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Fig. S6 
Kinematic fault slip models constrained by GPS measurements and teleseismic P-waveforms.  
Estimated fault slip (left) and predicted vertical seafloor displacements (right) are shown for the 
two-plane (top) and one-plane (bottom) kinematic models.  Dip angles and depth are given in the 
northeast corner of each fault plane.  White contours indicate temporal evolution of the rupture 
front, with time in seconds.  The yellow star shows the epicenter used for each inversion.  The 
respective moment rate functions are plotted in the insets. 
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Kinematic fault slip models 
constrained by GPS measurements 
and teleseismic P-waveforms. 


Estimated fault slip (left) and 
predicted vertical seafloor 
displacements (right) are shown for 
the two-plane (top) and one-plane 
(bottom) kinematic models. Dip 
angles and depth are given in the 
northeast corner of each fault 
plane. White contours indicate 
temporal evolution of the rupture 
front, with time in seconds. The 
yellow star shows the epicenter 
used for each inversion. The 
respective moment rate functions 
are plotted in the insets.


Simons et al., 2011. Science, vol. 332 no. 6036 pp. 
1421-1425




Body forces

Equivalent Forces: concepts

The scope is to develop a representation of the displacement generated in an 
elastic body in terms of the quantities that originated it: body forces and 
applied tractions and displacements over the surface of the body.


The actual slip process will be described by superposition of equivalent body 
forces acting in space (over a fault) and time (rise time).

The observable seismic radiation is through energy release as the fault surface 
moves: formation and propagation of a crack. This complex dynamical problem can 
be studied by kinematical equivalent approaches.

8. SEISMIC SOURCES 

cle dislocation. Each point on the rupture 
surface may also have a slightly different 
slip vector. In general, these slip vectors 
are expected to be nearly parallel, but the 
amount of slip can vary spatially within the 
rupture zone and must vary at the edges of 
the final rupture surface (where the dis-
placement goes to zero). While fault slip-
page results from the earthquake process, 
we ignore many other phenomena, such as 
local heating and perhaps mehing of rock, 
hydrologic pressure variations, and rock 
fracturing, to conceptualize the kinematic 
rupture history. Our goal is to replace this 
kinematic rupture process with a useful 
force system that produces equivalent seis-
mic-wave radiation. 

We proceed by "standing back" from 
the fault and considering the average 
properties of the rupture. We are mainly 
interested in gross characteristics such as 
the total rupture area, ^,_the average dis-
placement over the fault, D, and the aver-
age velocity and direction of rupture prop-
agation, y.. For seismic waves with periods 
longer than or comparable to the duration 
of rupture and for wavelengths that are 
large relative to the fault dimensions, we 
can visualize replacing the complex fault-

ing by a simple dislocation representation 
(Figure 8.9). In its simplest form the dislo-
cation model idealization will involve a 
point source (i.e., no spatial extent), with a 
simple dislocation time history to approxi-
mate the process of seismic-wave radiation 
during particle dislocation and expansion 
of the rupture area. More complex models 
of spatial distributions of dislocations can 
be constructed from this end-member case. 
Model complexity increases as the ratio of 
seismic-energy wavelength to fault length 
decreases. 

The average dislocation model in Figure 
8.9 now looks like a simple enough system 
to be replaced by a force system that would 
be dynamically equivalent, meaning one 
that produces equivalent seismic-wave ra-
diation. Indeed, it would appear that we 
simply need a time-varying force couple 
applied within the elastic medium to simu-
late the dislocation. The level of approxi-
mation implied in Figure 8.9 clearly de-
pends on the sensitivity of the seismic 
waves to the details of the faulting com-
plexity, which is frequency and wavelength 
dependent, and on the extent to which one 
wants to determine actual stresses on the 
fault. Both dislocation and equivalent 

Actual Fault 
Displacement History 

Average 
Dislocation Model 

Equivalent 
Body Force Systeni 

r 
I 

I ^ 

Y ^ if(t)i - r 

FIGURE 8.9 Concepts underlying equivalent body forces. Actual faulting involves complex 
cracking and frictional sliding over a surface in a short t ime that results in a space-t ime 
history of slipping motion. The finite spatial-temporal faulting process can be approximated 
by a dislocation model with dislocation time history D{t]. In turn, this dislocation model can 
be idealized by an equivalent force system that can be directly incorporated in the equations 
of motion. 

Actual slip vector field

in space and time

Average 

dislocation model
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body-force system



Body forces

Fundamental papers

Maruyama T. (1963). On the force equivalents of dynamical elastic 
dislocations with reference to the earthquake mechanism. Bulletin of the 
Earthquake Research Institute 41: 467–486.


Burridge R. and Knopoff L. (1964). Body force equivalents for seismic 
dislocations. Bulletin of the Seismological Society of America 54: 1875–
1878.

“An explicit expression is derived for the body force to be 
applied in the absence of a dislocation, which produces 
radiation identical to that of the dislocation. This equivalent 
force depends only upon the source and the elastic 
properties of the medium in the immediate vicinity of the 
source and not upon the proximity of any reflecting 
surfaces. The theory is developed for dislocations in an 
anisotropic inhomogeneous medium; in the examples isotropy 

is assumed. For displacement dislocation faults, the double 

couple is an exact equivalent body force.”

