

Dipartimento di scienze economiche, aziendali, matematiche e statistiche "Bruno de Finetti"

Statistica

Variabili aleatorie discrete

Francesco Pauli

A.A. 2016/2017

Variabile aleatoria

Definizione di variabile aleatoria

Una variabile aleatoria (o variabile casuale, brevemente v.a. o v.c.) è un numero ben determinato ma non noto per mancanza d'informazioni

Esempi, già incontrati e non

- La somma dei punti di due dadi.
- Il numero di teste su 3 lanci di moneta.
- ▶ Il numero di incidenti di un assicurato RC auto.
- Il ritardo con cui arriva un treno.
- ► Il peso di un neonato.
- Il prezzo futuro di un prodotto finanziario.

Variabile aleatoria

Definizione di variabile aleatoria

Una variabile aleatoria (o variabile casuale, brevemente v.a. o v.c.) è un numero ben determinato ma non noto per mancanza d'informazioni

	0.1p 0	
La somma dei punti di due dadi.		DISCRETO

- ▶ Il numero di teste su 3 lanci di moneta. DISCRETO
- ► Il numero di incidenti di un assicurato RC auto. DISCRETO
- ► Il ritardo con cui arriva un treno. CONTINUO
- ▶ Il peso di un neonato. CONTINUO
- ▶ Il prezzo futuro di un prodotto finanziario. CONTINUO

Variabili aleatorie discrete

Un'importante distinzione

Esempi già incontrati e non

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Variabile aleatoria

Definizione di variabile aleatoria

Una variabile aleatoria (o variabile casuale, brevemente v.a. o v.c.) è un numero ben determinato ma non noto per mancanza d'informazioni

Tratteremo separatamente i due casi:

- v.a. discreta, cioè che assume valori interi.
- v.a. continua, cioè che assume valori reali (eventualmente in un intervallo).

Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

Funzioni di più variabili aleatorie

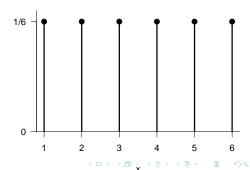
Distribuzione di probabilità per una v.a. discreta

Distribuzione di probabilità

La distribuzione di probabilità di una v.a. discreta è altro l'insieme dei possibili valori e delle probabilità di ciascuno.

Ad esempio per l'esito del lancio di un dado

Pr.
1/6
1/6
1/6
1/6
1/6
1/6



Generalità Dist. prob. E().V()
 Alcune v.a.
 V.a. doppie

Distribuzione di probabilità per una v.a. discreta

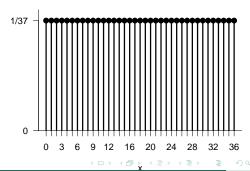
Distribuzione di probabilità

La distribuzione di probabilità di una v.a. discreta è altro l'insieme dei possibili valori e delle probabilità di ciascuno.

Per l'esito di una mano di roulette

Esito	Pr.
0	1/37
1	1/37
2	1/37
	:
34	1/37
35	1/37
36	1/37

Francesco Pauli



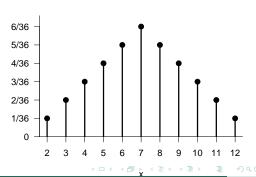
Distribuzione di probabilità per una v.a. discreta

Distribuzione di probabilità

La distribuzione di probabilità di una v.a. discreta è altro l'insieme dei possibili valori e delle probabilità di ciascuno.

Per la somma di due dadi.

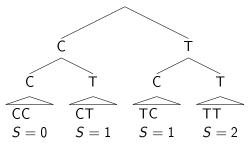
Esito	Pr.
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36



Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Numero di teste su due lanci di una moneta

- Consideriamo due lanci di una moneta, i cui esiti possibili sono T (testa) o C (croce);
- ightharpoonup definiamo S = numero di teste su due lanci;
- \triangleright S è una v.a. discreta con valori possibili 0, 1, 2.
- Otteniamo la distribuzione di probabilità di S considerando i possibili esiti



5 / 72

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

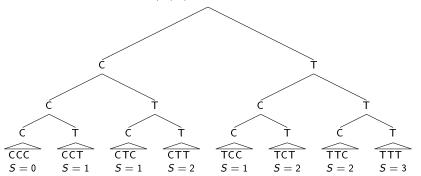
Numero di teste su due lanci di una moneta

- Consideriamo due lanci di una moneta, i cui esiti possibili sono T (testa) o C (croce);
- ightharpoonup definiamo S = numero di teste su due lanci;
- \triangleright S è una v.a. discreta con valori possibili 0, 1, 2.
- Otteniamo la distribuzione di probabilità di S considerando i possibili esiti

Esiti Pr S
$$CC$$
 1/4 0 CT 1/4 1 CT 1/4 1 CT 1/4 1 CT 1/4 2 CT 1/4 1 CT 1/4 2 CT 1/4 CT 1/4 2 CT 1/4 CT

Numero di teste su tre lanci

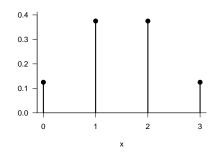
Con tre lanci, S ha valori 0, 1, 2, 3.



Numero di teste su tre lanci

Con tre lanci, S ha valori 0, 1, 2, 3.

Esiti	Pr	S		S	Pr
CCC	1/8	0	-	0	1/8
CCT	1/8	1			
CTC	1/8	1		1	3/8
TCC	1/8	1			
CTT	1/8	2			
TTC	1/8	2		2	3/8
TCT	1/8	2			
TTT	1/8	3		3	1/8



Numero di teste su *n* lanci

S ha valori possibili $0, 1, 2, \ldots, n$.

Ci sono 2^n esiti possibili, del tipo

esito singolo
$$T$$
 C T T C T ... T C lancio 1 2 3 4 5 6 ... $n-1$ n

Ciascun esito ha probabilità $\left(\frac{1}{2}\right)^n$

Per trovare P(S=s) basta contare quanti ce ne sono con s teste, si trova che sono

$$\binom{n}{s} = \frac{n!}{s!(n-s)!}$$

Si ha allora

$$P(S=s)=\binom{n}{s}\left(\frac{1}{2}\right)^n.$$

4 D > 4 D > 4 E > 4 E > E 9 Q

Numero di teste su *n* lanci

S ha valori possibili $0, 1, 2, \ldots, n$.

Ci sono 2^n esiti possibili, del tipo

esito singolo
$$T$$
 C T T C T ... T C lancio 1 2 3 4 5 6 ... $n-1$ n prob $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$... $\frac{1}{2}$ $\frac{1}{2}$

Ciascun esito ha probabilità $\left(\frac{1}{2}\right)^n$

Per trovare P(S=s) basta contare quanti ce ne sono con s teste, si trova che sono

$$\binom{n}{s} = \frac{n!}{s!(n-s)!}$$

Si ha allora

$$P(S=s)=\binom{n}{s}\left(\frac{1}{2}\right)^n.$$

Parentesi: il coefficiente binomiale $\binom{n}{s}$

Con questo simbolo si indica il numero di possibili sottoinsiemi di s elementi da un insieme di n.

