## Image Processing for Physicists



#### **Overview**

- Likelihood
- Bayes' theorem
- Application
  - ML Classification
  - Deconvolution
  - Image registration

#### What is likelihood?

• A likelihood function is a probability distribution expressed as a function of its parameters, and evaluated for a given set of observations.

Probability of x given &

probability of x given 
$$\alpha$$

$$p(x/\alpha) = l(\alpha/x)$$

l(x/x) is not the probability that the model is true

#### Maximum likelihood

Can easily be misunderstood...



Shroud of Turin

p (shroud has this it really was) very high ~110% of appearance Jesus

e (it really was Jesus I it look like this) missing prior

Maximum Likelihood

## Bayes' theorem

Bayes' theorem

$$\rho(A \cap B) = \rho(A|B)\rho(B)$$

$$= \rho(B|A)\rho(A)$$

$$\rho(B|A) = \rho(A|B)\rho(B)$$

$$\rho(B|A) = \rho(A|B)\rho(B)$$

$$\rho(A|B)\rho(B)$$

### Maximum likelihood & optimization

- Goal: find the parameters that explain best the observed data.
  - → Maximum likelihood maximize l(x/x)

or

→ Maximum a posteriori (MAP)

maximize 
$$\ell(x|x)p(x)$$
2 additional knowledge about a

• Very often more convenient to minimize -log().

# Example: a biased coin

Maximum Likelihood

## Example: Gaussian model

1. A single variable: 
$$p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi d^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

2. Many independent variables with some distribution (many independent

$$\mathcal{L} = -\ln(l) = \frac{N}{2}\ln(2\pi\sigma^2) + \frac{1}{\sigma^2}\sum_{i}(x_i - \mu)^2$$
 least squans

$$\frac{\partial f}{\partial \mu} = 0 \longrightarrow \mu = \frac{1}{N} \stackrel{?}{\downarrow}_{1}^{1}_{1}^{1}_{1}$$

$$\frac{\partial f}{\partial \sigma^{2}} = 0 \longrightarrow \sigma^{2} \stackrel{?}{\downarrow} \stackrel{?}{\downarrow}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^{1}_{1}^$$

## Example: Gaussian model

3. No variables not identically distributed and not independent
$$p(\vec{x} \mid \vec{\mu}, C) = \frac{1}{(2\pi)^{N_2} \sqrt{|C|}} \exp\left(-\frac{1}{2}(x - \mu)^T C^T(x - \mu)\right)$$
means covariance determinant
motrix

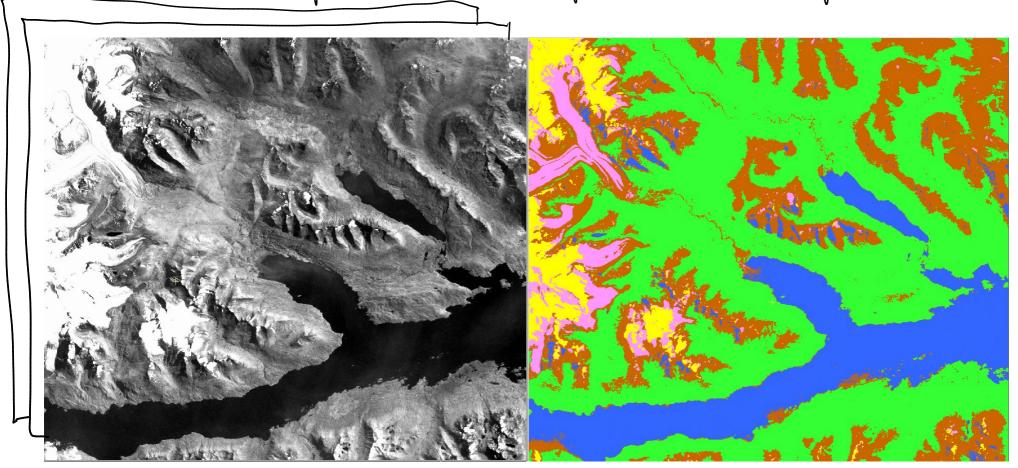
If M measurements one made:

$$P(\vec{x}^{(i)}, \vec{x}^{(i)}, \vec{x}^{(i)}) = \frac{1}{(2\pi)^{\frac{NN}{2}} |C|^{\frac{N}{2}}} \exp\left(-\frac{1}{2} \sum_{i} (\vec{x}^{(i)} - \vec{\mu})^{T} C^{T} (\vec{x}^{(i)} - \vec{\mu})\right)$$

