OPTIMIZATION

Graphs and Optimization
iIn MATLAB

1. Graph of a scalar Function

2. Graph of a Function of 2 variables
3. Level Curves and Gradient Field
4. Functions and handles

5. Unconstrained Optimization

6. Constrained Optimization

* The task of drawing the graph of a function in MATLAB is
not as simple as inserting its expression

* First, we have to decide in what range we draw the
function, and the discretized points to draw.

* For those points we have to construct the
and its corresponding

* Then using the plot Function MATLAB draws the piece-wise
line interpolating the discretized points

* Eq.: draW the sine function in [-5 5] W/th 11 pomts
= [-5:1:5];

y = sin (X) ’ 0.5} ..1.\"_, i \
plot(x,y); | |

| _\\ \\.\

. \ N
The graphis very rough! .| \ |
— try using more points R N

* An additional string argument of plot function can be used
to specify the style of the curve to be drawn:
plOt(X:y:"' * r')
draws a red dashed-line P —
curve with asterisks in VA
place of points. 1
* Optional arguments can be ’ * |
supplied to plot function, by s} VoK A
specifying their name-value | =~ x|
pair. The syntax is: e s e s e
plot(x,y, 'namel', vall, 'name2', val2, ..)
E.g.:plot(x,y, 'LineWidth',3, 'MarkerSize',5) draws a3
points width line, with points marker of size 5.
e See doc LineSpec for more information.

«Th order to draw a function ol Z variables we have to
decide the rectangular region in which we want
the graph (surface). has to be discretized
regularly into points (x,y), thus producing a so-called grid
(or lattice).

 Similarly to the previous 1-dimensional case we have to
define 2 vectors containing the possible (discretized)
values for the abscissa and ordinate, respectively.

* Then using meshgrid function, MATLAB produces 2
matrices X, Y whose elements are in one-to-one
correspondence to the points of the grid: X(i,7) is the
abscissa value for the grid point (i,j), and analogously for Y.

 In terms of MATLAB instructions, for example:

X = [-pl1:0.1:pi]; %a=-11, b=TT
y = [-2:0.1:2]; %c=-2, d=2
[X,Y] = meshgrid(x,y); %notice X,Y have the same size

« At this step it is necessary to construct the matrix Z
containing the z-values for the function evaluated at the
discretized points (x,y), using the element-wise operations
on X, Y to form the desired expression of the function

* Finally, draw the graph using MATLAB's surf function
E.qg.: draw the function f(x,y) = sin(x) cos(y) after constructing
the previous grid.

Z = sin(X) .* cos(Y);
surf(X,Y,Z);

e Optional arguments can be given to
surf Function in order to adjust some
graphical details; see: doc surf

* In the Figure window that appears, try
using the “Rotate 3D" button in the toolbar to move the
viewpoint of the surface

 Level sets of a function of two variables are also called
level curves or contour lines
 Basically, MATLAB's contour function draws some level
curves for a function z = f(x,y). The base syntax is:
contour(X,Y,Z)
with X, Y, Z built through previous discretization method.
* To draw a specific collection of level curves, just give as
additional argument an ,
that specifies we want level curves at z-values z1, z2, ...,
Zm
* Eq. (continued): draw the level curves at z-values 0.7, -0.8
close all %closes any open figure window
contour(X,Y,Z, [-0.8, 0.7], 'LineWidth', 3)
xlabel('x axis') %add the name next to the x-axis
ylabel('y axis') %add the name next to the y-axis
Note: the LineWidth option set to 3pt draws a thicker curve

 We are interested in drawing the surface and the level
curves in the same graph — use hold on, that tells MATLAB

to keep previous drawings in the same figure

* Unluckly, in a MATLAB figure one graphical object (eq.
surface) can visually hide another object (eg. contour lines)

— set the transparency through FaceAlpha option
* Eqg.: draw F(x,y)=sin(x)cos(y) and its contour lines at z-values

-0.8,0and 0.7.
surf(X,Y,Z, 'FaceAlpha', 0.2) %O0=transparent,1=Fill

L BRI
i S
G

A

hold on
contour(X,Y,Z, [-0.8,0,0.7], 'LineWidth', 3)

* Note: the level curves are drawn in the z=0 plane of the
3D space R’

* Clearly level curves of other functions can be drawn in the
same figure of f(x,y). E.g. those of some possible constraint
functions

* When the gradient VFf exists at a point (x,y), it corresponds
to the direction of maximal increment from (x,y); when it is
VFE(x,y)=(0,0) we know that (x,y) is a stationary point.