Ad esempio se l'insieme di n=5 elementi è $\{a,b,c,d,e\}$ ha senso chiedersi quanti sono i sottoinsiemi di 0, 1, 2, 3, 4, 5 elementi, li si elenca nel seguito

Parentesi: il coefficiente binomiale $\binom{n}{s}$

Con questo simbolo si indica il numero di possibili sottoinsiemi di s elementi da un insieme di n.

Ad esempio se l'insieme di n=5 elementi è $\{a,b,c,d,e\}$ ha senso chiedersi quanti sono i sottoinsiemi di 0, 1, 2, 3, 4, 5 elementi, li si elenca nel seguito

0	1	2	3	4	5
Ø	a	ab	abc	abcd	abcde
	ь	ac	abd	abce	
	с	ad	abe	abde	
	d	ae	acd	acde	
	e	bc	ace	bcde	
		bd	ade		
		be	bcd		
		cd	bce		
		ce	bde		
		de	cde		
$\binom{5}{0} = 1$	$\binom{5}{1} = 5$	$\binom{5}{2} = 10$	$\binom{5}{3} = 10$	$\binom{5}{4} = 5$	$\binom{5}{5} = 1$

Parentesi: il coefficiente binomiale $\binom{n}{s}$

Con questo simbolo si indica il numero di possibili sottoinsiemi di s elementi da un insieme di n.

Ad esempio se l'insieme di n=5 elementi è $\{a,b,c,d,e\}$ ha senso chiedersi quanti sono i sottoinsiemi di 0, 1, 2, 3, 4, 5 elementi, li si elenca nel seguito

▶ In generale è

$$\binom{n}{s} = \frac{n!}{s!(n-s)!}$$

dove

$$n! = n(n-1)(n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$$

- Alcuni esempi
 - Il numero di coppie che si possono formare in un gruppo di 15 individui è $\binom{15}{2} = 105$.
 - Il numero di cinquine che possono essere estratte al lotto (su 90 numeri) è (90) = 43 949 268

Francesco Pauli

Variabili aleatorie discrete

8 / 72

E se testa e croce non hanno la stessa probabilità?

Sia
$$P(T) = p$$
, quindi $P(C) = 1 - p$

Gli esiti possibili sono sempre 2^n

esito singolo
$$T$$
 C T T C T ... T C lancio 1 2 3 4 5 6 ... $n-1$ n

ma la probabilità **non è più uguale per tutti**, dipende da quante teste e quante croci ci sono

$$P(TCTT...TC) = p^{\#T}(1-p)^{n-\#T}$$

dove #T è il numero di teste.

Quindi le $\binom{n}{s}$ sequenze che hanno s teste hanno tutte probabilità $p^s(1-p)^{n-s}$, allora

$$P(S=s) = \binom{n}{s} p^{s} (1-p)^{n-s}.$$

9 / 72

Francesco Pauli Variabili aleatorie discrete

E se testa e croce non hanno la stessa probabilità?

Sia
$$P(T) = p$$
, quindi $P(C) = 1 - p$

Gli esiti possibili sono sempre 2ⁿ

esito singolo
$$T$$
 C T T C T ... T C lancio 1 2 3 4 5 6 ... $n-1$ n prob p $1-p$ p p $1-p$ p ... p $1-p$

ma la probabilità **non è più uguale per tutti**, dipende da quante teste e quante croci ci sono

$$P(TCTT...TC) = p^{\#T}(1-p)^{n-\#T}$$

dove #T è il numero di teste.

Quindi le $\binom{n}{s}$ sequenze che hanno s teste hanno tutte probabilità $p^s(1-p)^{n-s}$, allora

$$P(S=s) = \binom{n}{s} p^{s} (1-p)^{n-s}.$$

Francesco Pauli

Variabili aleatorie discrete

Distribuzione binomiale

Distribuzione binomiale

Si dice che la variabile X ha distribuzione binomiale con dimensione $n \in \mathbb{N}$ e parametro $p \in [0,1]$ se $X \in \{0,1,\ldots,n\}$ e

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}.$$

Sinteticamente scriveremo

$$X \sim \text{Binom}(n, p)$$

X è il numero di successi in n prove indipendenti con probabilità di successo p.

Esempio: binomiale e roulette

Supponiamo di scommettere 10 volte su una quartina alla roulette, qual è la probabilità di vincere **esattamente** due volte?

Abbiamo visto che la probabilità di vincere in una singola giocata è P(Q)=4/37.

Ripetiamo la giocata 10 volte, il numero di volte che vinco, X, è distribuito secondo una binomiale di dimensione n=10 e probabilità p=4/37

$$X \sim \text{Binom}(10, 4/37)$$

Per ottenere la probabilità cercata basta usare la formula

$$P(X=2) = {10 \choose 2} \left(\frac{4}{37}\right)^2 \left(\frac{33}{37}\right)^8 \approx 0.21$$

Esempio: binomiale e roulette (2)

Supponiamo di scommettere 10 volte su una quartina alla roulette, qual è la probabilità di vincere **almeno** due volte?

In termini di X stiamo cercando $P(X \ge 2)$, cioè

$$P(X \ge 2) = \sum_{x=2}^{10} P(X = x) = \sum_{x=2}^{10} {10 \choose v} \left(\frac{4}{37}\right)^x \left(\frac{33}{37}\right)^{10-x} \approx 0.29$$

Notiamo che possiamo ottenere lo stesso risultato più velocemente scrivendo

$$P(X \ge 2) = 1 - P(X < 2)$$

$$= 1 - (P(X = 0) + P(X = 1))$$

$$= 1 - \left(\frac{33}{37}\right)^{10} - 10\left(\frac{4}{37}\right)^{1} \left(\frac{33}{37}\right)^{9}$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ からぐ

Applicazione della binomiale: vincere alla roulette

Ricordiamo che scommettendo sulla quartina si paga 1€ per giocare, si riceve 9€ in caso di vittoria.

Giochiamo 1000 volte, allora se X è il numero di volte che vinco,

$$X \sim \text{Binom}(1000, 4/37)$$

e il mio guadagno è

$$N=9X-1000$$

Chiediamoci ora qual è la probabilità, con 1000 scommesse, di uscire dal casinò con un saldo positivo.

Applicazione della binomiale: vincere alla roulette

Ricordiamo che scommettendo sulla quartina si paga 1€ per giocare, si riceve 9€ in caso di vittoria.