$$Result: \vec{\mu} = \sum_{i} \vec{x}^{(i)}$$

$$C_{lm} = M \sum_{i} (x_{l}^{(i)} - \mu_{l}) (x_{m}^{(i)} - \mu_{m})$$

Image classification stack of images. here sullite images at various wavelengths



Goal: assign each pixel to a class according to a probability model

#### Image classification

### Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

| Bands                               | Wavelength<br>(micrometers) | Resolution<br>(meters) |
|-------------------------------------|-----------------------------|------------------------|
| Band 1 - Coastal aerosol            | 0.43-0.45                   | 30                     |
| Band 2 - Blue                       | 0.45-0.51                   | 30                     |
| Band 3 - Green                      | 0.53-0.59                   | 30                     |
| Band 4 - Red                        | 0.64-0.67                   | 30                     |
| Band 5 - Near Infrared (NIR)        | 0.85-0.88                   | 30                     |
| Band 6 - SWIR 1                     | 1.57-1.65                   | 30                     |
| Band 7 - SWIR 2                     | 2.11-2.29                   | 30                     |
| Band 8 - Panchromatic               | 0.50-0.68                   | 15                     |
| Band 9 - Cirrus                     | 1.36-1.38                   | 30                     |
| Band 10 - Thermal Infrared (TIRS) 1 | 10.6-11.19                  | 100                    |
| Band 11 - Thermal Infrared (TIRS) 2 | 11.50-12.51                 | 100                    |

#### Image classification

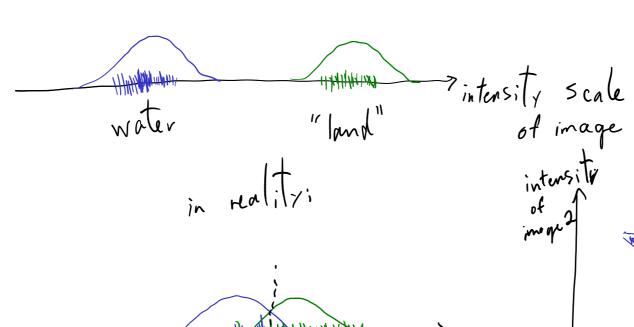
Supervised Maximum Likelihood Classification

1. Training for each class, evaluate the probability distribution of the measurements.

> extract ju, C

10

one of the images



#### Image classification

Supervised Maximum Likelihood Classification

2. Classification: for each pixel, compute the probability that it belongs to each class. The highest probability wins.

Pwater (
$$\frac{1}{x}$$
)  $\frac{1}{\mu_{wrtes}}$ ,  $\frac{1}{\mu_{wrt$ 

### Image deconvolution revisited

Image cavolced with -known- PSF in the presence of noise  $g(\vec{r}) = (h * f)(\vec{r}) + n(\vec{r})$   $p(\vec{r}) = h * f$   $p(\vec{r}) = h * f$   $p(\vec{r}) + n(\vec{r})$   $p(\vec{r}) + n(\vec{r$ 

Faurier space

$$G(\vec{u}) = H(\vec{u}) F(\vec{u}) + N(\vec{u})$$

Often good assumption: N(v) is uncorrelated as white noise

$$\frac{\left|N\right|^{2}}{\left|N\right|^{2}}$$

## Image deconvolution revisited

Probability of measuring 
$$G(\vec{u})$$
:

 $exp(-\frac{1}{2} \sum_{u} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - G(\vec{u})|^2)$ 
 $-h(e) = h(F) = \sum_{u} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - G(\vec{u})|^2$ 
 $\frac{\partial f}{\partial F(\vec{u})} = 0 \implies F = \frac{1}{2} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - \frac{1}{2} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{$ 

Solution: include prior: impose power spectrum on 
$$F$$

$$p(F(\vec{u})) \propto exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{|F(u)|^{2}}{5(u)}\right)$$

# Image deconvolution revisited

Maximum a posterior: (MAP)

maximize 
$$l(F16) p(F)$$
 instead of  $l(F16)$ 

$$f'(F) = -h(l(F16) p(F)) = -h(l) - h(p(F))$$

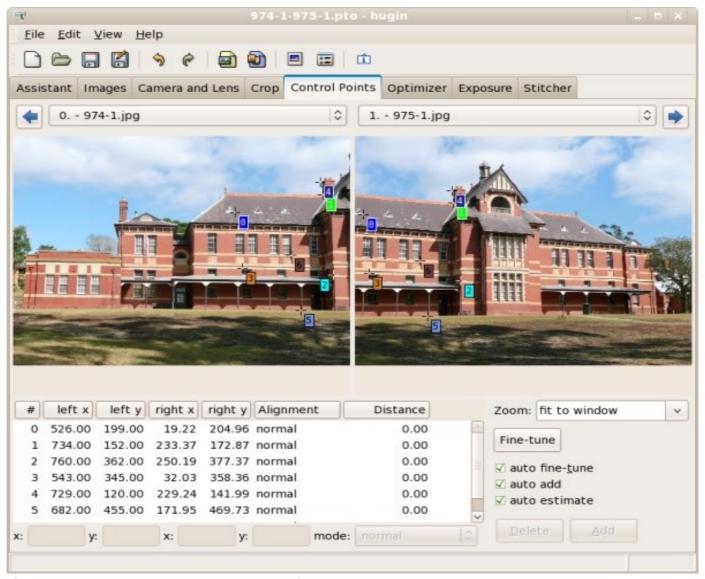
$$= \underbrace{\Box \bot}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) - G(u$$