* Therefore a figure in the xy-plane containing arrows
proportional to VFf(x,y) can be helpful in visually localizing
the stationary points, and hence candidate
minimum/maximum points — such a graph is called
Gradient Field

* In MATLAB a gradient field can be drawn by the quiver
function, after constructing the discrete gradient (i.e. finite
differences) of F:

1) gradient function takes Z matrix and the 2 discretization
steps (0.1 and 0.1 in our example)
2) quiver takes X, Y and DX, DY matrices given by gradient

[DX, DY] = gradient(Z, 0.1, 0.1)
quiver(X, Y, DX, DY, 'LineWidth', 1)

After little rotation and zoom (using the buttons on the

i Note: gradient arrows
. (in blue) are orthogonal
to the level curves

SN

._ fead Af
o AP 4
e s S i vy e
AR AL e
NN s stnss
M)

%’g_ i
e
Y

il
el i
&\3‘:\‘\‘&% 5 Sx r "i‘; 4

R

i 1'.&’ et Rt]]
J *'ﬁ'ﬂ h.h '
g ,gﬂ;, ‘ﬂ‘j’ -1 ;

s &t Seedoc gradient and
AP R, N :
%&’;‘%ﬁﬁ@i{f@%«gﬁ @&'{ doc quiver for more
55;;5,"&,- Gl Y information

iy 2 LS S i
i '-';"'"‘--' T e, "-a-.'.__'f' a % e ;
(SR s S SR

 MATLAB's optimizer needs both objective function and,
possibly, constraint Functions to be defined suitably
* There are mainly two ways to define a function in MATLAB:
1) anonymous functions defined inline, i.e. as instruction in the
code flow (actually these functions can have a name)
2) common functions defined through M-files (*.m)
 Syntax for an anonymous function is:
@(x) expr(x)
* x is the argument; it can be scalar, vector or matrix
* expr(x) is any admissible expression in MATLAB syntax,
possibly accessing x's elements
 return value is the evaluation of the expression on x
* Eqg.: define an anonymous function for the magnitude
(length) of a vector, and name it mag
mag = @(x) sagrt(sum(x .~ 2));
* Assigned variable (mag) is a Function handle (reference).
It can be used like normal functions, eg.: mag([-2 4 3 0])

* A common function is defined by means of a M-file with
extension .m

* The syntax of such a File is:
function [outl, out2, ..] = fname(argl, arg2, ..)

% COMPUTATIONS POSSIBLY WITH argl, arg2, ...
outl
out?2
end
 (optional) input and output arguments arg1, arg?, ...,
out1, out?, ... can be scalars, vectors or matrices
e an output argument has to be assigned before end
* fname can be a customary name for the Function; it is
recommended not to redefine a MATLAB built-in

function
* Before using, save it to a file with same name: fname.m

* The usage is the same as with built-in functions:
[evall, eval2, ..] = fname(vall, valz, ..)
* Eqg.: define the standard 2-dimensional gaussian function

function value = gauss(x)
num = exp(-(x(1)"2+x(2)"2) /2);

den = 2*pi;
value = num/den;
end

» After saving it to a file named gauss.m (in the working
directory), we can calculate the 2-dimensional gaussian
function evaluated at x=0.7, y=0.2 through the instruction:

gauss([0.7 0.2]) %returns 0.1221
* A handle (reference) to a function can be obtained by g,

and can be used like the former function. Eq.:
normal = @gauss;

normal([0.7, 0.2]) %returns 0.1221

* Consider this unconstrained optimization problem in the

Form: min f(z,y) := sin(x) cos(y)e_|$|_|y|

* First, it is useful to draw the qualitative graph of the
function within a suitable region: just use the meshgrid
discretization as done before

By rotating the surface
through the Rotate 3D
button it is easy to see
that the minimum point
is located in the region
[-2,0]x[-3,3] for
instance