Giochiamo 1000 volte, allora se X è il numero di volte che vinco,

$$X \sim \text{Binom}(1000, 4/37)$$

e il mio guadagno è

$$N = 9X - 1000$$

Chiediamoci ora qual è la probabilità, con 1000 scommesse, di uscire dal casinò con un saldo positivo.

Il saldo è positivo ($N \geq 0$) se e solo se $X \geq 112$, allora la probabilità è

$$P(N \ge 0) = P(X \ge 112) = \sum_{x=112}^{1000} {1000 \choose x} \left(\frac{4}{37}\right)^x \left(1 - \frac{4}{37}\right)^{1000 - x} \approx 0.36$$

Applicazione della binomiale: overbooking

Una piccola compagnia aerea accetta prenotazioni per un aereo con 20 posti, e sa che, delle persone che prenotano un viaggio, il 10% non si presenta.

(1) Si dica qual è la probabilità che l'aereo viaggi pieno se ci sono state 20 prenotazioni.

La compagnia accetta più di 20 prenotazioni (cosiddetto *overbooking*), sperando che non si presentino più di 20 persone.

- (2) Si dica qual è la probabilità che qualche passeggero che ha prenotato resti a terra se sono state accettate 22 prenotazioni.
- (3) Si dica quante prenotazioni si possono accettare se si vuole che la probabilità che un passeggero resti a terra sia al di sotto del 15%.

Applicazione della binomiale: overbooking(1)

(1) Si dica qual è la probabilità che l'aereo viaggi pieno se ci sono state 20 prenotazioni.

Se con X indichiamo il numero di passeggeri che si presenta, e ci sono state 20 prenotazioni, si ha

$$X \sim \text{Binom}(20, 0.9)$$

L'aereo viaggia pieno se X = 20,

$$P(X = 20) = 0.9^{20} = 0.1216$$

Applicazione binomiale: overbooking (2)

(2) Si dica qual è la probabilità che qualche passeggero che ha prenotato resti a terra se sono state accettate 22 prenotazioni.

Se con X indichiamo il numero di passeggeri che si presenta, e ci sono state 22 prenotazioni, si ha

$$X \sim \text{Binom}(22, 0.9)$$

Non ci sono passeggeri che rimangono a terra se $X \leq 20$ e si ha

$$P(X \le 20) = 1 - P(X > 20) = 1 - P(X = 21) - P(X = 22)$$

$$= 1 - {22 \choose 21} 0.1 \times 0.9^{21} - 0.9^{22}$$

$$= 0.6608$$

La probabilità cercata è quindi 1 - 0.6608 = 0.3392.

Francesco Pauli Variabili aleatorie discrete 16 / 72

Applicazione binomiale: overbooking (3)

(3) Si dica quante prenotazioni si possono accettare se si vuole che la probabilità che un passeggero resti a terra sia al di sotto del 15%.

Con 22 prenotazioni non funziona, possiamo provare con 21, nel qual caso

$$X \sim \text{Binom}(21, 0.9)$$

Qui qualcuno rimane a terra solo se X=21, quindi la probabilità cercata è

$$P(X = 21) = 0.9^{21} = 0.1095$$

inferiore alla soglia indicata.

Se la compagnia accetta 21 prenotazioni, la probabilità che qualcuno resti a terra è circa l'11%.

4014914714717

Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

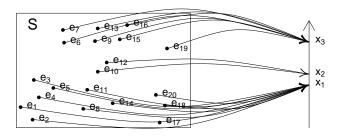
Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

Funzioni di più variabili aleatorie

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Definizione di variabile aleatoria



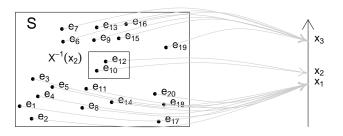
Dato uno spazio di eventi S una variabile aleatoria è una funzione da S a $\mathbb R$

$$X:S \to \mathbb{R}$$

- ▶ a ogni elemento dello spazio S è associato un valore
- ▶ (più eventi diversi possono essere associati allo stesso valore.)

- 4 ロ ト 4 御 ト 4 差 ト 4 差 ト - 差 - 夕 9 0 0

Definizione di variabile aleatoria



Le probabilità associate ai diversi valori di X si ottengono come probabilità delle controimmagini in S di tali valori

$$X^{-1}(x) = \{e_i \in S : X(e_i) = x\}$$

$$P(X = x) = P(X^{-1}(x)) = P(\{e_i \in S : X(e_i) = x\})$$

(Cioè non definiamo niente di nuovo rispetto alla probabilità come definita per Igi eventi.)

Francesco Pauli Variabili aleatorie discrete 19 / 72

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Funzione di probabilità di una v.a. finita

Funzione di probabilità 1

Sia X una v.a. con valori possibili x_1, \ldots, x_n , per assegnare una distribuzione di probabilità a X si assegnano

$$P(X=x_i)=p(x_i)$$

in modo che

(i)
$$p(x_i) \geq 0$$

(ii)
$$\sum_{i=1}^{n} p(x_i) = 1$$

Si osservi che questo è coerente con la definizione data nel lucido precedente.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - り Q (^)

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Funzione di probabilità di una v.a. discreta

Se la variabile ha un **infinità numerabile** di possibili valori, lo schema è il medesimo, ma

- devo assegnare infinite probabilità
- ▶ la condizione per cui sommano a uno diventa la condizione per cui la serie converge a uno.

Funzione di probabilità 2

Sia X una v.a. con valori possibili x_1, \ldots, x_n, \ldots , per assegnare una distribuzione di probabilità a X si assegnano

$$P(X = x_i) = p(x_i)$$

in modo che

(i)
$$p(x_i) \ge 0$$

(ii)
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

Funzione di ripartizione di una v.a. discreta

Funzione di ripartizione

Sia X una v.a. con valori possibili x_1, \ldots, x_n, \ldots e funzione di probabilità p(x), si definisce funzione di ripartizione di X la funzione

$$F(x) = P(X \le x) = \sum_{i:x_i \le x} p(x_i)$$

Si noti che la funzione di ripartizione soddisfa alle seguenti proprietà

- ▶ $F(x) \ge 0$ per ogni $x \in \mathbb{R}$;
- \triangleright F(x) è non decrescente;
- $\lim_{x\to-\infty}F(x)=0;$
- $\lim_{x \to +\infty} F(x) = 1.$

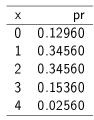
- 4 ロ ト 4 部 ト 4 き ト 4 き - 釣 9 0 0

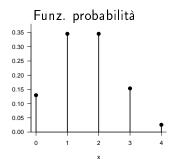
Esempio: binomiale

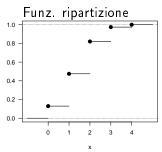
Consideriamo una v.a. X con distribuzione binomiale con n=4 e p=0.4, allora

$$X \in \{0, 1, 2, 3, 4\}$$

$$P(X = x_i) = {4 \choose x_i} p^{x_i} (1 - p)^{4 - x_i}$$







Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

Funzioni di più variabili aleatorie

● Generalità ● Dist. prob. ● **E(),V()** ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Speranza matematica (o valore atteso o media) di una v.a. discreta

