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Frequency Analysis

To use transfer functions, we must first decompose a signal into its

component frequencies.

Basic idea: any signal can be written as the sum of sines and cosines of

different frequencies.

The mathematical tool for doing this is the Fourier Transform.
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General Idea of Transforms

Suppose that you have an orthonormal (orthogonal, unit length) basis set

of vectors {ek}.

Any vector in the space spanned by this basis set can be represented as a

weighted sum of those basis vectors:

v =
∑

k

ak ek

To get the weights:

ak = v · ek

In other words, the vector can be transformed into the weights ai.

Likewise, the transformation can be inverted by turning the weights back

into the vector.
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Linear Algebra with Functions

The inner (dot) product of two vectors is the sum of the point-wise

multiplication of each component:

u · v =
∑

j

u[j] v[j]

Can’t we do the same thing with functions?

f · g =
∫ ∞

−∞
f(x) g(x) dx

Functions satisfy all of the linear algebraic requirements of vectors.
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Transforms with Functions

Just as we transformed vectors, we can also transform functions:

Vectors {ek} Functions {ek(t)}

Transform ak = v · ek ak = f · ek

∑
j v[j] ek[j] =

∫ ∞

−∞
f(t) ek(t) dt

Inverse v =
∑

k

ak ek f(t) =
∑

k

ak ek(t)
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Basis Set: Generalized Harmonics

The set of generalized harmonics we discussed earlier form an

orthonormal basis set for functions:

{ei2πst}

where each harmonic has a different frequency s.

Remember:

ei2πst = cos(2πst) + i sin(2πst)

The real part is a cosine of frequency s.

The imaginary part is a sine of frequency s.
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The Fourier Series

All Functions {ek(t)} Harmonics {ei2πst}

Transform ak = f · ek ak = f · ei2πskt

=
∫ ∞

−∞
f(t) ek(t) dt =

∫ ∞

−∞
f(t) e−i2πskt dt

Inverse f(t) =
∑

k

ak ek(t) f(t) =
∑

k

ak ei2πskt
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The Fourier Transform

Most tasks need an infinite number of basis functions (frequencies), each

with their own weight F (s):

Fourier Series Fourier Transform

Transform ak = f · ei2πskt F (s) = f · ei2πst

=
∫ ∞

−∞
f(t) e−i2πskt dt =

∫ ∞

−∞
f(t) e−i2πst dt

Inverse f(t) =
∑

k

ak ei2πskt f(t) =
∫ ∞

−∞
F (s) ei2πst ds
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The Fourier Transform

To get the weights (amount of each frequency):

F (s) =
∫ ∞

−∞
f(t) e−i2πst dt

F (s) is the Fourier Transform of f(t): F(f(t)) = F (s)

To turn the weights back into the signal (invert the transform):

f(t) =
∫ ∞

−∞
F (s) ei2πst ds

f(t) is the Inverse Fourier Transform of F (s): F−1(F (s)) = f(t)
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What’s All This Complex Arithmetic Mean?

Fourier Transform:

F (s) =
∫ ∞

−∞
f(t) e−i2πst dt

Remember Euler’s Formula (Notation):

eiθ = cos θ + i sin θ

So,

F (s) =
∫ ∞

−∞
f(t) [cos(−2πst) + i sin(−2πst)] dt

=
∫ ∞

−∞
f(t) cos(−2πst) dt + i

∫ ∞

−∞
f(t) sin(−2πst) dt

=
∫ ∞

−∞
f(t) cos(2πst) dt − i

∫ ∞

−∞
f(t) sin(2πst) dt
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Magnitude and Phase

Remember: complex numbers can be thought of as (real,imaginary) or

(magnitude,phase).

Magnitude: |F | =
[
<(F )2 + =(F )2

]1/2
Phase: φ (F ) = tan−1 =(F )

<(F )

Intuition:

Real part How much of a cosine of that frequency you need

Imaginary part How much of a sine of that frequency you need

Magnitude Amplitude of combined cosine and sine

Phase Relative proportions of sine and cosine
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Odd and Even Functions

Even Odd

f(−t) = f(t) f(−t) = −f(t)

Symmetric Anti-symmetric

Cosines Sines

Transform is real∗ Transform is imaginary∗

∗ for real-valued signals
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Sinusoids

Spatial Domain Frequency Domain

f(t) F (s)

cos(ωt) 1
2 [δ(s+ ω) + δ(s− ω)]

sin(ωt) 1
2 i [δ(s+ ω)− δ(s− ω)]
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Constant Functions

Spatial Domain Frequency Domain

f(t) F (s)

