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Surface waves

The Wave Equation: Potentials

scalar potential

vector potential

displacement
P-wave speed

S-wave speed
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On Waves Propagated along the Plane Surface of an Elastic
Solid. By Lord RAYLEIOH, D.O.L., F.R.S.

[Head November 12th, 1885.]

It is proposed to investigate the behaviour of waves upon the plane
free surface of an infinite homogeneous isotropic elastic solid, their
character being such that the disturbance is confined to a superficial
region, of thickness comparable with the wave-length. The case is
thus analogous to tliat of deep-water waves, only that the potential
energy here depends upon elastic resilience instead of upon gravity.*

Denoting the displacements by a, /3, y, and the dilatation by 0, we
have the usual equations

=z(X + fl)f+^a *° (1)'
in which e = ̂  + f.+ p. (2).

ax ay dz
If a, /i3, y all vary as eip\ equations (1) become

+/*V9+Pi>
la = 0, &C (3).

* The statical problem of the deformation of an elastic solid by a harmonic appli-
cation of pressure to its surface has been treated by Prof. G. Darwin, Phil. Mag.,
Dec, 1882. [Jan. 1886.—See also Camb. Math. Trip. Ex., Jan. 20, 1875, Ques-
tion IV.]
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Surface waves

Rayleigh Waves

SV  waves incident on a free surface: conversion and reflection

An evanescent P-wave 
propagates along the free 
surface decaying 
exponentially with depth. 

The reflected post-critically 
reflected SV wave is totally 
reflected and phase-
shifted. These two wave 
types can only exist 
together, they both satisfy 
the free surface boundary 
condition: 

-> Surface waves



Surface waves

Apparent horizontal velocity

In current terminology, kx is k!
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Surface waves

Surface waves: Geometry

We are looking for plane waves traveling along one horizontal coordinate 
axis, so we can  - for example - set 

As we only require Ψy we set 
Ψy=Ψ from now on. Our trial 
solution is thus

And consider only wave motion in the x,z plane. Then
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Surface waves

Condition of existence

With that ansatz one has that, in order to desired solution 
exists, the coefficients

to obtain

have to express a decay along z, i.e.
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Surface waves

Surface waves: Boundary Conditions

Analogous to the problem of finding the reflection-
transmission coefficients we now have to satisfy the boundary 
conditions at the free surface (stress free)

In isotropic media we have 

and
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Surface waves

Rayleigh waves: solutions

This leads to the following relationship for 
c, the phase velocity: 

For simplicity we take a fixed relationship between P and shear-
wave velocity (Poisson’s medium): 

… to 
obtain 

… and the only root which fulfills the condition c<β is

(2− c2 /β2)2 = 4(1 − c2 /α2)1/2(1 − c2 /β2)1/2

c6

β6
− 8c4

β4
+ 56

3
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α = 3 β

c ≅ 0.92 β



Surface waves

Displacement

Putting this value back into our solutions we 
finally obtain the displacement in the x-z 
plane for a plane harmonic surface wave 
propagating along direction x 

This development was first made by Lord Rayleigh in 1885. 

It demonstrates that YES there are solutions to the wave 
equation propagating along a free surface!

 Some remarkable facts can be drawn from this particular form:

ux = C(e−0.8475kz − 0.5773e−0.3933kz)sink(x − ct)
uz = C(−0.8475e−0.8475kz + 1.4679e−0.3933kz)cosk(x − ct)



Surface waves

How does the particle motion look like? 

theoretical experimental

Particle Motion (1)



Surface waves

-the two components are out of phase by π/2


− for small values of z a particle describes an 
ellipse and the motion is retrograde


- at some depth z the motion is linear in z


- below that depth the motion is again elliptical 
but prograde


- the phase velocity is independent of k: there is 
no dispersion for a homogeneous half space


- Right Figure: radial and vertical motion for a 
source at the surface

theoretical

experimental

Transient solution to an impulsive vertical point 
force at the surface of a half space is called 
Lamb‘s problem (after Horace Lamb, 1904). 

Lamb’s Problem and Rayleigh waves



Surface waves

theoretical experimental

Data Example 



Surface waves

In physics, the dispersion relation is the relation between the energy of a 
system and its corresponding momentum. For example, for massive particles 
in free space, the dispersion relation can easily be calculated from the 
definition of kinetic energy:

For electromagnetic waves, the energy is proportional to the frequency of 
the wave and the momentum to the wavenumber. In this case, Maxwell's 
equations tell us that the dispersion relation for vacuum is linear: ω=ck. 


The name "dispersion relation" originally comes from optics. It is possible 
to make the effective speed of light dependent on wavelength by making 
light pass through a material which has a non-constant index of refraction, 
or by using light in a non-uniform medium such as a waveguide. In this 
case, the waveform will spread over time, such that a narrow pulse will 
become an extended pulse, i.e. be dispersed.