Leon Knopoff



Body forces

Fundamental papers
Pujol J. (2003): The body force equivalent to an earthquake: a tutorial. 

Seism. Res. Lett. 74, 163-168.


“During the 1950’s another theoretical tool was brought to bear, namely dislocation theory. This theory originated in the 
work of a number of Italian mathematicians, particularly Volterra, who used the word “distorsione”. “Dislocation” is Love’s 
translation (Love, 1927). A dislocation can be visualized through the following thought experiment, based on Steketee 
(1958). Consider a cut made over a surface Σ within an elastic body. After the cut has been made there are two surfaces, 
indicated with Σ+ and Σ−, which will be deformed differently by application of some force distribution. 

If the combined system of forces is in static equilibrium, then the body will remain in the original equilibrium state. The 
result of this operation is a discontinuity in the displacement across Σ, known as a dislocation, which is accommodated by 
deformation within the body. This description should be compared to our model for a tectonic earthquake, which is 
represented by slip on a fault plane. When an earthquake occurs, the two sides of the fault suffer a sudden relative 
displacement with respect to each other, and this discontinuity in the displacement across the fault is the source of the 
displacement elsewhere in the medium.


The debate ended when Maruyama (1963), Haskell (1964) and Burridge and Knopoff (1964) demonstrated that the body 
force equivalent was a double couple. In the three cases the derivations were based on a number of results derived in the 
context of theoretical elasticity and wave propagation. However, while the first two authors addressed the case of 
homogeneous isotropic media, what distinguishes Burridge and Knopoff’s paper is its generality, as their results apply to 
heterogeneous anisotropic media”.


Love, A., 1927. A treatise on the mathematical theory of elasticity, Cambridge University Press (Reprinted by Dover, New York, 1944.)

Stauder, W., 1962, The focal mechanism of earthquakes, in H. Landsberg and J. Van Mieghem, Eds., Advances in Geophysics 9, Academic Press, 1-76.

Steketee, J., 1958. Some geophysical applications of the elasticity theory of dislocations, Can. J. Phys. 36, 1168-1198.



Body forces

Considering an elastic body of volume V and surface S, the application of a system 
of body forces (fi), as well as the application of tractions, will generate a 
displacement field  that is constrained to satisfy the equations of motion:

Elastodynamic basic theorems

The equation can be written also, using the vector differential operator

ρ!!u
i
= f

i
+
∂σ

ij

∂x
j

= f
i
+ σ

ij,j

L(u)( )i = ρ!!ui − σij,j = ρ!!ui − cijkluk,l( ),j
as:


L(u)=f

that is the inhomogeneous version respect to L(u)=0



Body forces

Uniqueness theorem

Uniqueness theorem: the displacement field, u=u(x,t), is 
uniquely determined, after time t0, by:


a) initial values of displacement and velocities (at t0) in all V;

b) body forces and heat in V, after t0;

c) tractions over any part S1 of S, after t0;

d) displacement over S2 of S,  with S1+S2=S, after t0.

 

Proof: Suppose there are two (u1 and u2) and consider the 

difference: it will be 0…



Body forces

Consider a pair of solutions for the displacement through an elastic body V and 
look for relationships between them...


u is due to body forces f, boundary conditions on S and initial conditions at t=0; v 
is due to body forces g and other boundary and initial conditions; the two 
tractions on surfaces normal to n being respectively T(u,n) and T(v,n). Using the 
equations of motion and the divergence theorem one has the first form of 
reciprocity theorem (Betti theorem):

Reciprocity theorem - 1

f − ρ!!u( )
V
∫∫∫ ⋅ vdV + T u, n( )

S
∫∫ ⋅ vdS =

= g − ρ!!v( )
V
∫∫∫ ⋅ udV + T v, n( )

S
∫∫ ⋅ udS



Body forces

Note that Betti’s theorem does not involve initial conditions for u or v, and it is 
true even if the quantities (u, du/dt, T(u,n)) and  (v, dv/dt, T(v,n)) are evaluated at 
different times, e.g. at t and τ-t. Integrating over (0,τ) and assuming a quiescent 
past (i.e. u=du/dt=v=dv/dt=0 for t<0), one obtains:

Reciprocity theorem - 2

dt
−∞

+∞

∫ u(x,t) ⋅ g(x, τ − t) − v(x, τ − t) ⋅ f(x,t){ }
V
∫∫∫ dV =

= dt
−∞

+∞

∫ v(x, τ − t) ⋅ T u(x,t), n( ) − u(x,t) ⋅ T v(x, τ − t), n( ){ }
S
∫∫ dS



Body forces

G(x,s

Green's function (GF) is a basic solution to a linear 
differential equation, a building block that can be used to 
construct many useful solutions.


If one considers a linear differential equation written as:


L(x)u(x)=f(x)


where L(x) is a linear, self-adjoint differential operator, 
u(x) is the unknown function, and f(x) is a known non-
homogeneous term, the GF is a solution of:


L(x)u(x,s)=δ(x-s)

Green’s function



Body forces

Why GF is important?

