Image Processing for Physicists

Prof. Pierre Thibault pthibault@units.it

Least squares

Overview

- General remarks on optimization
- Least squares principle
 - Application examples
- Lagrange multipliers
 Application examples

Image Processing Problems

- Image processing problems can be formulated as linear/nonlinear equations data : y = long vector That contains all measured quantities variables: x = independent variables e.g. pixel coordinate
 In many cases "true" solution does not exist (random noise!) or is hard to calculate (inverse problem) model powermeters: p model: y = M(x;p) "forward model"
- Find "best-guess" approximation

- Need understanding of "approximation"
- Need understanding of "best" approximation

Estimation

• Estimator and Estimate

$$f(\gamma; x, \beta)$$

- Measures how well our estimate compares to the original

$$\min f = \hat{\beta} \in a$$
 formulation of
 p the estimator

- \rightarrow Find Minima of cost function
- \rightarrow Optimization theory
- Least square optimization

Least squares principle

1. Introduction. The method of least squares is the automobile of modern statistical analysis: despite its limitations, occasional accidents, and incidental pollution, it and its numerous variations, extensions, and related conveyances carry the bulk of statistical analyses, and are known and valued by nearly all. But there has been some dispute, historically, as to who was the Henry Ford of statistics. Adrien Marie Legendre published the method in 1805, an American, Robert Adrain, published the method in late 1808 or early 1809, and Carl Friedrich Gauss published the method in 1809.

Gauss

Legendre (source?)

Least squares principle

• Problem formulation

model:
$$y = M(x; \beta)$$

vesidue: $r_i = y_i - M(x_i; \beta)$
cost function: $S(y; x_i \beta) = \sum_i r_i^2$

• Basic idea: minimize squared residues

Global/Local Minima/Maxima

- 6 Find extremal point of function global maximum • 4 local maximum 2 $\frac{25}{2P} = 0 \rightarrow optimum$ 0 -2 local minimum -4 $\nabla_{\beta} S = 0$ global minimum -6 0.2 0.4 0.6 0.8 1.2 0 1 function convex , Non-convex Convex problems: • -10 \rightarrow local minimum is also global minimum All linear problems are convex!
- Least square optimization

Linear least squares

• Problem formulation

• Minimize cost function

$$S = \sum_{i} |y_{i} - (X_{\beta})_{i}|^{2}$$

$$= \sum_{i} |y_{i} - \sum_{i} x_{i} \beta_{i}|^{2}$$

Example: Expectation value

Given a set of random numbers, find an estimate for the expectation value of the underlying probability distribution

y: donta
$$E(y) = \mu$$
 ("B" powrameter to
be oplimized over)
 $5 = \sum_{i} (y_{i} - \mu)^{i}$

$$\frac{\partial S}{\partial \mu} = 2 \xi_i(y;-\mu) = 0$$

$$\frac{\partial S}{\partial \mu} = 2 \xi_i(y;-\mu) = 0 \implies \mu = \sqrt{2} \xi_i y;$$
mean value is a least square estimator for the expectation value

Example: Linear regression

• Given a set of measurements, find the parameters of a linear regression model

Example: Deconvolution

Naive solution: take F.T. of q • Problem original image: $f \rightarrow \beta$ $G = H \cdot F$ mot good F = G/H $f = F' \{ G/H \}$ measured image: g -> Y convolution kernel (PSF): h > X in reality G+N noise model: g = h * f $f = f^{-1} \left\{ \frac{9}{H} + \frac{1}{H} \right\}$ Wiener filtered 1 becomes Original Blurred dominant for high spatial fequeracies

Example: Deconvolution

model: f = w* q Search for optimal filter W that minimizes least squares g = h * f' + n Trandom variable inknow Cost function : expectation value of sum of square residues filter $S = E[i|f - (w * q); l^2]$ Parsival theorem $= E \left[E_{i} | F_{k} - W_{k} G_{k} |^{2} \right]$ $= \mathcal{E}\left[\mathcal{L}\left[F_{k}-W_{k}\left(H_{k}F_{k}+N_{k}\right)\right]^{2}\right]$ $= \mathcal{E}\left[\mathcal{L}_{k}\left[F_{k}\left(I-W_{k}H_{k}\right)-W_{k}N_{k}\right]^{2}\right]$ $= E\left[\sum_{k} \left|F_{h}\left(1-W_{h}H_{h}\right)|^{2}\right] + E\left[\sum_{k} \left|W_{h}N_{k}\right|^{2}\right] + E\left[\operatorname{cross}_{term}\right]$ $= \sum_{h} E[|F_{h}|^{2}] | I - W_{h} H_{h} (+ \sum_{h} W_{h}^{2} E[|J_{h}|^{2}] because$ F[N] = 0