1 δ(s)

a a δ(s)
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Delta Functions

Spatial Domain Frequency Domain

f(t) F (s)

δ(t) 1
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Square Pulse

Spatial Domain Frequency Domain

f(t) F (s)

 1 if −a/2 ≤ t ≤ a/2
0 otherwise

sinc(aπs) = sin(aπs)
aπs
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Triangle

Spatial Domain Frequency Domain

f(t) F (s)

 1− |t| if −a ≤ t ≤ a
0 otherwise

sinc2(aπs)
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Comb

Spatial Domain Frequency Domain

f(t) F (s)

δ(t modk) δ(s mod1/k)
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Gaussian

Spatial Domain Frequency Domain

f(t) F (s)

e−πt
2

e−πs
2
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Differentiation

Spatial Domain Frequency Domain

f(t) F (s)

d
dt 2πis



CS 450 Fourier Transform: Examples, Common Pairs, Properties 20

Some Common Fourier Transform Pairs

Spatial Domain Frequency Domain

f(t) F (s)

Cosine cos(2πωt) Shifted Deltas 1
2

[δ(s+ ω) + δ(s− ω)]

Sine sin(2πωt) Shifted Deltas 1
2
i [δ(s+ ω)− δ(s− ω)]

Unit Function 1 Delta Function δ(s)

Constant a Delta Function aδ(s)

Delta Function δ(t) Unit Function 1

Comb δ(t modk) Comb δ(s mod1/k)
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More Common Fourier Transform Pairs

Spatial Domain Frequency Domain

f(t) F (s)

Square Pulse
1 if −a/2 ≤ t ≤ a/2
0 otherwise

Sinc Function sinc(aπs)

Triangle
1− |t| if −a ≤ t ≤ a
0 otherwise

Sinc Squared sinc2(aπs)

Gaussian e−πt
2

Gaussian e−πs
2

Differentiation d
dt

Ramp 2πis
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Properties: Notation

LetF denote the Fourier Transform:

F = F(f)

LetF−1 denote the Inverse Fourier Transform:

f = F−1(F )
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Properties: Linearity

Adding two functions together adds their Fourier Transforms together:

F(f + g) = F(f) + F(g)

Multiplying a function by a scalar constant multiplies its Fourier

Transform by the same constant:

F(af) = a F(f)
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Properties: Translation

Translating a function leaves the magnitude unchanged and adds a

constant to the phase.

If
f2 = f1(t− a)

F1 = F(f1)

F2 = F(f2)

then
|F2| = |F1|

φ (F2) = φ (F1)− 2πsa

Intuition: magnitude tells you ”how much”, phase tells you ”where”.
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Change of Scale

Frequency and distance (period) are inversely proportional.

So, if

f2 = f(at)

F1 = F(f1)

F2 = F(f2)

then

F2(s) = F (s/a)
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Rayleigh’s Theorem

Total “energy” (sum of squares) is the same in either domain:∫ ∞
−∞
|f(t)|2 dt =

∫ ∞
−∞
|F (s)|2 ds
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Linear Systems and Responses

Time/Spatial Frequency

Input f F

Output g G

Impulse Response h

Transfer Function H

Relationship g = f * h G = F H
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The Convolution Theorem

Let F , G, and H denote the Fourier Transforms of signals f , g, and h

respectively.

g = f ∗ h g = fh

implies implies

G = FH G = F ∗ H

Convolution in one domain is multiplication in the other and vice versa.
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Convolution Theorem

Thus,

F(f(t) ∗ g(t)) = F(f(t))F(g(t))

Likewise,

F(f(t)g(t)) = F(f(t)) ∗ F(g(t))
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System Characterization

We can measure the transfer function by comparing the frequencies of the

input and output signals:

H = F/G
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Transfer Functions

ExpressingH(s) in polar (magnitude-phase) form:

H(s) = A(s)eiφ (s)

Recall that the magnitudes multiply and the phases add:

H(s)ei2πst = A(s)ei2πs(t+φ (s)

A(s) is theModulation Transfer Function (MTF)

φ (s) is called thePhase Transfer Function (PTF)

The MTF and PTF are simply the magnitude and phase of the transfer

function.
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Active vs. Passive Systems

Systems can also be categorized by whether they diminish or amplify

components:

Passive systems do not use energy, hence they only diminish signals, not

amplify them:

|H(s)| ≤ 1

Active systems use energy and can amplify signals:

|H(s)| ≥ 1
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Types of Systems

Systems can be characterized by the shape of their MTF:

Low-pass lets low frequencies through better than high ones

High-pass lets high frequencies through better than low ones

Band-pass lets a particular range of frequencies through better

than others