If such a function G can be found for the operator L, then if we multiply the 
second equation for the Green's function by f(s), and then perform an integration 
in the s variable, we obtain:

Thus, we can obtain the function u(x) through the knowledge of the 
Green's function and the source term. This process has resulted from the 
linearity of the operator L. See Linear System Theory (i.e. impulse response)

L∫ (x)G(x, s)f(s)ds = δ∫ (x − s)f(s)ds = f(x) = Lu(x)
L G∫ (x, s)f(s)ds = Lu(x)

u(x) = G∫ (x, s)f(s)ds



Body forces

The displacement from the simplest source, unidirectional unit impulse, is the 
Elastodynamic Green’s function. 


If the unit impulse is applied at x=ζ and t=τ and in the n-direction, the i-th 
component of displacement at (x,t) is Gin(x,t;ζ,τ). 


This tensor depends on both receiver and source coordinates and satisfies, 
throughout V, the equations:

Elastodynamic GF

The initial conditions for Gin(x,t;ζ,τ), and its time derivative, are that they are 

0 for t≤τ and x≠ζ, and, to be uniquely specified, it remains to state the 
boundary conditions on S (for example if it is rigid or free).

ρ
∂2Gin
∂t2 = δinδ x − ζ( )δ t − τ( ) + ∂

∂xj
cijkl

∂Gkn
∂xl

⎛

⎝
⎜

⎞

⎠
⎟



Body forces

Green’s function

If the boundary conditions are independent of time, then G will depend on time 
only via the combination t-τ.


 If G satisfies homogeneous boundary conditions on S, reciprocity theorem can be 
used to obtain relations for source and receiver positions.

 

Considering  Gim(x,t;ξ1,τ1) and Gin(x,t;ξ2,-τ2) one has: 


Gnm(ξ2,τ+τ2;ξ1,τ1) = Gmn(ξ1,τ−τ1;ξ2,-τ2), and if τ1=τ2=0


Gnm(ξ2,τ;ξ1,0) = Gmn(ξ1,τ;ξ2,0), thus a spatial reciprocity, and if τ=0


Gnm(ξ2,τ2;ξ1,τ1) = Gmn(ξ1,−τ1;ξ2,-τ2) thus a space-time reciprocity.



Body forces

Using Betti’s theorem with a Green function for the displacement field, i.e. due to 
gi(x,t)=δinδ(x-ξ)δ(t), we obtain a representation for the other :

Representation theorem - 1st

That states how the displacement  u at a certain point is given by contributions  
due to force f throughout V, traction T and u itself on S. 

un(x,t) = dτ
−∞

+∞

∫ fi(ξ, τ)Gin(ξ, t − τ;x, 0)
V
∫∫∫ dV(ξ) +

+ dτ
−∞

+∞

∫ Gin(ξ, t − τ;x, 0)Ti u(ξ, τ), ν( ){
S
∫∫ +

−ui(ξ, t)cijklνjGkn,l(ξ, t − τ;x, 0)} dS(ξ)



Body forces

Representation theorem - 1st

schematically, the displacement field at a point of the volume V with surface S is 
given by:


a volume integral over the body forces f convolved with the EGF;


a surface integral over the tractions T convolved with the EGF; 


a surface integral over a quantity convolved with the spatial 
derivative of the EGF.

un(x,t) = fp ∗ Gnp
V
∫∫∫ dV + Tp ∗ Gnp − uicijpqνj ∗ Gnp,q( )

S
∫∫ dS



Body forces

Internal sources & faults
External sources (e.g. atmospheric storms, ocean waves, meteorite impacts) can be 
described by time-dependent stress perturbations of the surface of the Earth.


For internal sources, like earthquakes or underground explosions, the analytical 
framework is difficult to develop since the equation of elastic motion are no more valid 
throughout the whole Earth, since discontinuities are present.


A volume source is an event associated with an internal volume, such as a sudden 
expansion throughout a volumetric source. A faulting source is an event associated 
with an internal surface, such as slip across a fracture plane. 


A unified treatment of both kind of sources is possible, the common link being the 
concept of an internal surface across which discontinuities can occur in 
displacement or in stress.


The surface is usually considered as external to V, but it is useful to include two 
adjacent internal surfaces, being the opposite faces of a buried fault     S+Σ’+Σ”. The 
fault plane (Σ) is described by its normal ν(ξ) over Σ.



Body forces

Fault

38 Chapter 3 / REPRESENTATION OF SEISMIC SOURCES 

mechanisms have been studied to chart the motions of tectonic plates. Source theory can 
elucidate physical processes such as those taking place in volcanoes. It continues to be 
developed with a view to predicting earthquake hazards at engineering sites, on the basis 
of geological and geophysical data on the properties of nearby faults and the distribution of 
regional stresses. 

