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Linear systems

Linear Systems

Since any input x(t) can be written as:

x(t) = x(τ)δ(t − τ) dτ∫ x(τ)h(t − τ) dτ∫ = x ∗ h

(remember GF definition)

Impulse Response

Linear

System

ax1(t)

bx2(t)

ay1(t)

by2(t)}= ay1(t) + by2(t)

Linear

Systemẟ(t) h(t)

X(ω) = x(τ)eiωt dt∫ X(ω) ⋅ H(ω)

Transfer FunctionLinear

Systemei⍵t H(⍵)ei⍵t

eiωτh(t − τ) dτ =∫ eiω (t−τ)h(τ) dτ =∫ eiωt eiωτh(τ) dτ∫
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Poles and Zeros

Differential Equation:
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dny
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Transfer function of the seismometer:
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Convolution

Definition:

f(t) ∗ h(t) = f(τ)h(t − τ) dτ
−∞

∞

∫
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Convolution

Pictorially

f(t)

h(t)

Definition: f(t) ∗ h(t) = f(τ)h(t − τ) dτ
−∞

∞

∫
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Convolution

f(τ)

τ

h(τ−t)
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Convolution

Consider the boxcar function (box filter):

h(t) =
0 t < − 1
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Convolution

This function windows our function f(t)

f(τ)
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f(τ)
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This function windows our function f(t).

f(τ)
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Convolution

This particular convolution smooths out some of the 
high frequencies in f(t).

f(t)*g(t) f(τ)
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Sampling Function

A Sampling Function or Impulse Train is defined by:


where Δt is the sample spacing.

Δt

ST(t) = δ(t − kΔt)
k=−∞

∞

∑
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Sampling Function

The Fourier Transform of the Sampling Function is 
itself a sampling function.

The sample spacing is the inverse.

S
Δt (t) ⇔ S 1

Δt
(ω)
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Convolution Theorem

The convolution theorem states that convolution in 
the spatial domain is equivalent to multiplication in 
the frequency domain, and viceversa.

f(t) ∗ g(t) ⇔ F(ω) ⋅ G(ω)

f(t) ⋅ g(t) ⇔ F(ω) ∗ G(ω)
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Convolution Theorem

This powerful theorem can illustrate the problems 
with our point sampling and provide guidance on 
avoiding aliasing.


Consider: f(t)⋅SΔt(t)

f(t)

Δt
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Convolution Theorem

What does this look like in the Fourier domain?

F(ω)S(ω)

1/(Δt)
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Convolution Theorem

In Fourier domain we would convolve

F(ω)

1/(Δt)

S(ω)

S(ω)*F(ω)
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Aliasing

What this says, is that any frequencies greater 
than a certain amount will appear intermixed with 
other frequencies.

In particular, the higher frequencies for the copy at 
1/Δt intermix with the low frequencies centered at 
the origin.
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Aliasing and Sampling

Note, that the sampling process introduces 
frequencies out to infinity.

We have also lost the function f(t), and now have 
only the discrete samples.

This brings us to our next powerful theory.
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Sampling Theorem

The Shannon Sampling Theorem:

A band-limited signal f(t), with a cutoff frequency 
of λ, that is sampled with a sampling spacing of Δt 
may be perfectly reconstructed from the discrete 
values f[nΔt] by convolution with the sinc(t) 
function, provided the Nyquist limit: λ<1/(2Δt)

Why is this?

The Nyquist limit will ensure that the copies of F(ω) 
do not overlap in the frequency domain.

We can completely reconstruct or determine f(t) 
from F(ω) using the Inverse Fourier Transform.



Linear systems

Sampling Theory

In order to do this, we need to remove all of the 
shifted copies of F(ω) first.

This is done by simply multiplying F(ω) by a box 
function of width 2λ.

F(ω)S(ω)

−λ λ1/(Δt)
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Sampling Theory

So, given f[nΔt] and an assumption that f(t) does 
not have frequencies greater than 1/(2Δt), we can 
write the formula:


f[nT] = f(t)∙SΔt(t) ⇔ F(ω)∗SΔt(ω)


F(ω) = (F(ω)∗SΔt(ω))∙Box1/(2Δt)(ω)

therefore,


f(t) = f[nΔt]∗sinc(t)

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html

http://www.thefouriertransform.com/pairs/box.php

http://195.134.76.37/applets/AppletNyquist/Appl_Nyquist2.html
http://www.thefouriertransform.com/pairs/box.php
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FT of Boxcar

BT t( )
−∞

+∞

∫ e−iωtdt = e−iωt dt
−T/2

+T/2

∫ = sin(πfT)
πfT

                ∝ sinc(πfT) = sinc(ωT /2)
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Spectral leakage

Resolving power in frequency domain is 
related to maximum duration in time domain:

1/T 1/T

T

Δf ≥ 1
2πT = 1

2πNΔt
⎛

⎝⎜
⎞

⎠⎟

Resolving power in time domain decides 
maximum resolvable frequency:

Δf ≥ 1
2Δt

ΔfΔt ≥ 1
2 πN

https://www.youtube.com/watch?v=MBnnXbOM5S4