Speranza matematica (o valore atteso o media)

Si definisce speranza matematica della v.a. X con distribuzione p(x) la quantità

$$E(X) = \sum_{i=1}^{\infty} x_i p(x_i)$$

Più in generale, possiamo calcolare

$$E(h(X)) = \sum_{i=1}^{\infty} h(x_i) p(x_i)$$

Varianza di una v.a. discreta

Varianza

Si definisce varianza della v.a. X con distribuzione p(x) la quantità

$$V(X) = E((X - E(X))^2)$$

che è come dire

$$V(X) = \sum_{i=1}^{\infty} (x_i - E(X))^2 p(x_i)$$

Si mostra che

$$V(X) = E(X^2) - [E(X)]^2$$

Esempio: binomiale

Si mostra che, se X è binomiale con dimensione n e probabilità p, cioè

$$P(X = x) = \binom{n}{x} p^{x} (1 - p)^{n - x}$$

allora

$$E(X) = np$$
 $V(X) = np(1-p)$

Si può dimostrare direttamente, sarà più facile farlo dopo, usando altri risultati.

Trasformazioni di v.a.

Essendo numeri, possiamo fare operazioni aritmetiche sulle v.a., ad esempio a partire da una v.a. X possiamo definire una nuova v.a. trasformando linearmente X

$$Y = aX + b$$

La distribuzione di Y è determinata da quella di X, se $\{x_i\}$ sono i valori possibili di X, quelli di Y sono $\{ax_i + b\}$ e

$$P(Y = ax_i + b) = P(X = x_i)$$

Inoltre, si mostra facilmente che

$$E(aX + b) = aE(X) + b$$

$$V(aX+b)=a^2V(X)$$

Dimostrazioni

Si ha

$$E(aX + b) = \sum_{i=1}^{\infty} (ax_i + b)p(x_i)$$
$$= a\sum_{i=1}^{\infty} x_i p(x_i) + \sum_{i=1}^{\infty} bp(x_i)$$
$$= aE(X) + b$$

$$V(aX + b) = E((aX + b - (aE(X) + b))^{2}) = a^{2}E((X - E(X))^{2}) = a^{2}V(X)$$

e quindi possiamo scrivere

$$V(X) = E((X - E(X))^{2})$$

$$= E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(X)E(X) - E(X)^{2})$$

$$= E(X^{2}) - [E(X)]^{2}$$

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Media e gioco della roulette

Il famoso saldo netto

$$N = 9V - 1000$$

dove V è il numero di vittorie su 1000 scommesse, è una variabile aleatoria, $V\sim {\sf Binom}(1000,P(Q))$, con P(Q)=4/37.

Quindi la media di
$$V$$
 è $E(V)=1000 imes 4/37=108$ e

$$E(N) = 9E(V) - 1000 = -28$$

Insomma quello che abbiamo calcolato per valutare la convenienza non è altro che la media della v.a.

Gioco equo

Si dice che un gioco che porta al guadagno (aleatorio)

G è equo se

$$E(G)=0$$

cioè i giochi equi sono quelli in cui in media non si perde né si vince.

Francesco Pauli Variabili aleatorie discrete 30 / 72

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Esempi di giochi

Si dica se sono equi i seguenti giochi

- (1) Testa o croce: vinco 1 se esce testa, perdo 1 se esce croce.
- (2) Pago 3 per giocare, vinco il risultato del lancio di un dado.
- (3) Pago 1 per giocare, vinco 1.8 se esce pari al lancio di un dado.
- (4) Si lancia un dado, perdo il numero uscito se è pari, vinco il numero uscito se è dispari.

Una particolare trasformazione lineare: standardizzazione

Data una v.a. X con media $\mu=E(X)$ e $\sigma^2=V(X)$, la standardizzazione è la trasformazione

$$Z = \frac{X - \mu}{\sigma}$$

LA variabile Z ha media nulla e varianza unitaria

$$E(Z) = E\left(\frac{X-\mu}{\sigma}\right) = \frac{E(X)-\mu}{\sigma} = 0$$

$$V(Z) = V\left(\frac{X-\mu}{\sigma}\right) = \frac{V(X)}{\sigma^2} = 1$$

Trasformazioni non lineari di v.a.

Possiamo considerare anche trasformazioni più generali e definire, data una $v.a.\ X$, la v.a.

$$Y = h(X)$$

La distribuzione di Y è sempre determinata da quella di X, si vedano gli esempi poi, va tenuto presente che, in generale

$$E(h(X)) \neq h(E(X))$$

$$V(h(X)) \neq h(V(X))$$

Esempio di trasformazione non lineare

Si consideri la v.a. X la cui funzione di probabilità è espressa in tabella e si ricavino le funzioni di probabilità di

$$Y = |X|, \quad W = X^3$$

Si ottengano poi speranza matematica e varianza di X, Y e V

Χį	pi
-3	0.1
-1	0.1
0	0.2
1	0.2
3	0.4

Esempio di trasformazione non lineare

Si consideri la v.a. X la cui funzione di probabilità è espressa in tabella e si ricavino le funzioni di probabilità di

$$Y = |X|, \quad W = X^3$$

Si ottengano poi speranza matematica e varianza di X, Y e V

Xi	p_i				W_i	p_i	E(X) = 1
-3	0.1	y _i	pi	_	-27	0.1	V(X) = 3.8
-1	0.1	0	0.2	-	-1	0.1	E(Y) = 1.8
0	0.2	1	0.3		0	0.2	V(Y) = 1.56
1	0.2	3	0.5		1	0.2	E(W) = 8.2
3	0.4			-	27	0.4	V(W)=297.6

Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

⁼unzioni di più variabili aleatorie

Distribuzione di Poisson

Una variabile $X \in \{0,1,2,\ldots,n,\ldots\}$ è distribuita secondo una Poisson di parametro λ se e solo se

$$P(X=x) = \frac{\lambda^x}{x!}e^{-\lambda}$$

Qui sono possibili (hanno probabilità positiva) infiniti valori. Si noti che

$$\sum_{x=0}^{\infty} \frac{\lambda^x}{x!} e^{-\lambda} = 1$$

dove $\sum_{x=0}^{\infty}$ indica una serie.