3.1 Representation Theorems for an Internal Surface; Body-Force 
Equivalents for Discontinuities in Traction and Displacement 

The representation theorems obtained in Chapter 2 can be a powerful aid in seismic source 
theory if the surface S is chosen to include two adjacent surfaces internal to the volume V .  
The motivation here comes from the work of H. F. Reid, whose study of the San Andreas 
fault before and after the 1906 San Francisco earthquake led to general recognition that 
earthquake motion is due to waves radiated from spontaneous slippage on active geological 
faults. We shall discuss this source mechanism in more detail in Sections 3.2 and 3.3, and the 
dynamical processes involved (and other source mechanisms) in Chapter 11. Our present 
concern is simply to show how the process of slip on a buried fault, and the waves radiated 
from it, can naturally be analyzed by our representation theorems. 

For applications of (2.41)-(2.43), we shall take the surface of V to consist of an external 
surface labeled S (see Fig. 3.1) and two adjacent internal surfaces, labeled C+ and E-, 
which are opposite faces of the fault. If slip occurs across C, then the displacement field is 
discontinuous there and the equation of motion is no longer satisfied throughout the interior 
of S. However, it is satisfied throughout the “interior” of the surface S + C+ + C-,  and to 
this we can apply our previous representation results. 

The surface S is no longer of direct interest (it may be the surface of the Earth), and we 
shall assume that both u and G satisfy the same homogeneous boundary conditions on 

S 

FIGURE 3.1 
A finite elastic body, with volume V and external surface S, and an internal surface C (modeling 
a buried fault) across which discontinuities may arise. That is, displacements on the C- side of C 
may differ from displacements on the C +  side of C .  The normal to C is u (pointing from C- to 
C+), and the displacement discontinuity is denoted by [u(r, T)] for r on C, with square brackets 
referring to the difference u((, t)lC+ - u(r, t)lc-. In general, a similar difference may be formed 
for the tractions (due to external applied forces on C), but for spontaneous rupture the tractions must 
be continuous, and then [T(u, v)] = 0. 

From Chapter 3 of Quantitative Seismology by Aki & Richards, (2002)

https://www.ldeo.columbia.edu/~richards/Aki_Richards.html

https://www.ldeo.columbia.edu/~richards/Aki_Richards.html


Body forces

If slip occurs across Σ the displacement field is discontinuous there, but equations 
of motion are satisfied throughout the interior of the surface S+Σ’+Σ”. Assuming 
that u and G satisfy homogeneous conditions on S (that is no more of direct 
interest): 

Representation theorem - 2nd

Where square brackets are used for the difference between values on Σ+ and Σ-;  
η is a general position within V and ξ a general position on Σ . 

un(x,t) = dτ
−∞

+∞

∫ fp(η, τ)Gnp(x, t − τ;η, 0)
V
∫∫∫ dV(η) +

+ dτ
−∞

+∞

∫ −Gnp(x, t − τ; ξ, 0) Tp u(ξ, τ), ν( )⎡
⎣

⎤
⎦{

Σ
∫∫ +

+ ui(ξ, t)⎡⎣ ⎤⎦cijpqνj ∂Gnp(x,t − τ; ξ, 0) / ∂ξq} dΣ(ξ)



Body forces

In the case of a shear dislocation, tractions across Σ are continuous and, 
neglecting body forces, one has that only the third right term remains; thus 
displacement on the fault determines the displacement everywhere. Using the 
delta function derivative one can write:

 

Representation theorem - 3rd 

obtaining the body-force equivalent to a displacement discontinuity:

∂Gnp(x, t − τ; ξ, 0)
∂ξq

= − ∂
∂ηqV

∫∫∫ δ(η − ξ)Gnp(x, t − τ;η, 0)dV(η)

fp[u](η, τ) = − ui(ξ, τ)⎡⎣ ⎤⎦cijpqνj
∂δ(η − ξ)

∂ηq
dΣ

Σ
∫∫

un(x,t) = dτ
−∞

+∞

∫ fp[u](η, τ)
V
∫∫∫ Gnp(x, t − τ;η, 0)dV



Body forces

Representation theorem

the displacement field at a point of the volume V with surface S is given by:


a volume integral over the body forces f convolved with the EGF;

 a surface integral over the discontinuity of tractions T across a surface 

convolved with the EGF; 

 a surface integral over a quantity, depending on the discontinuity of 

displacements, convolved with the spatial derivative of the EGF.

Neglecting the physical body forces (e.g. gravity), and considering a 
pure shear dislocation, the remaining term can be represented as the 
result of an equivalent body force:

un(x,t) = fp ∗ Gnp
V
∫∫∫ dV + − Tp⎡

⎣
⎤
⎦ ∗ Gnp + ui⎡⎣ ⎤⎦cijpqνj ∗ Gnp,q( )

Σ
∫∫ dΣ

un(x,t) = fp[u]∗ Gnp
V
∫∫∫ dV fp[u] = − ui⎡⎣ ⎤⎦cijpqνj

∂δ
∂ηq

dΣ
Σ
∫∫



Body forces

Using the convolution symbol, the representation theorem for a shear dislocation 
becomes: 

