Image Processing for Physicists



Overview

- Likelihood
- Bayes' theorem
- Application
 - ML Classification
 - Deconvolution
 - Image registration

What is likelihood?

• A likelihood function is a probability distribution expressed as a function of its parameters, and evaluated for a given set of observations.

Probability of x given &

probability of x given
$$\alpha$$

$$p(x/\alpha) = l(\alpha/x)$$

l(x/x) is not the probability that the model is true

Maximum likelihood

Can easily be misunderstood...

Shroud of Turin

p (shroud has this it really was) very high ~110% of appearance Jesus

e (it really was Jesus I it look like this) missing prior

Maximum Likelihood

Bayes' theorem

Bayes' theorem

$$\rho(A \cap B) = \rho(A|B)\rho(B)$$

$$= \rho(B|A)\rho(A)$$

$$\rho(B|A) = \rho(A|B)\rho(B)$$

$$\rho(B|A) = \rho(A|B)\rho(B)$$

$$\rho(A|B)\rho(B)$$

Maximum likelihood & optimization

- Goal: find the parameters that explain best the observed data.
 - → Maximum likelihood maximize l(x/x)

or

→ Maximum a posteriori (MAP)

maximize
$$\ell(x|x)p(x)$$
2 additional knowledge about a

• Very often more convenient to minimize -log().

Example: a biased coin

Maximum Likelihood

Example: Gaussian model

1. A single variable:
$$p(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi d^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

2. Many independent variables with some distribution (many independent

$$\mathcal{L} = -\ln(l) = \frac{N}{2}\ln(2\pi\sigma^2) + \frac{1}{\sigma^2}\sum_{i}(x_i - \mu)^2$$
 least squans

$$\frac{\partial f}{\partial \mu} = 0 \longrightarrow \mu = \frac{1}{N} \stackrel{?}{\downarrow}_{1}^{1}_{1}^{1}_{1}$$

$$\frac{\partial f}{\partial \sigma^{2}} = 0 \longrightarrow \sigma^{2} \stackrel{?}{\downarrow} \stackrel{?}{\downarrow}_{1}^{1}_{1}^$$

Example: Gaussian model

3. No variables not identically distributed and not independent
$$p(\vec{x} \mid \vec{\mu}, C) = \frac{1}{(2\pi)^{N_2} \sqrt{|C|}} \exp\left(-\frac{1}{2}(x - \mu)^T C^T(x - \mu)\right)$$
means covariance determinant
motrix

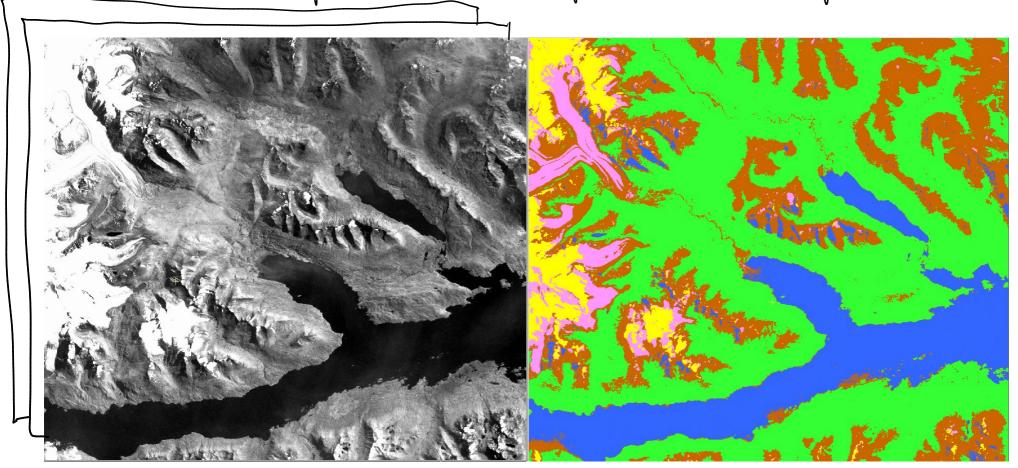
If M measurements one made:

$$P(\vec{x}^{(i)}, \vec{x}^{(i)}, \vec{x}^{(i)}) = \frac{1}{(2\pi)^{\frac{NN}{2}} |C|^{\frac{N}{2}}} \exp\left(-\frac{1}{2} \sum_{i} (\vec{x}^{(i)} - \vec{\mu})^{T} C^{T} (\vec{x}^{(i)} - \vec{\mu})\right)$$

$$Result: \vec{\mu} = \sum_{i} \vec{x}^{(i)}$$

$$C_{lm} = M \sum_{i} (x_{l}^{(i)} - \mu_{l}) (x_{m}^{(i)} - \mu_{m})$$

Image classification stack of images. here sullite images at various wavelengths



Goal: assign each pixel to a class according to a probability model

Image classification

Landsat 8-9 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)