Poisson: media e varianza

$$E(X) = \sum_{x=0}^{\infty} x \frac{\lambda^{x}}{x!} e^{-\lambda} = \sum_{x=1}^{\infty} x \frac{\lambda^{x}}{x!} e^{-\lambda}$$
$$= \lambda \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} e^{-\lambda} = \lambda \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!} e^{-\lambda}$$
$$= \lambda$$

$$E(X^2) = \lambda + \lambda^2$$

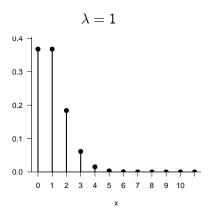
da cui

$$V(X) = \lambda$$

 Dist. prob. ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Distribuzioni di Poisson

X	pr
0	0.36788
1	0.36788
2	0.18394
3	0.06131
4	0.01533
5	0.00307
6	0.00051
7	0.00007
8	0.00001
9	0.00000
10	0.00000
> 10	0.00000



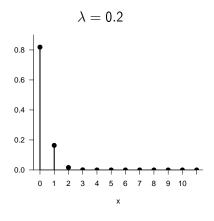
$$E(X) = 1$$
$$V(X) = 1$$

$$V(X) = 1$$

 Dist. prob. ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Distribuzioni di Poisson

Х	pr
0	0.81873
1	0.16375
2	0.01637
3	0.00109
4	0.00005
5	0.00000
6	0.00000
7	0.00000
8	0.00000
9	0.00000
10	0.00000
> 10	0.00000



$$E(X) = 0.2$$
$$V(X) = 0.2$$

$$V(X) = 0.2$$

39 / 72

Francesco Pauli Variabili aleatorie discrete

Esempio: Poisson

Una squadra di calcio segna un numero di goal a partita che si ritiene distribuito secondo una Poisson e mediamente segna 1.5 goal a partita.

- (1) Si dica qual è la probabilità che nella prossima partita la squadra non segni goal.
- (2) Si dica qual è la probabilità che nella prossima partita la squadra segni più di 4 goal.

Esempio: Poisson

Una squadra di calcio segna un numero di goal a partita che si ritiene distribuito secondo una Poisson e mediamente segna 1.5 goal a partita.

- (1) Si dica qual è la probabilità che nella prossima partita la squadra non segni goal.
- (2) Si dica qual è la probabilità che nella prossima partita la squadra segni più di 4 goal.

Il numero di goal è distribuito secondo una Poisson con parametro $\lambda=1.5$ (perché la media è uguale al parametro), quindi

$$P(X = 0) = \frac{\lambda^0}{0!}e^{-\lambda} = e^{-\lambda} = 0.1653$$

Generalità → Dist. prob. → E(),V() → Alcune v.a. → V.a. doppie → Funzioni di v.a. →

Esempio: Poisson

Una squadra di calcio segna un numero di goal a partita che si ritiene distribuito secondo una Poisson e mediamente segna 1.5 goal a partita.

- (1) Si dica qual è la probabilità che nella prossima partita la squadra non segni goal.
- (2) Si dica qual è la probabilità che nella prossima partita la squadra segni più di 4 goal.

$$P(X > 4) = P\left(\bigcup_{i=5}^{+\infty} (X = i)\right) = \sum_{i=5}^{+\infty} \frac{\lambda^{i}}{i!} e^{-\lambda} = \dots$$
$$= P\left(\bigcup_{i=0}^{4} (X = i)\right) = 1 - \sum_{i=0}^{4} \frac{\lambda^{i}}{i!} e^{-\lambda} = 1 - 0.9814 = 0.01858$$

- (□) (@) (분) (분) 분 (이익)

Esempio: ancora la moneta

Consideriamo sempre i tre lanci della moneta, definiamo però la v.a.

M = # di teste prima della prima croce

Esiti	Pr	IVI	
CCC	1/8	0	
CCT	1/8	0	
CTC	1/8	0	
TCC	1/8	1	
CTT	1/8	0	
TTC	1/8	2	
TCT	1/8	1	
TTT	1/8	3	

Μ	Pr
0	4/8
1	2/8
2	1/8
3	1/8

▶ Generalità ● Dist. prob. ● E(),V() ● **Alcune v.a. ●** V.a. doppie ● Funzioni di v.a. ●

Distribuzione geometrica

In una serie di prove ripetute $E_1, E_2, ...$ (eventi equiprobabili, $P(E_i) = p$), il numero X di prove necessarie per osservare il primo successo segue una distribuzione geometrica.

l valori possibili sono gli interi positivi $\{1,2,3,\ldots,\}$

Si ha

Eventi
$$x$$
 $P(X = x)$
 E_1 1 p
 $\bar{E}_1 E_2$ 2 $p(1-p)$
 $\bar{E}_1 \bar{E}_2 E_3$ 3 $p(1-p)^2$ e si ha la FdR

 $\bar{E}_1 \bar{E}_2 \dots \bar{E}_{k-1} E_k$ k $p(1-p)^{k-1}$
 $F(x) = 1 - (1-p)^x$

Ricordando che $\sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Esempio: estrazioni con e senza rimpiazzo

Estraiamo una carta da un mazzo di 52, la probabilità che sia di cuori è 13/52=1/4.

Se ripetiamo l'estrazione n volte **reimmettendo** sempre la carta estratta nel mazzo prima di procedere all'estrazione successiva, la v.a. X numero di cuori estratti su n è

$$X \sim \text{Binom}(n, 1/4)$$

Se ripetiamo l'estrazione senza reimmettere la carta estratta nel mazzo la distribuzione non è più binomiale ma ipergeometrica, purchè n < 13

$$P(X = x) = \frac{\binom{13}{x} \binom{52-13}{10-x}}{\binom{52}{13}}$$

Questo perché le estrazioni non sono indipendenti.

- (ロ)(個)(E)(E)(E) (E) (O)(C)

Distribuzione ipergeometrica

Da un insieme di N oggetti [un'urna con N palline] di cui H posseggono una determinata caratteristica [H palline sono rosse], si estragano n palline senza rimpiazzo (in blocco), detto

$$X = \text{``\#oggetti tipo-h sugli } n \text{ estratti''}$$

[X = #palline rosse estratte] si ha

$$P(X = x) = \frac{\binom{H}{x} \binom{N-H}{n-x}}{\binom{N}{n}}$$

se x è un intero e

- $\triangleright x \ge \max(0, n+H-N)$
- $\triangleright x < \min n, H$

altrimenti la probabilità è 0.

4□ > 4□ > 4 = > 4 = > = 900

> Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Binomiale e ipergeometrica, un'osservazione

Il motivo per cui la binomiale non va bene è che le oservazioni non sono indipendenti, indicando con R_i l'evento per cui l'i-ma pallina estratta è rossa si ha, se l'estrazione è con rimpiazzo

$$P(R_2|R_1) = P(R_2|\bar{R}_1) = \frac{H}{N}$$

se l'estrazione è senza rimpiazzo

$$P(R_2|R_1) = \frac{H-1}{N-1} \neq P(R_2|\bar{R}_1) = \frac{H}{N-1}$$

Intuitivamente però, se N e H sono molto grandi queste differenze sono piccole.