Moment density tensor 

Where the derivative can be thought as the equivalent of having a single couple (for 
example (p,q) , with arm in th ξq direction) on Σ at ξ with strength [ui]cijpqvj; the 
integral represents the effect of a sum of couples distributed over Σ. For 3 
components of force and 3 possible arm directions there are 9 generalized couples. 
Defining the moment density tensor, one has:

un(x,t) = [ui]cijpqνj ∗
∂Gnp

∂ξq
dΣ

Σ
∫∫

mpq = [ui]cijpqνj        un(x,t) = mpq ∗
∂Gnp

∂ξq
dΣ

Σ
∫∫



Body forces

For an isotropic solid, and for slip parallel to Σ at ξ, one has respectively: 

Moment tensor 

And if the source can be considered a point-source (for wavelengths greater than fault 
dimensions), the contributions from different surface elements can be considered in 
phase. Thus for an effective point source, one can define the moment tensor:

mpq = λνk[uk ]δpq + µ νp[uq ] + νq[up ]( )        mpq = µ νp[uq ] + νq[up ]( )  

Mpq = mpq dΣ
Σ
∫∫  

 un(x,t) = Mpq ∗ Gnp,q



Body forces

Moment tensor decomposition 

For a shear dislocation, the equivalent point force is a double-couple, since internal 
faulting implies that the total force f[u] and its total moment are null. The seismic 
moment has a null trace and one of the eigenvalues is 0. 

The moment tensor is symmetric (thus the roles of u and ν can be interchanged 
without affecting the displacement field, leading to the fault plane-auxiliary plane 
ambiguity), and it can be diagonalized and decomposed in an isotropic and deviatoric 
part: 

M0 is called seismic moment, a scalar quantity related to the area of the fault and to 
the slip, averaged over the fault plane. 

Mpq =

M1 0 0
0 M2 0
0 0 M3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 = 1

3
tr(M) 0 0

0 tr(M) 0
0 0 tr(M)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+

M '1 0 0
0 M '2 0
0 0 M '3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Mpq(doublecouple) =
M0 0 0
0 0 0
0 0 −M0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
   with M0 = µA[u]



Body forces

Moment tensor components

Point sources can 
be described by 
the seismic 
moment tensor 
Mpq, whose 
elements have 
clear physical 
meaning of forces 
acting on 
particular planes.
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FIGURE 3.7 
The nine possible couples that are required to obtain equivalent forces for a generally oriented 
displacement discontinuity in anisotropic media. 

applied at 5 is F(r, r ) ,  then we can sum over p and write F, * G,, for the n-component 
of displacement at (x, t ) .  For displacement discontinuities as in (3.18), there are instead 
derivatives of G,, with respect to the source coordinates tq. Such a derivative, we saw in 
Section 3.2, can be thought of physically as the equivalent of having a single couple (with 
arm in the tq-direction) on C at r .  The sum over q in (3.18) is then telling us that each 
displacement component at x is equivalent to the effect of a sum of couples distributed 
over C. 

For three components of force and three possible arm directions, there are nine general- 
ized couples, as shown in Figure 3.7. Thus the equivalent surface force corresponding to an 
infinitesimal surface element d C ( r )  can be represented as a combination of nine couples. 
In general, we need “couples” with force and arm in the same direction (cases (1, l), (2,2), 
(3, 3) of Fig. 3.7), and these are sometimes called vector dipoles. 

Since [ui] ujcijpq * aGn,/at, in (3.18) is the n-component of the field at x due to 
couples at C, it follows that [ui] ujcijpq is the strength of the ( p ,  q )  couple. The dimensions 
of [ui] ujcijpq are moment per unit area, and this makes sense because the contribution 
from r has to be a surface density, weighted by the infinitesimal area element d C to give a 
moment contribution. We define 

The nine possible couples that are required to obtain equivalent forces 
for a generally oriented displacement discontinuity in anisotropic media. 




Body forces

Moment tensor and fault vectors

The orthogonal eigenvectors to the above eigenvalues give the directions of the 
principal axes: b, corresponding to eigenvalue 0, gives the null-axis, t, 
corresponding to the positive eigenvalue, gives the tension axis (T) and p gives 
the pressure axis (P) of the tensor. 

They are related to the u and ν vector, defining respectively the slip vector and 
the fault plane:

t = 1
2

ν + u( )
b = ν × u( )
p = 1

2
ν − u( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

     
u = 1

2
t + p( ); 1

2
t − p( )

ν = 1
2

t − p( ); 1
2

t + p( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
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Moment tensor and fault plane solution

uν

ν i u = 0

u=
[u] cos λ cos φ + cos δ sin λ sinφ( ) êx

[u] cos λ sinφ − cos δ sin λ cos φ( ) êy

[u] − sinδ sin λ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪

    ν=
− sinδ sinφ( ) êx

− sinδ cos φ( ) êy

− cos δ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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Moment tensor and fault plane solution

The slip vector and the fault normal can be expresses in terms of 

strike (φ), dip (δ) and rake(λ):