 The MATLAB function for doing unconstained optimization
is Fminunc, which implements various numerical
optimization algorithms that can be tuned with options
1.set the algorithm for fminunc with the optimoptions

function:
opts = optimoptions(@fminunc, 'Algorithm', 'quasi-newton')
2.define the objective Ffunction through an M File
function out = f1(x)

a = x(1);

b = x(2);

out = sin(a)*cos(b)*exp(-abs(a)-abs(b));
end

and save it with the same name of the function: f1.m

3.fminunc needs a point x0 as initial guess: a trivial method
is to look at the graph and choose a point sufficiently
close to the minimum. E.g.: x0=[-0.8,0.2];

4. Call the function fminunc specifying also the handle to the
objective function:
[xopt,fopt]=fminunc(@f1,x0,opts);
The calculated values are:
xopt =
-0.7952 0.0000
fopt =
-0.3224
One can also check that f1(xopt) yields -0.3224 as expected

 The MATLAB Function used for constrained optimization
problems is fmincon.

* It implements (among others) the SQP (sequential
quadratic programming) algorithm. We have to set it

through the usual optimoptions function:
opts = optimoptions(@fmincon,’Algorithm’,’sqgp’)

« MATLAB assumes the following fForm for a constrained

problem: non-linear inequality constraints

i

c(x) <0 : . :
non-linear equality constraints
ceq(x) =0 linear ineq. constraints: matrix A,
min flx)st. SA-z<b vector b (x is vector variable)
Aeq - x = beq=-linear et?. constaints: matrix Aeq,
vector beq
(bsasub vectors lb, ub defining bounds

* To specify the desired constraints just provide them to
fmincon. The other information can be left empty, namely
the matrix [].

* Matrices A, Aeqg and vectors b, beq, b, ub can be defined
suitably (according to the problem) and given as argument
to fmin con directly

* Non-linear constraints can be specified by an ad-hoc
function in an M File, whose definition must comply to this
scheme: take a (possibly vector) argument x, and return c

and ceq. Eq.:
function [c,ceq] = nlcon(x)

c = .. %expression possibly depending on x
ceq = .. ¥expression possibly depending on x
end

Remember to name the file nlcon.m

e Syntax of fmincon is
xopt = fmincon(@f,x0,A,b,Aeq,beq,lb,ub,@nlcon,opts)
» @f: handle to objective function f defined in a M-file
| guess point

* X0: initia
* A,b,Aeq,
* @nlcon: hanc
» opts: optiona

veq,l

b,ub: matrices/vectors as in the model
le to the Function returning [c,ceq]

| parameters for the algorithm

« Example: add the constraint x+y+2=0 to previous example

min f(,ﬁ(}’ y) — Sil’l(l‘) Cos(y)€_|$|_|y|
subject to g(x) =x+y+2=0

* First, define matrix Aeqg and vector b:

Aeq
beq

2;

[11];

* Then assign an initial point guess and call fmincon
(provided options are set):

opts = optimoptions(@fmincon,’Algorithm’,’sqp’)
x0 = [-1, -1];
[xo0,fo]=fmincon(@f1,x0,[],[],Aeq,beq,[],[],[],0pts);

The outputs are:
X0 =
-1.7854 -0.2146
fo =
-0.1292
« REMARK: SQP is effective on convex problems and also
works well on other moderately non-linear problems
« REMARK: we only used linear (eqg.) constraints, hence no
handle to M Function defining non-linear constraints was
provided

* Now, we study the convex problem:

min f(x,y) = 20° + Ayt + x + 3

y2

subject to g(x) — 2 + 5 = 2 <0
* This time we have to specify a non-linear inequality
constraint through the file g2.m:
function [c,ceq] = g2(x)
c = x(1)72+x(2)72/2-2;
ceq = []; %empty matr. for no eq. constraint
end

* |t can be seen that exact solution is x*=(-1/4, 0). For this
reason, or also by plotting the graph, we can choose for
instance the sufficiently close intinial point x0 = [-1, 1]

* Then it is an easy task to define suitably the M-Ffile f2.m for
the function F(x,y)

* Finally we can use the instruction:
xo0,fo] = fmincon(@f2,x0,[],[],[],[]1,[],[]1,@92,0pts)

* The results are:
X0 =
-0.2500 -0.0015
fo =
2.8750
 REMARK: non-linear (equality and inequality) constraints
have to be specified through an M-file fFunction, whose
is given into Fmincon as argument
 For further documentation about the two main MATLAB
functions for unconstrained and constrained optimization
just look at doc fminunc and doc fmincon
 What if the domain of fis non rectangular?
« REMARK: drawing graph is an “independent” task

http://www.tcpdf.org