L'intuizione sopra può essere precisata meglio (non lo facciamo), basti sapere che se N e H sono grandi rispetto a n allora X è approssimativamente una binomiale anche se le estrazioni sono fatte senza rimpiazzo.

Francesco Pauli Variabili aleatorie discrete 45 / 72

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a.

Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

⁻unzioni di più variabili aleatorie

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● **V.a. doppie** ● Funzioni di v.a. ●

Esempio: lanci di moneta

Con riferimento ai tre lanci di una moneta abbiamo considerato, separatamente, le due v.a.

$$S = \#$$
 di teste (totale)

M = # di teste prima della prima croce

Esiti	Pr	S	Μ				
CCC	1/8	0	0	-	_		_
CCT	1/8	1	0	5	Pr	M	Pr
CTC	1/8	1	0	0	1/8	0	4/8
TCC	1/8	1	1		,	1	0/0
CTT	1/8	2	0	1	3/8	1	2/8
TTC	1/8	2	2	2	3/8	2	1/8
TCT	1/8	2	1		1 /0		1 /0
TTT	1/8	3	3	3	1/0	3	1/0

Vogliamo ora guardarle congiuntamente, cioè consideriamo eventi del tipo

$$(S = s) \cap (M = m)$$

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a.

Esempio: lanci di moneta

Con riferimento ai tre lanci di una moneta abbiamo considerato, separatamente, le due v.a.

$$S = \#$$
 di teste (totale)

M = # di teste prima della prima croce

Esiti	Pr	S	Μ					_		
CCC	1/8	0	0	=				S		
CCT	1/8	1	0				n	1	2	3 '
CTC	1/8	1	0	_						
TCC	1/8	1	1			0	ccc	сст стс	CTT	-
CTT	1/8	2	0			1	_	TCC	тст	_
TTC	1/8	2	2		M	_				
TCT	1/8	2	1			2	-	-	TTC	-
TTT	1/8	3	3	_		3	_	-	-	TTT

Vogliamo ora guardarle congiuntamente, cioè consideriamo eventi del tipo

$$(S=s)\cap (M=m)$$

● Generalità ● Dist. prob. ● E(),∨() ● Alcune v.a. ● **V.a. doppie** ● Funzioni di v.a.

Esempio: lanci di moneta

Con riferimento ai tre lanci di una moneta abbiamo considerato, separatamente, le due v.a.

$$S = \#$$
 di teste (totale)

M = # di teste prima della prima croce

Esiti	Pr	S	Μ				ii		_	1
CCC	1/8	0	0	•				9	5	
CCT	1/8	1	0				0	1	2	3 '
CTC	1/8	1	0				V			
TCC	1/8	1	1			0	1/8	2/8	1/8	0
CTT	1/8	2	0			1	0	1/8	1/8	0
TTC	1/8	2	2		М	_	_	-, -	<i>'</i> .	_
TCT	1/8	2	1			2	0	0	1/8	0
TTT	1/8	3	3	-		3	0	0	0	1/8

Vogliamo ora guardarle congiuntamente, cioè consideriamo eventi del tipo

$$(S=s)\cap (M=m)$$

Funzione di probabilità congiunta

La tabella che contiene tutte le probabilità congiunte è la funzione di probabilità congiunta della coppia (M, S), cioè la funzione

$$p(m,s) = P((M=m) \cap (S=s))$$

Le probabilità si possono ricavare facendo riferimento alle controimmagini (come in sostanza abbiamo fatto sopra).

			S						
		0	1	2	3				
	0	1/8	2/8	1/8	0	4/8			
М	1	0	1/8	1/8	0	2/8			
IVI	2	0	0	1/8	0	1/8			
	3	0	0	0	1/8	1/8			
		1/8	3/8	3/8	1/8	1			

Distribuzioni condizionate M|S = s

Possiamo anche considerare le probabilità condizionate

$$p_{M|S}(m|s) = P((M=m)|(S=s))$$

			S					
		0	1	2	3			
	0	1	2/3 1/3	1/3	0	-		
N A	1	0	1/3	1/3 1/3	0	_		
М	2	0	0	1/3	0	_		
	3	0	0	0	1	_		
		1	1	1	1	-		

Ciascuna colonna è una funzione di probabilità condizionata.

Distribuzioni condizionate S|M=m

Possiamo anche considerare le probabilità condizionate

$$p_{S|M}(s|m) = P((S=s)|(M=m))$$

			S						
		0	1	2	3				
	0	1/4	1/2	1/4	0	1			
М	1	0	1/2	1/2	0	1			
IVI	2	0	0	1	0	1			
	3	0	0	0	1	1			
		-	-	-	-	_			

Ciascuna riga è una funzione di probabilità condizionata.

Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a.

Funzione di probabilità congiunta

Funzione di probabilità congiunta

Date due v.a. X e Y con valori $\{x_1, \ldots\}$ e $\{y_1, \ldots\}$ si definisce funzione di probabilità congiunta

$$p(x_i, y_j) = P((X = x_i) \cap (Y = y_j))$$

La funzione di probabilità congiunta soddisfa alle proprietà

- $ightharpoonup p(x_i, y_i) \ge 0$
- $\blacktriangleright \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} p(x_i, y_i) = 1$

Da essa si ricavano le funzioni di probabilità delle singole variabili come

$$p_X(x_i) = P(X = x_i) = \sum_{j=1}^{\infty} p(x_i, y_j)$$

→ □ ▷ → □ ▷ → □ ▷ → ○ ○ ○

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a.

Funzione di probabilità condizionata

Funzione di probabilità condizionata

Date due v.a. X e Y con valori $\{x_1, \ldots\}$ e $\{y_1, \ldots\}$ e funzione di probabilità congiunta $p(x_i, y_j)$, detta $p_X(x_i)$ la funzione di probabilità marginale di X, si dice distribuzione condizionata di Y dato X la

$$p_{Y|X=x_i}(y_j|x_i) = \frac{p(x_i,y_j)}{p_X(x_i)}$$

Si noti che è la "solita" probabilità condizionata

$$p_{Y|X=x_i}(y_j|x_i) = P(Y=y_j|X=x_i) = \frac{P((X=x_i) \cap (Y=y_j))}{P(X=x_i)} = \frac{p(x_i,y_j)}{p_X(x_i)}$$

- 4 ロ ト 4 周 ト 4 恵 ト 4 恵 ト 1 単 1 り Q (^)

Generalità
 Dist. prob.
 E(),V()
 Alcune v.a.
 V.a. doppie
 Funzioni di v.a.