Then the Cartesian components of the simmetric moment tensor can be written as:

u=
[u] cos λ cos φ + cos δ sin λ sinφ( ) êx

[u] cos λ sinφ − cos δ sin λ cos φ( ) êy

[u] − sinδ sin λ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪

    ν=
− sinδ sinφ( ) êx

− sinδ cos φ( ) êy

− cos δ( ) êz

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Mxx = −M0 sinδ cos λ sin2φ + sin2δ sin λ sin2 φ( ) Mxy =  M0 sinδ cos λ sin2φ + 0.5 sin2δ sin λ sin2φ( )
Myy =   M0 sinδ cos λ sin2φ − sin2δ sin λ cos2 φ( ) Mxz = -M0 cos δ cos λ cos φ + cos2δ sin λ sinφ( )
Mzz =   M0 sin2δ sin λ( ) Myz = -M0 cos δ cos λ sinφ − cos2δ sin λ cos φ( )



Body forces

Convention for 
naming blocks, 
fault plane, 
and slip 
vector, i.e. 
strike, dip and 
rake   

Angle and axis conventions

Force system or a double 
couple in the xz-plane 


T and P axes are the 
directions of maximum 
positive or negative first 
break.



Body forces

Moment tensor components

Point sources can 
be described by 
the seismic 
moment tensor 
Mpq, whose 
elements have 
clear physical 
meaning of forces 
acting on 
particular planes.
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3.2 A Simple Example of Slip on a Buried Fault 43 

FIGURE 3.2 
A fault surface C within an isotropic medium is shown lying in the t3 = 0 plane. Slip is presumed to 
take place in the tl-direction across C, as shown by the heavy arrows. Motion on the side C+ (i.e., 
t3 = Of) is along the direction of increasing, and on the side C- is along 5, decreasing. 

support from increasing amounts of data obtained very close to the source region, as well 
as support from the radiation patterns observed at great distances. 

As shown in Figure 3.2, we shall take the fault C to lie in the plane t3 = 0, so that 
u1 = u2 = 0. For the case that we are calling "fault slip", [u] is parallel to C and so [u] has 
no component in the c3-direction. Let t1 be the direction of slip, so that [u2] = [u3] = 0. 
Then the body-force equivalent, from ( 3 3 ,  reduces to 

In isotropic (though still possibly inhomogeneous) media, we can find from (2.33) that all 
~ 1 3 ~ ~  vanish, except c1313 = c1331 = p. Hence 

First, let us look at f l ,  which we shall find represents a system of single couples (forces 
in fql-direction, arm along q3-direction, moment along q2-direction) distributed over C. 
The integral above yields 

As shown in Figure 3.3, this component may be thought of as point forces distributed over 
the plane q3 = O+ and opposed forces distributed over the plane q3 = 0-. 

The fault Σ lies in the plane ζ3=0, and then ν3=1, ν1=ν2=0; for a pure shear 
dislocation mechanism in the ζ1 direction, one has: [u2]=[u3]=0. 

The body force equivalent in general is:


 and becomes:

 

A particular case 

fp[u](η, τ) = − ui(ξ, τ)⎡⎣ ⎤⎦cijpqνj
∂δ(η − ξ)

∂ηq
dΣ

Σ
∫∫

fp[u](η, τ) = − u1(ξ, τ)⎡⎣ ⎤⎦c13pq
∂δ(η − ξ)

∂ηq
dξ1 dξ2

Σ
∫∫



Body forces

In isotropic media, the constitutive relation establishes that  all c13pq vanish 
except c1313=c1331=μ 

A particular case: body force equivalent

and after integration:

f1[u](η, τ) = − u1(ξ, τ)⎡⎣ ⎤⎦µδ(η1 − ξ1 )δ(η2 − ξ2 )
∂δ(η3)
∂η3

dξ1 dξ2
Σ
∫∫

f2[u](η, τ) = 0

f3[u](η, τ) = − u1(ξ, τ)⎡⎣ ⎤⎦µ
∂δ(η1 − ξ1 )

∂η1
δ(η2 − ξ2 )δ(η3) dξ1 dξ2

Σ
∫∫

f1[u](η, τ) = − u1(η, τ)⎡⎣ ⎤⎦µ
∂δ(η3)
∂η3

f2[u](η, τ) = 0

f3[u](η, τ) = −
∂ u1(η, τ)⎡⎣ ⎤⎦µ

∂η1
δ(η3)



Body forces

The first one represents a system of single couples distributed over the fault 
plane: forces in the  +-η1 direction, arm along η3 direction and moment along η2 
direction:

A particular case - 1st bf

44 Chapter 3 / REPRESENTATION OF SEISMIC SOURCES 

(il 

(b) 

FIGURE 3.3 
Interpretive diagrams for the first component, fl ,  of the body-force equivalent to fault slip of the 
type shown in Figure 3.2. (a) The spike ( - 8 ( q 3 ) ,  0,O) is plotted against q3. (That is, a spike in 
the -ql-direction, acting at q3 = 0.) (b) The derivative ( ( - 3 / 3 q 3 ) 8 ( q 3 ) ,  0,O) is plotted against q3. 
The body force (fi, 0,O) is proportional to this quantity (see equation (3.1 1)). (c) Heavy arrows show 
the distribution of f l  over the C+ side of C and over the C- side (broken arrows). This is the body- 
force component that would intuitively be expected in any body-force model of the motions shown 
in Figure 3.2. 