Bands	Wavelength (micrometers)	Resolution (meters)
Band 1 - Coastal aerosol	0.43-0.45	30
Band 2 - Blue	0.45-0.51	30
Band 3 - Green	0.53-0.59	30
Band 4 - Red	0.64-0.67	30
Band 5 - Near Infrared (NIR)	0.85-0.88	30
Band 6 - SWIR 1	1.57-1.65	30
Band 7 - SWIR 2	2.11-2.29	30
Band 8 - Panchromatic	0.50-0.68	15
Band 9 - Cirrus	1.36-1.38	30
Band 10 - Thermal Infrared (TIRS) 1	10.6-11.19	100
Band 11 - Thermal Infrared (TIRS) 2	11.50-12.51	100

Image classification

Supervised Maximum Likelihood Classification

1. Training for each class, evaluate the probability distribution of the measurements.

> extract ju, C

10

one of the images

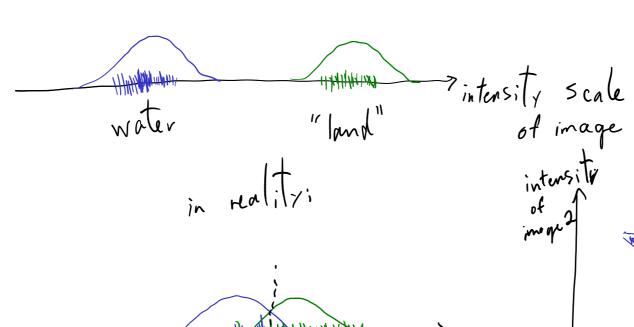


Image classification

Supervised Maximum Likelihood Classification

2. Classification: for each pixel, compute the probability that it belongs to each class. The highest probability wins.

Pwater (
$$\frac{1}{x}$$
) $\frac{1}{\mu_{wrtes}}$, $\frac{1}{\mu_{wrt$

Image deconvolution revisited

Image cavolced with -known- PSF in the presence of noise $g(\vec{r}) = (h * f)(\vec{r}) + n(\vec{r})$ $p(\vec{r}) = h * f$ $p(\vec{r}) = h * f$ $p(\vec{r}) + n(\vec{r})$ $p(\vec{r}) + n(\vec{r$

Faurier space

$$G(\vec{u}) = H(\vec{u}) F(\vec{u}) + N(\vec{u})$$

Often good assumption: N(v) is uncorrelated as white noise

$$\frac{\left|N\right|^{2}}{\left|N\right|^{2}}$$

Image deconvolution revisited

Probability of measuring
$$G(\vec{u})$$
:

 $exp(-\frac{1}{2} \sum_{u} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - G(\vec{u})|^2)$
 $-h(e) = h(F) = \sum_{u} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - G(\vec{u})|^2$
 $\frac{\partial f}{\partial F(\vec{u})} = 0 \implies F = \frac{1}{2} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{u}) - \frac{1}{2} \frac{1}{|N(u)|^2} |F(\vec{u}) H(\vec{$

Solution: include prior: impose power spectrum on
$$F$$

$$p(F(\vec{u})) \propto exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{|F(u)|^{2}}{5(u)}\right)$$

Image deconvolution revisited

Maximum a posterior: (MAP)

maximize
$$l(F16) p(F)$$
 instead of $l(F16)$

$$f'(F) = -h(l(F16) p(F)) = -h(l) - h(p(F))$$

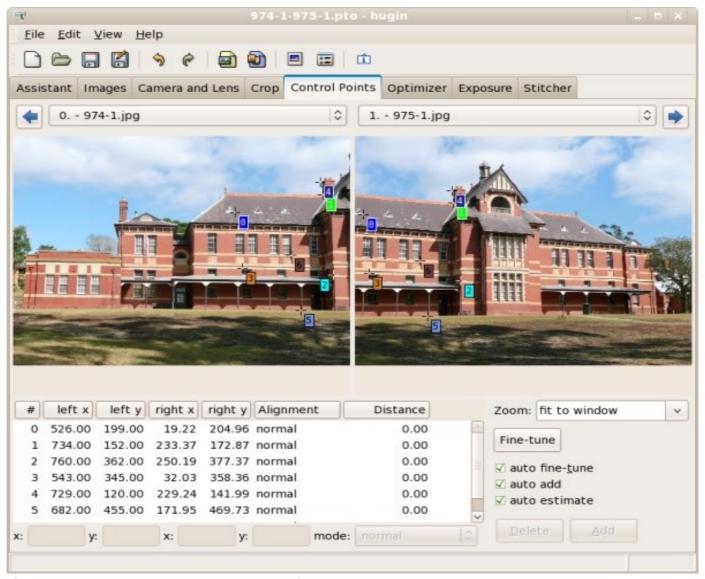
$$= \underbrace{\Box \bot}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) H(u) - G(u)|^{2} + \underbrace{\Box J}_{u \mid N(u)^{2}} |F(u) - G(u$$

Maximum Likelihood

What is image registration?

