $\vec{I} = \vec{0} \cdot P_A$ autocorrelation of PSF

 $|\vec{I}|' = |\vec{0}|^2 \cdot |P_A|'$ known quantity

average over $(|\vec{I}|^2) = |\vec{0}|' \cdot |P_A|'^2$ (from understanding of turbulence in atmosphere)

measurements

 $|\vec{0}|^2 = \frac{(|\vec{I}|^2)}{(|P_A|^2)}$ known

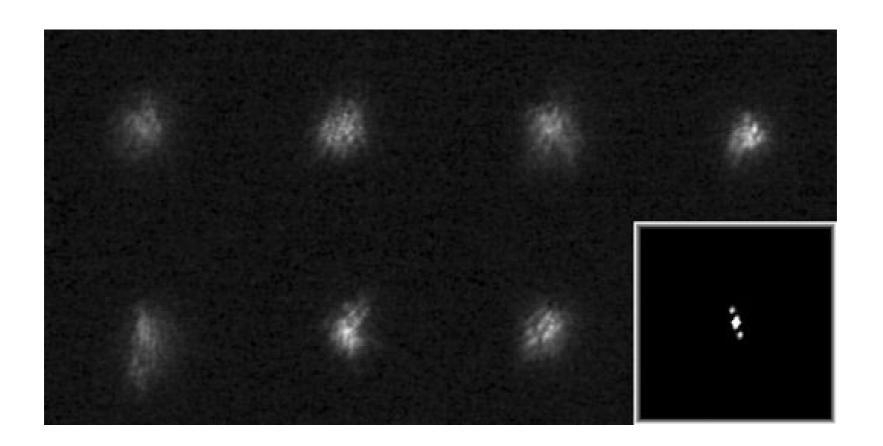
 $|\vec{0}|^2 = \frac{(|\vec{I}|^2)}{(|P_A|^2)}$ known

 $|\vec{0}|^2 = \frac{(|\vec{I}|^2)}{(|P_A|^2)}$ known

 $|\vec{0}|^2 = \frac{(|\vec{I}|^2)}{(|P_A|^2)}$ same problem

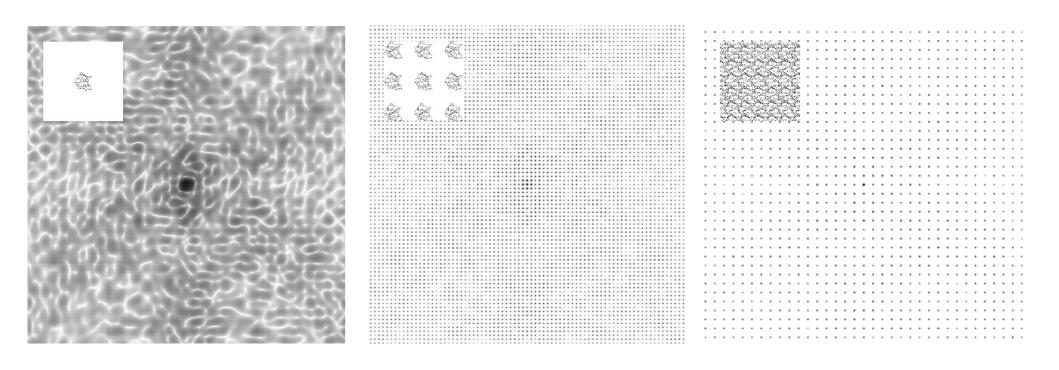
reconstruct 0 from $|\vec{0}|^2$ same problem

Speckle imaging in astronomy Retrieval of the autocorrelation

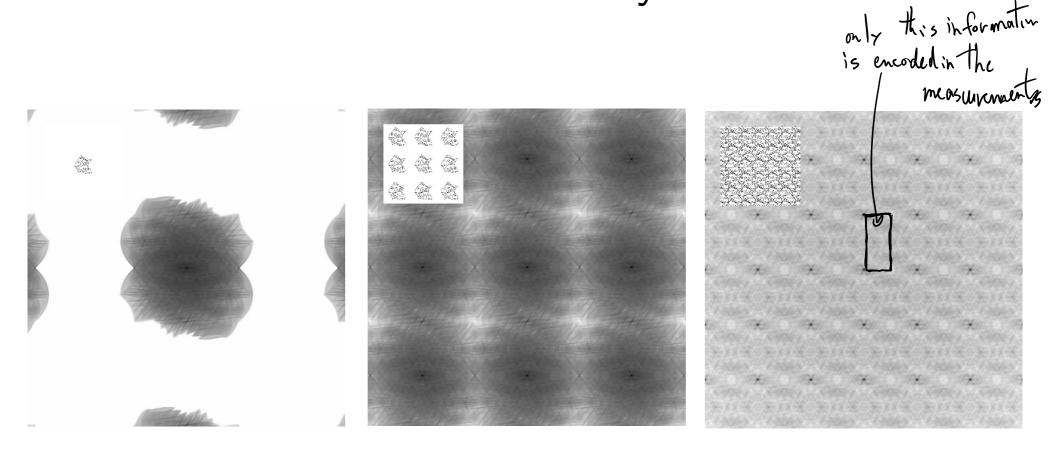


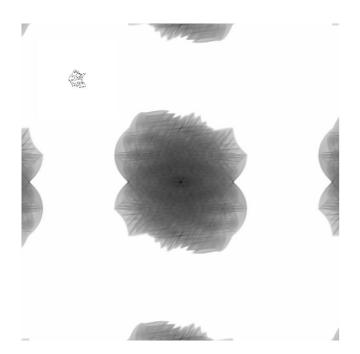
Source: http://www.astrosurf.com/hfosaf/uk/speckle10.htm