Maximum Likelihood

#### What is image registration?

- Geometric transformation of multiple images to make them match
- Transformations can be rigid or non-rigid
  - Rigid: translation, scale, rotation
  - Non-rigid: shear, perspective, ...
- Optimization can be done on the transformed images or on a set of control points.
- In almost all cases, interpolation is required to remap images on a regular grid.

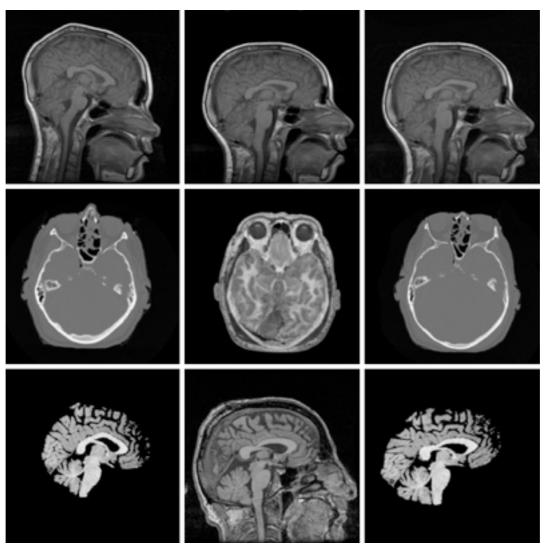
#### Control points for photo stitching



Source: http://hugin.sourceforge.net/tutorials/two-photos/en.shtml

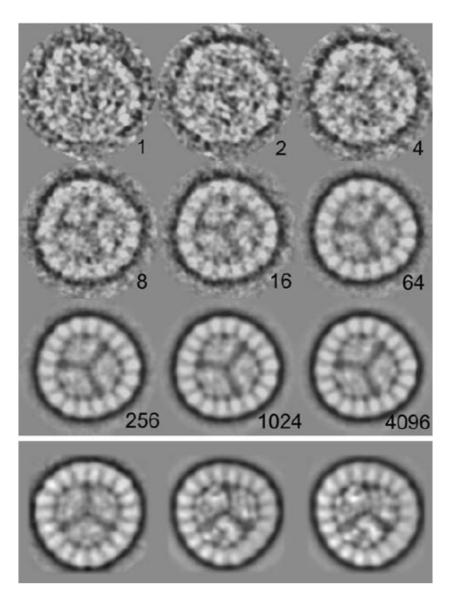
### Image registration

Medical image registration



Source: http://www.cs.dartmouth.edu/farid/Hany\_Farid/

#### Single particle analysis

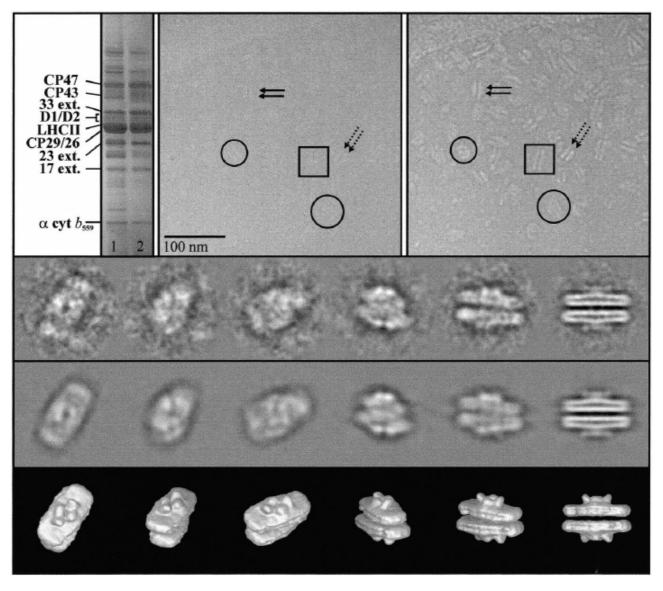


cryo EN dectro-microscopi

Nobel 2017

Source: Boerkema et al. Photosynth. Res. 102, 189-196 (2009)

### Single particle analysis



Source: Nield et al. Nat. Struct. Bio. 7, 44-47 (2000)

#### **Summary**

- Likelihood maximization: finding parameters that best fit an observation.
  - Powerful, but:
  - Can overfit, can misinterpret
- Maximum A Posteriori (MAP): include prior (probabilistic) knowledge
- Broad range of applications:
  - Classification, registration, enhancements, ...