- Geometric transformation of multiple images to make them match
- Transformations can be rigid or non-rigid
 - Rigid: translation, scale, rotation
 - Non-rigid: shear, perspective, ...
- Optimization can be done on the transformed images or on a set of control points.
- In almost all cases, interpolation is required to remap images on a regular grid.

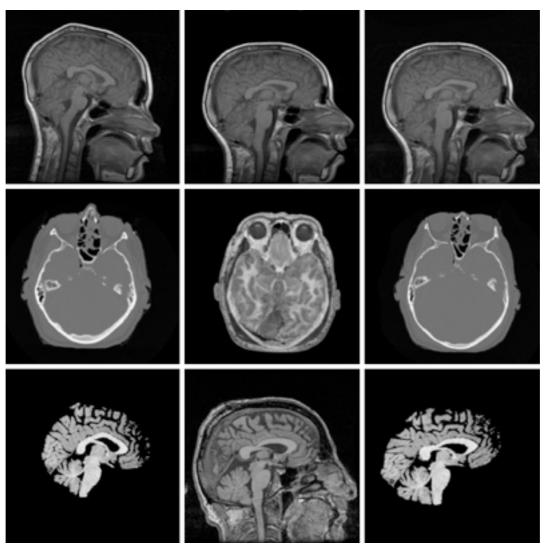
Control points for photo stitching



Source: http://hugin.sourceforge.net/tutorials/two-photos/en.shtml

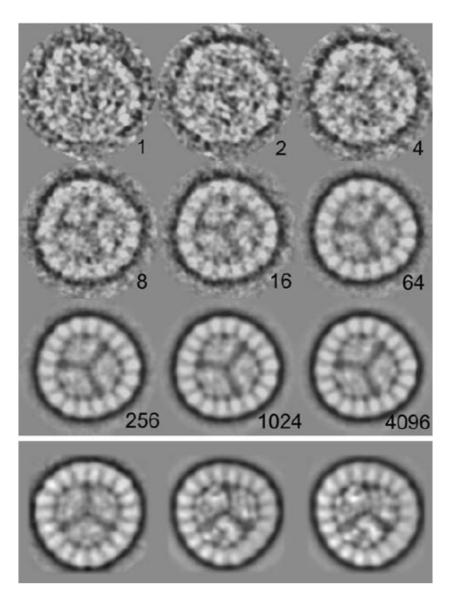
Image registration

Medical image registration



Source: http://www.cs.dartmouth.edu/farid/Hany_Farid/

Single particle analysis

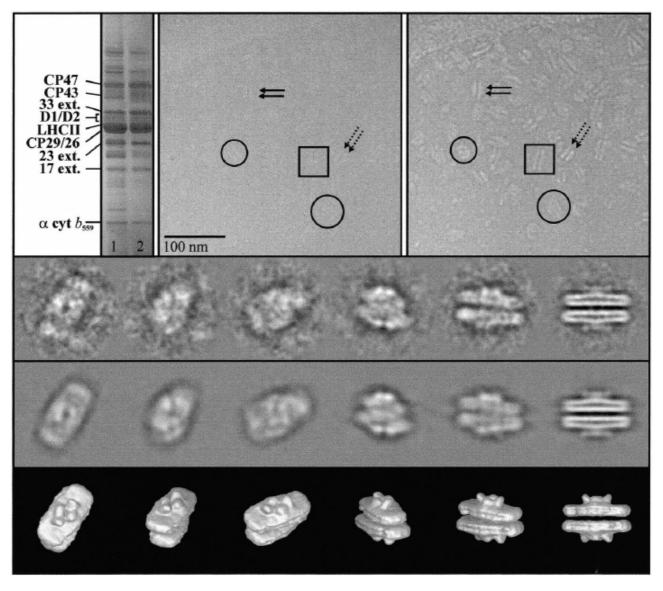


cryo EN dectro-microscopi

Nobel 2017

Source: Boerkema et al. Photosynth. Res. 102, 189-196 (2009)

Single particle analysis



Source: Nield et al. Nat. Struct. Bio. 7, 44-47 (2000)

Summary

- Likelihood maximization: finding parameters that best fit an observation.
 - Powerful, but:
 - Can overfit, can misinterpret
- Maximum A Posteriori (MAP): include prior (probabilistic) knowledge
- Broad range of applications:
 - Classification, registration, enhancements, ...