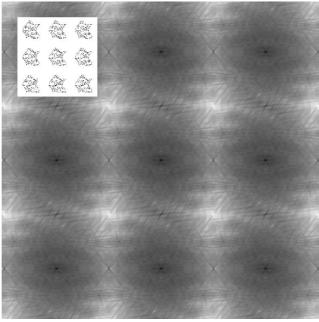
Diffraction by a crystal: Bragg peaks

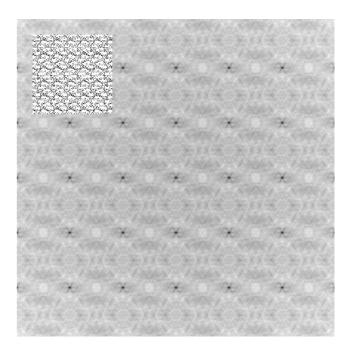


Fourier transform of intensity: autocorrelation



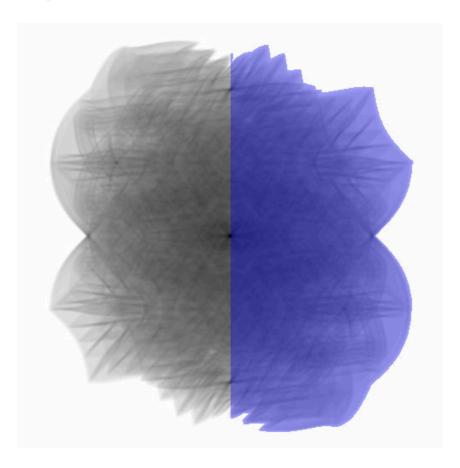






Problem is overconstrained with an isolated sample



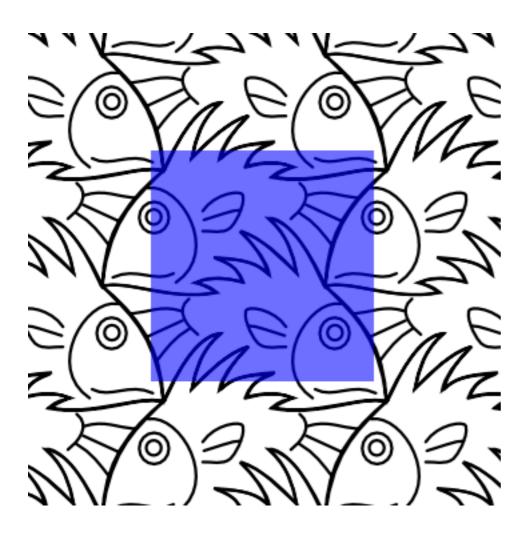


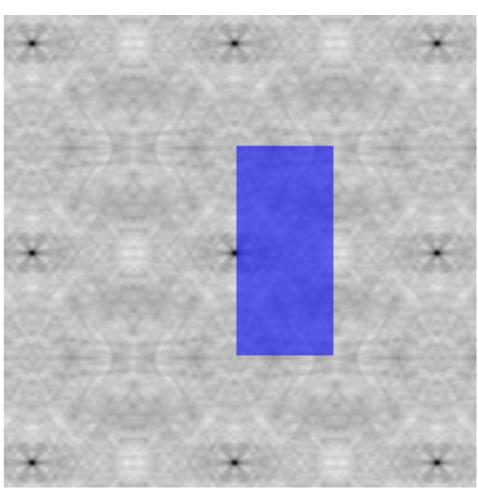
unknowns = N

constraints ≥ 2N

Overconstrained

Problem is underconstrained with a crystal



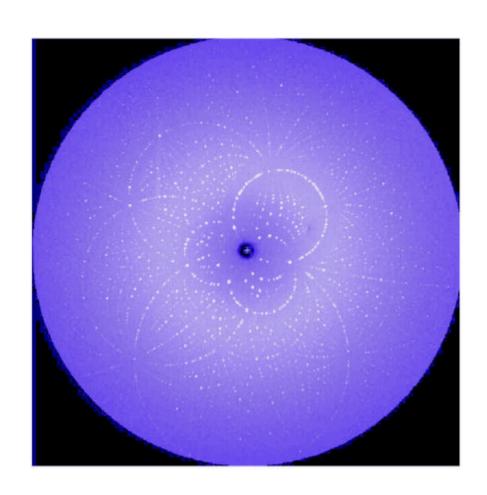


unknowns = N

constraints = N/2

Underconstrained

CrystallographyStructure determination



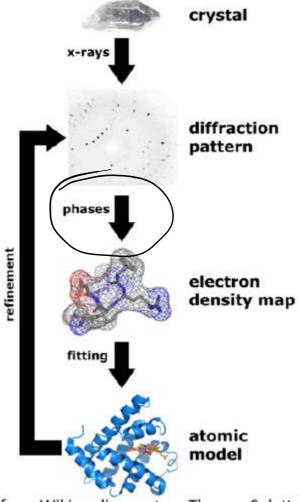


Image from Wikimedia courtesy Thomas Splettstoesser

Structure determination

- Hard problem: few measurements for the number of unknowns
- Luckily: crystals are made of atoms \rightarrow strong constraint
- Also common: combining additional measurements (SAD, MAD, isomorphous replacement, ...)

Summary

Imaging from far-field amplitudes

- Used when image-forming lenses are unavailable (or unreliable) or to obtain more quantitative images.
- In general difficult because of the phase problem
- Solved with the help of additional information:
 - Strong *a priori* knowledge (e.g. CDI: support)
 - Multiple measurements (e.g. ptychography)