Example: Deconvolution

• Search for optimal filter W that minimizes least squares

$$\frac{\partial G}{\partial W_{k}} = -P_{sk}(I-W_{k}H_{k})H_{k} + P_{Nk}W_{k} = 0$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{W_{k}}P_{sk} = \frac{H_{k}}{P_{sk}}P_{sk}$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{H_{k}}P_{sk} + \frac{H_{k}}{W_{ener}}P_{sk}$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{H_{k}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk}$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk}$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk}$$

$$\frac{\partial W_{k}}{\partial W_{k}} = \frac{H_{k}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}} + \frac{P_{Nk}}{P_{sk}}P_{sk} + \frac{P_{Nk}}{P_{sk}$$

General linear least squares
Solving
$$Y = X\beta$$
 by minimizing $S(\beta) = \sum_{i} |y_i^{-}(K\beta)|^2$
 \vdots
 $\frac{\partial S}{\partial \beta_i} = 0 = 2 \qquad \text{Sing } X_{ij}\beta_i X_{ij}^{*} = \sum_{i} X_{ij}^{*} y_j$
 $N_{unericolly}$, there are methods to
solve min $S(\beta)$ without comparing
the pseudo inverse
e.g. numpy. linelg. 1st sq
'linear algebra' 'least squares
'linear algebra' 'least squares

General linear least squares
filling a 2D plane in an image
image coordinates 2d plane:
$$a + b \times f cy$$

 $\int \int (A, B, C) = [A + Bi + C] = [A + Bi + C]$
 $f = X/B$
 $\int I(0, 0) = [A + Bi + C] = [A + Bi$

Weighted least squares

• Problem: sensitivity to outliers

$$S = \sum_{i} w_{i} r_{i}^{2}$$

$$w_{i} = \frac{1}{U_{i}^{2}}$$

$$w_{i} = \frac{1}{U_{i}^{2}}$$

• Solution: penalize problematic values using weights

$$\hat{\beta} = \min_{\beta} \| w^{\frac{1}{2}} (X\beta - \gamma) \|^{\epsilon} \qquad w^{\frac{1}{2}} \cdot \text{diagonal matrix} \\ \hat{\beta} = (X^{\frac{1}{N}} X)^{-1} X^{\frac{1}{N}} Y \qquad \qquad \begin{pmatrix} \frac{1}{\sigma_{1}} & 0 \\ & \frac{1}{\sigma_{2}} & 0 \\ & & \frac{1}{\sigma_{N}} \end{pmatrix}$$

Solving least squares problems

- Many approaches to solution exist
 - Pseudo inverse
 - Singular value decomposition (SVD)
 - QR decomposition
 - Iterative methods

numpy-linalg. Istsq

- Choice depends on
 - Robustness
 - Speed

. . .

. . .

Memory consumption

Overfitting & ill-defined problems

- Guess can only be as good as the underlying model
- Too complicated models can lead to too complicated solutions

• Simultaneous optimization of model and its parameters

Example: Image registration

Problem formulation: estimate the parameters of a transform s.t. the difference • between original and distorted image is minimal min $||B - f(T;p)||^2$ B: base image f(T,p): transformation β T: template operation $S = S ||B(i,j) - T(i-i_0,j-j_0)||^2$ i_{0,j_0} : translation parameters optimum Distance map local nimit

Example: Image registration

 Problem formulation: estimate the parameters of a transform s.t. the difference between original and distorted image is minimal

$$S = \sum_{ji} m(i-i_{0},j-j_{0}) (B(i_{1j}) - T(i-i_{0},j-j_{0}))$$
makes sum over all $\int S = \sum_{i} m(i-i_{0},j-j_{0}) B(i_{1j})$
pixels in base inage $+ \sum_{i} m(i-i_{0},j-j_{0}) T^{2}(i-i_{0},j-j_{0})$
 $- \sum_{i} D(i_{1j}) m(i-i_{0},j-j_{0}) T(i-i_{0},j-j_{0})$

Base image

Template

Distance map

Summary

- Approximate solutions can be found using estimation
- Approximation quality can be quantified by cost function
- Optimum solution is found by minimizing the cost function
- Least square estimator minimizes squared residues
- Lagrange multipliers can be used to implement additional constraints
- Iterative schemes allow solution of hard problems