The total force due to fi  vanishes (see discussion of (3.6)), but the moment of this force 
component alone does not. The total moment about the q2-axis is 

If slip is averaged over X to define the quantity 

where A = [Iz d Z  is the fault area, and if the fault region is homogeneous (so that p is 
constant), then the total moment about the q2-axis due to fi((, t) is simply p Z A  along the 
direction of q2 increasing. 

f1[u](η, τ) = − u1(ξ, τ)⎡⎣ ⎤⎦µδ(η1 − ξ1 )δ(η2 − ξ2 )
∂δ(η3)
∂η3

dξ1 dξ2
Σ
∫∫
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Since faulting, within V, is an internal process, the total force due to any f[u] and 
the total moment about any fixed point must be 0:

A particular case - 1st bf moment

The total moment of this force component alone does not vanish, actually the 
moment about the η2 axis is:

that averaged over the fault plane gives 


μ<u>A


along the direction of η2 increasing

f[u](η, τ)
V
∫∫∫ dV(η) ∝ δ

S
∫∫ (η − ξ)dS(η) = 0

η3
V
∫∫∫ f1dV = − η3

V
∫∫∫ µ[u1 ]

∂δ(η3)
∂η3

dη1dη2dη3 = µ[u1 ] dΣ
Σ
∫∫
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A particular case - 2nd bf moment

The total moment of this force 
component about the η2 axis is:

that averaged over the fault plane gives again μ<u>A along the direction of η2 
decreasing. Thus the total moment is null!

3.2 A Simple Example of Slip on a Buried Fault 45 

Interpretive diagrams for the third com- 
ponent, f3, of the body-force equivalent 
to fault slip [u 1] . (a) An assumed vari- 
ation of slip [ u l ]  with ql, at fixed q2 
and t. (b) The corresponding deriva- 
tive a [ u l ]  /3ql. (c) The distribution of 
single forces f 3  with varying ql  (see 
equation (3.12)). This distribution will 
clearly yield a net couple, with moment 
in the -q2-direction. 

The body-force equivalent, given in (3.10), also involves f3, and we shall find that this 
represents a system of single forces. Taking the ql-derivative outside the integration, we 
find 

Although this component is not itself a couple at each point on C, in the sense that we have 
shown f l  to be a couple, the whole distribution of f3 across C does have a net moment. 
Figure 3.4 shows how f3 can reverse direction at different points of C. The total moment 
about the q2-axis is 

(This last equality follows from an integration by parts, using a fault surface C defined to 
have [u] = 0 around its perimeter.) In a homogeneous source region, it follows that the total 
moment due to f3 is -pLUA, which is equal in magnitude to the total moment of fi, but acts 
in the opposite direction. We obtained this result in more general form in (3.7), but have 
found here the two canceling contributions that arise. 

f3[u](η, τ) = − u1(ξ, τ)⎡⎣ ⎤⎦µ
∂δ(η1 − ξ1 )

∂η1
δ(η2 − ξ2 )δ(η3) dξ1 dξ2

Σ
∫∫

η1
V
∫∫∫

∂µ[u1 ]
∂η1

δ(η3)dη1dη2dη3 = − µ[u1 ] dΣ
Σ
∫∫
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L 
L 

L fault. In this sense, these two 
single-couple distributions, L 

L taken together, are equivalent 

assess from (3.13) or (3.14) the actual contribution made to the radiation by individual 
elements of fault area. This makes sense in physical terms, because individual elements 
of fault area do not move dynamically in isolation from neighboring parts of the source 
region. Force equivalents (usually chosen as the double-couple distribution) find their main 
use only when the slip function [u((, t)] has been determined (or guessed), and then they are 
important because they enable one to compute the radiation by weighting Green functions. 

At great distance from a rupturing fault, it often occurs that the only waves observed 
are those with wavelengths much greater than linear dimensions of C ,  the causative fault. 

\ 
1 

7 @) 

L to fault slip. Note that there 
\ 5 1  is no net couple, and no net 

force, acting on any element of 1 

t 3  4 
FIGURE 3.6 
Another force system that is 
equivalent to fault slip (compare 

single-force system, which has 
zero total couple and zero total 
force for the whole fault surface. 
But individual elements of area 
are acted on by a couple and a 
force. 

A particular case - double couple
The force equivalents to a given fault slip are not unique:

Double couple distribution!