Funzione di probabilità condizionata

Funzione di probabilità condizionata

Date due v.a. X e Y con valori $\{x_1, \ldots\}$ e $\{y_1, \ldots\}$ e funzione di probabilità congiunta $p(x_i, y_j)$, detta $p_X(x_i)$ la funzione di probabilità marginale di X, si dice distribuzione condizionata di Y dato X la

$$p_{Y|X=x_i}(y_j|x_i) = \frac{p(x_i,y_j)}{p_X(x_i)}$$

Analogamente si definisce

$$p_{X|Y=y_j}(x_i|y_j) = \frac{p(x_i,y_j)}{p_Y(y_j)}$$

- 4 ロ ト 4 倒 ト 4 速 ト 4 速 ト 3 単 9 Q (?)

● Generalità ● Dist. prob. ● E(),V() ● Alcune v.a. ● V.a. doppie ● Funzioni di v.a. ●

Speranza matematica congiunta

Speranza matematica congiunta

Date due v.a. X e Y con valori $\{x_1, \ldots\}$ e $\{y_1, \ldots\}$ e funzione di probabilità congiunta p(x, y) si definisce

$$E(h(X,Y)) = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} h(x_i, y_i) p(x_i, y_i)$$

In particolare, ad esempio, si definisce la covarianza

$$cov(X, Y) = E((X - E(X))(Y - E(Y)))$$

$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_i - E(X))(y_j - E(Y))p(x_i, y_j)$$

- 4 ロ b 4 個 b 4 差 b 4 差 b 9 Q (*)

Covarianza, proprietà

Qualunque siano X e Y v.a.

$$cov(X, Y) = E(XY) - E(X)E(Y)$$

Dimostrazione:

$$cov(X, Y) = E((X - E(X))(Y - E(Y)))$$

$$= E(XY - E(X)Y - YE(X) - E(X)E(Y))$$

$$= E(XY) - E(X)E(Y) - E(Y)E(X) - E(X)E(Y))$$

$$= E(XY) - E(X)E(Y)$$

Covarianza, proprietà

Qualunque siano X e Y v.a. e a, b, c, d numeri reali

$$cov(aX + b, cY + d) = accov(X, Y)$$

Dimostrazione:

$$cov(aX + b, cY + d) = E((aX + b - aE(X) - b)(cY + d - cE(Y) - d))$$

$$= E((aX - aE(X))(cY - cE(Y)))$$

$$= E(a(X - E(X))c(Y - E(Y)))$$

$$= acE((X - E(X))(Y - E(Y)))$$

Esempio

Si lanciano due dadi con facce numerate da 1 a 6 e si considerano le v.a.

- M = massimo dei due dadi
- S =somma dei due dadi

Si ricavino

- 1. La funzione di probabilità congiunta.
- 2. $P((M \le 2))$
- 3. $P((M \le 2) \cap (S \le 4))$
- 4. La funzione di probabilità di S condizionata a M=5
- 5. La funzione di probabilità di M condizionata a S=6
- 6. La covarianza tra M e S

Esempio

Si lanciano due dadi, uno rosso e uno verde, con facce numerate da 1 a 6 e si considerano le v.a.

R =esito del dado rosso

V =esito del dado verde

Si ricavino

- 1. La funzione di probabilità congiunta.
- 2. La funzione di probabilità di R condizionata a V=5
- 3. La funzione di probabilità di V condizionata a R=6
- 4. La covarianza tra R e V

Indipendenza tra v.a.

Indipendenza

Le due variabili X e Y si dicono indipendenti se

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j)$$

qualunque siano i e j.

In altre parole, diciamo che le v.a. X e Y sono indipendenti se tutte le coppie di eventi ($X=x_i$) e ($Y=y_j$) sono indipendenti, la formula sopra infatti è

$$p(x_i, y_j) = P((X = x_i) \cap (Y = y_j)) = P(X = x_i)P(Y = y_j) = p_X(x_i)p_Y(y_j)$$

(si rivedano le definizioni di funzioni di probabilità condizionate.)

4 D > 4 D > 4 E > 4 E > 9 Q Q

58 / 72

Francesco Pauli Variabili aleatorie discrete

Indipendenza tra v.a.

Indipendenza

Le due variabili X e Y si dicono indipendenti se

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j)$$

qualunque siano i e j.

Si noti che questo significa che

$$p_{X|Y}(x_i|y_j) = p_X(x_i)$$

е

$$p_{Y|X}(y_j|x_i) = p_Y(y_j)$$

(si rivedano le definizioni di funzioni di probabilità condizionate.)

- 4ロト 4個ト 4度ト 4度ト 度 め900

Indipendenza tra v.a.

Indipendenza

Le due variabili X e Y si dicono indipendenti se

$$p(x_i, y_j) = p_X(x_i)p_Y(y_j)$$

qualunque siano i e j.

Si noti che questo significa che

$$p_{X|Y}(x_i|y_j) = p_X(x_i)$$
 $[P(X = x_i|Y = y_j) = P(X = x_i)]$

е

$$p_{Y|X}(y_i|x_i) = p_Y(y_i)$$
 $[P(Y = y_i|X = x_i) = P(Y = y_i)]$

(si rivedano le definizioni di funzioni di probabilità condizionate.)

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Francesco Pauli Variabili aleatorie di

Indice

Introduzione alle variabili aleatorie discrete (binomiale)

Distribuzione di probabilità

Media, varianza e trasformazioni

Alcune distribuzioni discrete

Variabili aleatorie discrete doppie

Funzioni di più variabili aleatorie

Funzioni di più variabili aleatorie

Come abiamo costruito, a partire da una singola v.a. X, una nuova v.a. via una trasformazione del tipo Y = h(X), così si può fare con più variabili aleatorie con trasformazioni del tipo

$$S = h(X, Y)$$

Due esempi già visti sono

- M pari al minimo tra due dadi
- S pari alla somma di due dadi

Non approfondiamo il discorso generale ma solo il caso particolare della somma.

Combinazione lineare di v.a.

Date le v.a. X_1, \ldots, X_n e i numeri reali a_1, \ldots, a_n , definiamo la v.a.

$$Y = \sum_{i=1}^{n} a_i X_i$$

Salvo casi particolari, non è semplice ottenere la distribuzione di probabilità di Y, si ha però che