Dispersion relation

E = 1
2 mv

2 = p2
2m



Surface waves

In optics, dispersion is a phenomenon that causes the separation of a wave into spectral 
components with different wavelengths, due to a dependence of the wave's speed on its 
wavelength. It is most often described in light waves, but it may happen to any kind of 
wave that interacts with a medium or can be confined to a waveguide, such as sound 
waves. There are generally two sources of dispersion: material dispersion, which comes 
from a frequency-dependent response of a material to waves; and waveguide dispersion, 
which occurs when the speed of a wave in a waveguide depends on its frequency.


In optics, the phase velocity of a wave v in a given uniform medium is given by: v=c/n, 
where c is the speed of light in a vacuum and n is the refractive index of the medium. In 
general, the refractive index is some function of the frequency f of the light, thus         
n = n(f), or alternately, with respect to the wave's wavelength   n = n(λ). For visible light, 
most transparent materials (e.g. glasses) have a refractive index n decreases with 
increasing wavelength λ (dn/dλ<0, i.e. dv/dλ>0).  In this case, the medium is said to have 
normal dispersion and if the index increases with increasing wavelength the medium has 
anomalous dispersion.

Dispersion...



Surface waves

Effect of dispersion...



Surface waves

Another consequence of dispersion manifests itself as a temporal effect. The phase 
velocity is the velocity at which the phase of any one frequency component of the wave 
will propagate. This is not the same as the group velocity of the wave, which is the 
rate that changes in amplitude (known as the envelope of the wave) will propagate. 
The group velocity vg is related to the phase velocity v by, for a homogeneous medium 
(here λ is the wavelength in vacuum, not in the medium):

and thus in the normal dispersion case 
vg is always < v !

vg = dω
dk = d(vk)

dk = v + k dv
dk = v − λ dv

dλ

Group velocity



Surface waves

In classical mechanics, the Hamilton’s principle the perturbation scheme 
applied to an averaged Lagrangian for an harmonic wave field gives a 
characteristic equation: Δ(ω,ki)=0

Dispersion relation

�

�

Longitudinal wave in a rod
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Surface waves

Discrete systems: lattices


Stiff systems: rods and thin plates


Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in their 
propagation since they allow to store energy (not 
like body waves)!

Dispersion examples



Surface waves

How "stiff" or "flexible" is a material? It depends on whether we pull on 
it, twist it, bend it, or simply compress it. In the simplest case the material 
is characterized by two independent "stiffness constants" and that 
different combinations of these constants determine the response to a pull, 
twist, bend, or pressure.

5

Bending

For y = 0 as the neutral axis, assuming strain linear in y, 
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Since this must = 0, we find that 

the y = 0 axis must be at the 

centroid of the cross-section in the 

y-direction.

Now compute the moment (torque) for this case:
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The moment that is generated 

elastically by this kind of bending is 

proportional to the areal moment of 

inertia around the neutral axis!

Bending
Again, for arbitrary coordinates, neutral 

axis is such that
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I-beams are stiff in flexure because their area is concentrated far 

from their neutral axis!

Euler-Bernoulli equation

Stiffness...
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∂x4 − ρA
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Surface waves

Stiffness in a vibrating string introduces a restoring force proportional to the bending 
angle of the string and the usual stiffness term added to the wave equation for the 
ideal string. Stiff-string models are commonly used in piano synthesis and they have to 
be included in tuning of piano strings due to inharmonic effects.

Stiffness...
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Surface waves

Discrete systems: lattices


Stiff systems: rods and thin plates


Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in their 
propagation since they allow to store energy (not 
like body waves)!

Dispersion examples



Surface waves

In an elastic half-space no SH type surface waves exist. Why? 

Because there is total reflection and no interaction between an evanescent P wave and a 
phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a 
layer delimited by two free boundaries, i.e. a homogeneous plate?

Repeated reflection in the layer allow interference between incident and reflected SH 
waves: SH reverberations can be totally trapped.

SH

The condition of interference of multiply reflected waves at the rigid boundaries is:

cosθ
0
= n λ

2(2h)
= n π

(2h)k

kcosθ
0
(2h) = k

z
(2h) = k

x
r
β
(2h) = nπ

SH Waves in plates: Geometry



Surface waves

SH

The formal derivation is very similar to the derivation of the Rayleigh waves. The conditions 
to be fulfilled are: free surface conditions

SH waves: trapping 
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Surface waves

that leads to: with n=0,1,2,... NB: REMEMBER THE “STRING PROBLEM”:kL=nπ

SH waves: eigenvalues...
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Surface waves

Torsional modes dispersion



Acoustic waveguides...