∂Gn1
∂ξ3

=
Gn1 x,t − τ, ξ + εξ3, 0( ) − Gn1 x,t − τ, ξ − εξ3, 0( )

2ε , ε → 0

∂Gn3
∂ξ1

=
Gn3 x,t − τ, ξ + εξ1 , 0( ) − Gn3 x,t − τ, ξ − εξ1 , 0( )

2ε , ε → 0

un(x,t) = [ui]cijpqνj ∗
∂Gnp

∂ξq
dΣ

Σ
∫∫ = µ[u1 ] ∗

∂Gn1
∂ξ3

+
∂Gn3
∂ξ1

⎛

⎝
⎜

⎞

⎠
⎟ dΣ

Σ
∫∫



Body forces

The force equivalents to a given fault slip are not unique:

The body force equivalent is unique, but force/(unit area) on a finite fault is not: the 
dynamic process cannot be studied with the radiation by individual elements!

un(x,t) = [ui]cijpqνj ∗
∂Gnp

∂ξq
dΣ

Σ
∫∫ = µ [u1 ] ∗

∂Gn1
∂ξ3

+
∂[u1 ]
∂ξ1

Gn3

⎛

⎝
⎜

⎞

⎠
⎟ dΣ

Σ
∫∫
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L 
L 

L fault. In this sense, these two 
single-couple distributions, L 

L taken together, are equivalent 

assess from (3.13) or (3.14) the actual contribution made to the radiation by individual 
elements of fault area. This makes sense in physical terms, because individual elements 
of fault area do not move dynamically in isolation from neighboring parts of the source 
region. Force equivalents (usually chosen as the double-couple distribution) find their main 
use only when the slip function [u((, t)] has been determined (or guessed), and then they are 
important because they enable one to compute the radiation by weighting Green functions. 

At great distance from a rupturing fault, it often occurs that the only waves observed 
are those with wavelengths much greater than linear dimensions of C ,  the causative fault. 

\ 
1 

7 @) 

L to fault slip. Note that there 
\ 5 1  is no net couple, and no net 

force, acting on any element of 1 

t 3  4 
FIGURE 3.6 
Another force system that is 
equivalent to fault slip (compare 

single-force system, which has 
zero total couple and zero total 
force for the whole fault surface. 
But individual elements of area 
are acted on by a couple and a 
force. 

A particular case - other system



Body forces

If we are in the FAR SOURCE condition (at distances greater than the fault 
dimension), and for periods longer than the slip duration:

obtaining the double-couple point source equivalent to fault slip!

f1
[u](η, τ) = − u1(η, τ)⎡⎣ ⎤⎦µ(η)

∂δ(η3)
∂η3

= −M0δ(η1 )δ(η2 )
∂δ(η3)
∂η3

H(τ)

f2
[u](η, τ) = 0

f3
[u](η, τ) = −

∂ u1(η, τ)⎡⎣ ⎤⎦µ(η)
∂η1

δ(η3) = −M0
∂δ(η1 )
∂η1

δ(η2 )δ(η3)H(τ)

A particular case - Far Source
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A particular case - moment tensor

φ=0°, δ=0°, λ°=0°

referred to 
principal axes

m =

0 0 µ[u1(ξ, τ)]
0 0 0

µ[u1(ξ, τ)] 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

M =

0 0 M0

0 0 0
M0 0 0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

t = 1
2

êz + [u]êx( )
b = êz × [u]êx( ) = [u]êy

p = 1
2

êz − [u]êx( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

     u=
[u]êx

0
0

⎧

⎨
⎪⎪

⎩
⎪
⎪

    ν=
0
0
êz

⎧

⎨
⎪

⎩
⎪

M =

M0 0 0
0 0 0
0 0 −M0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Double 
Couple 

Principle 
Axes 

^ X , 

/ 

/ 
X, 
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P Wave 
Radiation Pattern 

X . 

S Wave 
Radiation Pattern 

FIGURE 8.10 The double-couple force system in the x-,X3 plane for a shear dislocation in 
the x-jXg plane. An equivalent set of point forces composed of two dipoles without shear, or 
the principal axes, is shown in the center. On the right are the patterns of P- and S-wave 
radiation distributed over the respective wavefronts in the x^Xg plane. 

The key to constructing solutions of the 
equations of motion for a complex set of 
body forces such as a double couple is to 
solve first for the displacement field due to 
a single point force and then to use the 
linearity of elastic solutions to superim-
pose the solutions for several forces to 
produce a displacement field for force 
couples. Thus, it is important to gain phys-
ical insight into the most elementary elas-
tic solutions for a point force. We do so by 
considering the solution of the static prob-
lem of a force, F, applied at a point in a 
homogeneous elastic medium, as in Figure 
8.11. Let us consider the displacement 
field, u, on a spherical surface S of radius 
r centered on the point source. The mag-
nitude of the displacement can be approxi-
mated as follows. For the system to be in 
equilibrium, the body force, F, must be 
balanced by the stresses acting on 5. The 
stress will be compressional at point C, 
purely shear at Q, and mixed shear and 
compressional or dilatational at intermedi-
ate points on 5. If we generically repre-

sent the stress on 5 by cr, a first-order 
force balance gives |F| ~ 4Trr V. For lin-
ear elasticity we know that o- = Ee = 
£(Vu), where E is some general elastic 
modulus and e is the strain. If we let M(r) 
be the magnitude of the displacement at r. 

FIGURE 8.11 A planar cut through a three-
dimensional volume, V, in which a point force, F, 
is acting. We consider the nature of the 
displacement field, u, on a spherical surface of 
radius r centered at the point of application of 
the force. 