- (1) $E(Y) = \sum_{i=1}^{n} a_i E(X_i)$
- (2) $V(Y) = \sum_{i=1}^{n} a_i^2 V(X_i) + 2 \sum_{i < j} \text{cov}(X_i, X_j)$
- (3) se le X_i sono indipendenti

$$V(Y) = \sum_{i=1}^{n} a_i^2 V(X_i)$$

Dimostrazione di (1) nel caso di due variabili

Sia (X, V) v.a. con valori possibili $\{x_1, \ldots, x_n\}$ e $\{v_1, \ldots, v_k\}$, distribuita congiuntamente secondo p(x, v)

$$E(Y) = E(X + V) = \sum_{i=1}^{n} \sum_{j=1}^{k} (x_i + v_j) p(x_i, v_j)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} x_i p(x_i, v_j) + \sum_{i=1}^{n} \sum_{j=1}^{k} v_j p(x_i, v_j)$$

$$= \sum_{i=1}^{n} x_i \sum_{j=1}^{k} p(x_i, v_j) + \sum_{j=1}^{k} v_j \sum_{i=1}^{n} p(x_i, v_j)$$

$$= \sum_{i=1}^{n} x_i p_X(x_i) + \sum_{i=1}^{k} v_j p_V(v_j) = E(X) + E(V)$$

- 4 ロ ト 4 週 ト 4 差 ト 4 差 ト - 差 - 夕 Q C・

Binomiale = somma di variabili indicatrici

Se consideriamo n eventi indipendenti e con la stessa probabilità di verificarsi, $P(E_i) = p$

$$Y = \#\{E_i \text{che si verificano}\} \sim \text{Binom}(n, p)$$

Definiamo le v.a.

$$X_i = \begin{cases} 0 & \text{se } \bar{E}_i \\ 1 & \text{se } E_i \end{cases}$$

allora

$$Y = \sum_{i=1}^{n} X_i$$

Questo ci permette di ricavare media e varianza della binomiale indirettamente.

- 4日 > 4個 > 4 差 > 4 差 > 差 夕 Q (C)

Media e varianza della binomiale

Preliminarmente si noti che

$$E(X_i) = 0(1-p) + 1p = p$$

$$E(X_i^2) = 0(1-p) + 1p = p$$

e quindi

$$V(X_i) = E(X_i^2) - (E(X_i))^2 = p - p^2 = p(1-p)$$

Si ha allora, per $Y = \sum_{i=1}^{n} X_i$

$$E(Y) = E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = np$$

$$V(Y) = V\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} V(X_{i}) = np(1-p)$$

Esempio: goal!

Relativamente a una partita di calcio tra ... si ritiene che il numero di goal che segnerà la squadra A, X_A , sia distribuito secondo una Poisson di parametro $\lambda_A=1.8$, mentre il numero di goal della squadra B, X_B , secondo una Poisson di parametro $\lambda_B=1.3$. Si ritengono i due numeri indipendenti. Si dica

- (1) qual è la probabilità che la partita termini 0-0;
- (2) qual è la probabilità che A vinca, e che B non segni neppure un goal;
- (3) qual è la probabilità che la partita termini in parità;
- (4) qual è la probabilità che vinca A.

Esempio: goal! (1)

(1) Qual è la probabilità che la partita termini 0-0;

L'evento di cui si cerca la probabilità è

$$(X_A=0)\cap(X_B=0)$$

essendo le due v.a. indipendenti

$$P((X_A = 0) \cap (X_B = 0)) = P(X_A = 0)P(X_B = 0)$$

$$= \frac{\lambda_A^0}{0!}e^{-\lambda_A}\frac{\lambda_B^0}{0!}e^{-\lambda_B}$$

$$= e^{-\lambda_A - \lambda_B} = e^{-1.8 - 1.3} = 0.04505$$

- (ロ) (個) (差) (差) (差) ぞく(C)

66 / 72

Esempio: goal! (2)

(2) Qual è la probabilità che A vinca, e che B non segni neppure un goal.

L'evento di cui si cerca la probabilità è

$$(X_A>0)\cap(X_B=0)$$

essendo le due v.a. indipendenti

$$P((X_A > 0) \cap (X_B = 0)) = P(X_A > 0)P(X_B = 0)$$

$$= (1 - P(X_A = 0))P(X_B = 0)$$

$$= (1 - e^{-\lambda_A}) e^{-\lambda_B}$$

$$= 0.2275$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

Esempio: goal! (3)

(3) Qual è la probabilità che la partita termini in parità.

L'evento di cui si cerca la probabilità è

$$\bigcup_{x=0}^{+\infty} ((X_A = x) \cap (X_B = x))$$

quindi

$$P\left(\bigcup_{x=0}^{+\infty} ((X_A = x) \cap (X_B = x))\right) = \sum_{x=0}^{+\infty} P(X_A = x) P(X_B = x)$$

= 0.2307

(ottenuta numericamente)

- ベロト (個) (注) (注) (注) (注) りへ(^)

Esempio: goal! (4)

(4) Qual è la probabilità che vinca A.

L'evento di cui si cerca la probabilità è

$$\bigcup_{x=0}^{+\infty}\bigcup_{y=x+1}^{+\infty}((X_A=y)\cap(X_B=x))$$

quindi

$$P\left(\bigcup_{x=0}^{+\infty}\bigcup_{y=x+1}^{+\infty}((X_A=y)\cap(X_B=x))\right) = \sum_{x=0}^{+\infty}\sum_{y=x+1}^{+\infty}P(X_A=y)P(X_B=x)$$
= 0.492

(ottenuta numericamente)

- (ロ) (倒) (注) (注) 注 り(()

Esempio: goal!

	0	1	2	3	4	5	6	7	8	9
0	0.04505	0.05856	0.03807	0.01650	0.00536	0.00139	0.00030	0.00006	0.00001	
1	0.08109	0.10542	0.06852	0.02969	0.00965	0.00251	0.00054	0.00010	0.00002	
2	0.07298	0.09487	0.06167	0.02672	0.00868	0.00226	0.00049	0.00009	0.00001	
3	0.04379	0.05692	0.03700	0.01603	0.00521	0.00135	0.00029	0.00005	0.00001	
4	0.01970	0.02562	0.01665	0.00722	0.00234	0.00061	0.00013	0.00002	0.00000	
5	0.00709	0.00922	0.00599	0.00260	0.00084	0.00022	0.00005	0.00001	0.00000	
6	0.00213	0.00277	0.00180	0.00078	0.00025	0.00007	0.00001	0.00000	0.00000	
7	0.00055	0.00071	0.00046	0.00020	0.00007	0.00002	0.00000	0.00000	0.00000	
8	0.00012	0.00016	0.00010	0.00005	0.00001	0.00000	0.00000	0.00000	0.00000	
•										

Esercizi

Qual è il saldo medio su 100 puntate fatte sul rosso alla roulette

- 1. $100 \times (18/36 1)$.
- 2. $100 \times 18/36 100$.
- 3. $100 \times 18/37 100$

Esercizi (continua)

Uno studente sostiene un test a risposta multipla, ci sono 10 domande e per ciascuna quattro rispote di cui una sola corretta. Lo studente, non troppo preparato, conosce la risposta a 5 domande mentre risponde a caso alle altre 5. Qual è la probabilità che ottenga la sufficienza (almeno 6 corrette) assumendo che le risposte date non a caso siano effettivamente corrette?

- 1. 0.20
- 2. 0.24
- 3. 0.25
- 4. 0.28

Inoltre, se le risposte sono tre anziché quattro, la probabilità di ottenere la sufficienza sarà più alta o più bassa?