SOFAR channel (Sound Fixing And Ranging channel)

Sound speed as a function of depth at a 
position north of Hawaii in the Pacific 
Ocean derived from the 2005 World Ocean 
Atlas. The SOFAR channel axis is at ca. 
750-m depth.



Waves in plates

In low frequency plate waves, there are two distinct type of harmonic motion. These are 
called symmetric or extensional waves and antisymmetric or flexural waves.

c ! c "# $
"%!&'f … frequency 

(rad/sec)

2h

If one looks for solutions of the form

( ! f y# $exp ik x ) ct# $* +

, ! g y# $exp ik x ) ct# $* +

Lamb (Plate) Waves

c ! c "# $
"%!&'f … frequency 

(rad/sec)

2h

If one looks for solutions of the form

( ! f y# $exp ik x ) ct# $* +

, ! g y# $exp ik x ) ct# $* +

Lamb (Plate) Waves

then solutions of the following two types are found:

f ! Acosh "y# $

g ! Bsinh %y# $

f ! &'A sinh "y# $

g ! &'B cosh %y# $

extensional waves

flexural waves
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Lamb waves
Lamb waves are waves of plane strain that occur in a free plate, and the traction force must 
vanish on the upper and lower surface of the plate. In a free plate, a line source along y axis 
and all wave vectors must lie in the x-z plane. This requirement implies that response of the 
plate will be independent of the in-plane coordinate normal to the propagation direction.



Love Waves: Geometry

In an elastic half-space no SH type surface waves exist. Why? 

Because there is total reflection and no interaction between an evanescent P wave and a 
phase shifted SV wave as in the case of Rayleigh waves. What happens if we have a layer 
over a half space (Love, 1911) ?

Repeated reflection in a layer over a half space.

Interference between incident, reflected and transmitted SH waves. 

When the layer velocity is smaller than the halfspace velocity, then there is a critical 
angle beyond which SH reverberations will be totally trapped.



Wavefields visualization



We describe a method to invert surface wave group or phase velocity 
measurements to estimate 2-D models of the distribution and 
strength of velocity variations. 
Using ray theory, the forward problem for surface wave tomography 
consists of predicting a frequency dependent travel time tR/L(ω). For 
both Rayleigh (R) and Love (L) waves from a set of 2-D phase or 
group velocity maps, c(r, ω):

Surface Wave Tomography

Where r=[θ,φ] is the surface position vector, θ and φ are colatitude 
and longitude, and ray specifies the path.

tR/L ω( ) = cR/L−1 r,ω( ) ds
ray
∫



RAYLEIGH WAVE 35s 
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 

Global scale



RAYLEIGH WAVE 50s 
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 



RAYLEIGH WAVE 100s 
Larson, E.W.F. and G. Ekström, Global Models of Surface Wave Group Velocity, 

Pure Appl. Geophys. 158 (8), 1377-1400, 2001. 



The reliability of the group velocity maps across large regions 
degrades sharply below 15 s and above 150-200 s for Rayleigh waves 
and 100-125 s for Love waves. Surface waves maps at and below 30 s 
period are particularly important because they provide significant 
constraints on crustal thickness by helping to resolve Moho depth 
from the average shear velocity of the crust. Although there have 
been numerous studies of surface wave dispersion that have 
produced measurements of group and/or phase velocities between 10 
and 40 s period, these studies have typically been confined to areas 
of about 15° or less in lateral extent. 

Phase and group velocity maps provide constraints on the shear 
velocity structure of the crust and uppermost mantle. Accurate high-
resolution group velocity maps, in particular, are useful in monitoring 
clandestine nuclear tests.



Measurements of group velocities are much less sensitive to source 
effects than phase velocities because they derive from 
measurements of the wave packet envelopes rather than the 
constituent phases. This is particularly true at shorter periods and 
longer ranges. Group velocity sensitivity is compressed nearer to the 
surface than the related phase velocities, which should provide 
further help in resolving crustal from mantle structures. 



Surface waves
Condition of existence:

Discontinuity (boundary waves, undispersed: Rayleigh, Stoneley)

Waveguide (interferential & dispersed: Love & Rayleigh)

T (s) f (Hz) λ (km) c (km/s) d (km) application

0.02-0.1 10-50 0.002-0.05 0.1-0.5 0.02
engineering, 
geophysics

0.2-1 1-5 0.15-1.50 0.1-1.5 0.2
upper 

sediments

5-10 0.1-0.2 7-30 2-3 5
sedimentary 

basins

10-35 0.03-0.1 30-100 3.0-3.5 40
crust           

35-350 0.005-0.03 200-1000 4-5 300
upper 
mantle


