1

Frequency Analysis

To use transfer functions, we must first decompose a signal into its component frequencies.

Basic idea: any signal can be written as the sum of sines and cosines of different frequencies.

The mathematical tool for doing this is the Fourier Transform.

General Idea of Transforms

Suppose that you have an orthonormal (orthogonal, unit length) basis set of vectors $\{\overline{e}_k\}$.

Any vector in the space spanned by this basis set can be represented as a weighted sum of those basis vectors:

$$\overline{v} = \sum_k a_k \ \overline{e}_k$$

To get the weights:

$$a_k = \overline{v} \cdot \overline{e}_k$$

In other words, the vector can be *transformed* into the weights a_i .

Likewise, the transformation can be *inverted* by turning the weights back into the vector.

Linear Algebra with Functions

The inner (dot) product of two vectors is the sum of the point-wise multiplication of each component:

$$\overline{u} \cdot \overline{v} = \sum_j \overline{u}[j] \ \overline{v}[j]$$

Can't we do the same thing with functions?

$$f \cdot g = \int_{-\infty}^{\infty} f(x) g(x) dx$$

Functions satisfy all of the linear algebraic requirements of vectors.

Transforms with Functions

Just as we transformed vectors, we can also transform functions:

	Vectors $\{\overline{e}_k\}$	Functions $\{e_k(t)\}$
Transform	$a_k = \overline{v} \cdot \overline{e}_k$	$a_k = f \cdot e_k$
	$\sum_j \overline{v}[j] \; e_k[j]$	$= \int_{-\infty}^{\infty} f(t) e_k(t) dt$
Inverse	$\overline{v} = \sum_k a_k \overline{e}_k$	$f(t) = \sum_{k} a_k \ e_k(t)$

Basis Set: Generalized Harmonics

The set of generalized harmonics we discussed earlier form an orthonormal basis set for functions:

 $\{e^{i2\pi st}\}$

where each harmonic has a different frequency s.

Remember:

$$e^{i2\pi st} = \cos(2\pi st) + i\sin(2\pi st)$$

The real part is a cosine of frequency s.

The imaginary part is a sine of frequency s.

The Fourier Series

	All Functions $\{e_k(t)\}$	Harmonics $\{e^{i2\pi st}\}$
Transform	$a_k = f \cdot e_k$	$a_k = f \cdot e^{i2\pi s_k t}$
	$= \int_{-\infty}^{\infty} f(t) e_k(t) dt$	$=\int_{-\infty}^{\infty} f(t) \ e^{-i2\pi s_k t} \ dt$
Inverse	$f(t) = \sum_{k} a_k \ e_k(t)$	$f(t) = \sum_{k} a_k \ e^{i2\pi s_k t}$

The Fourier Transform

Most tasks need an infinite number of basis functions (frequencies), each with their own weight F(s):

	Fourier Series	Fourier Transform
Transform	$a_k = f \cdot e^{i2\pi s_k t}$	$F(s) = f \cdot e^{i2\pi st}$
	$= \int_{-\infty}^{\infty} f(t) \ e^{-i2\pi s_k t} \ dt$	$= \int_{-\infty}^{\infty} f(t) \ e^{-i2\pi st} \ dt$
Inverse	$f(t) = \sum_{k} a_k \ e^{i2\pi s_k t}$	$f(t) = \int_{-\infty}^{\infty} F(s) \ e^{i2\pi st} \ ds$

The Fourier Transform

To get the weights (amount of each frequency):

$$F(s) = \int_{-\infty}^{\infty} f(t) \ e^{-i2\pi st} \ dt$$

F(s) is the Fourier Transform of f(t): $\mathcal{F}(f(t)) = F(s)$

To turn the weights back into the signal (invert the transform):

$$f(t) = \int_{-\infty}^{\infty} F(s) \ e^{i2\pi st} \ ds$$

f(t) is the Inverse Fourier Transform of F(s): $\mathcal{F}^{-1}(F(s)) = f(t)$

What's All This Complex Arithmetic Mean?

Fourier Transform:

$$F(s) = \int_{-\infty}^{\infty} f(t) \ e^{-i2\pi st} \ dt$$

Remember Euler's Formula (Notation):

$$e^{i\theta} = \cos\theta + i\sin\theta$$

So,

$$F(s) = \int_{-\infty}^{\infty} f(t) \left[\cos(-2\pi st) + i \sin(-2\pi st) \right] dt$$

=
$$\int_{-\infty}^{\infty} f(t) \cos(-2\pi st) dt + i \int_{-\infty}^{\infty} f(t) \sin(-2\pi st) dt$$

=
$$\int_{-\infty}^{\infty} f(t) \cos(2\pi st) dt - i \int_{-\infty}^{\infty} f(t) \sin(2\pi st) dt$$

Magnitude and Phase

Remember: complex numbers can be thought of as (real,imaginary) or (magnitude,phase).

Magnitude: $|F| = [\Re(F)^2 + \Im(F)^2]^{1/2}$

Phase:	$\phi\left(F ight)$	=	\tan^{-1}	$\frac{\Im(F)}{\Re(F)}$
--------	---------------------	---	-------------	-------------------------

Intuition:

Real part	How much of a cosine of that frequency you need
Imaginary part	How much of a sine of that frequency you need
Magnitude	Amplitude of combined cosine and sine
Phase	Relative proportions of sine and cosine

Odd and Even Functions

Even	Odd
f(-t) = f(t)	f(-t) = -f(t)
Symmetric	Anti-symmetric
Cosines	Sines
Transform is real*	Transform is imaginary*

* for real-valued signals

Sinusoids

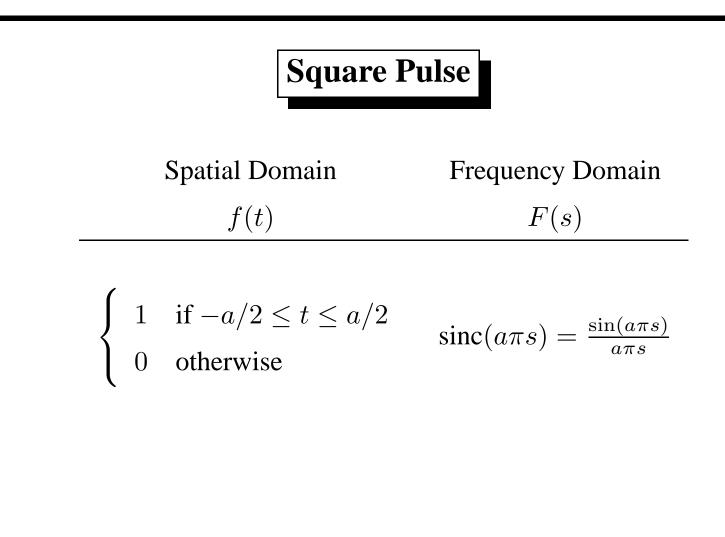
Spatial Domain	Frequency Domain
f(t)	F(s)
$\cos(\omega t)$	$\frac{1}{2} \left[\delta(s + \omega) + \delta(s - \omega) \right]$
$\sin(\omega t)$	$\frac{1}{2}i\left[\delta(s+\omega)-\delta(s-\omega)\right]$

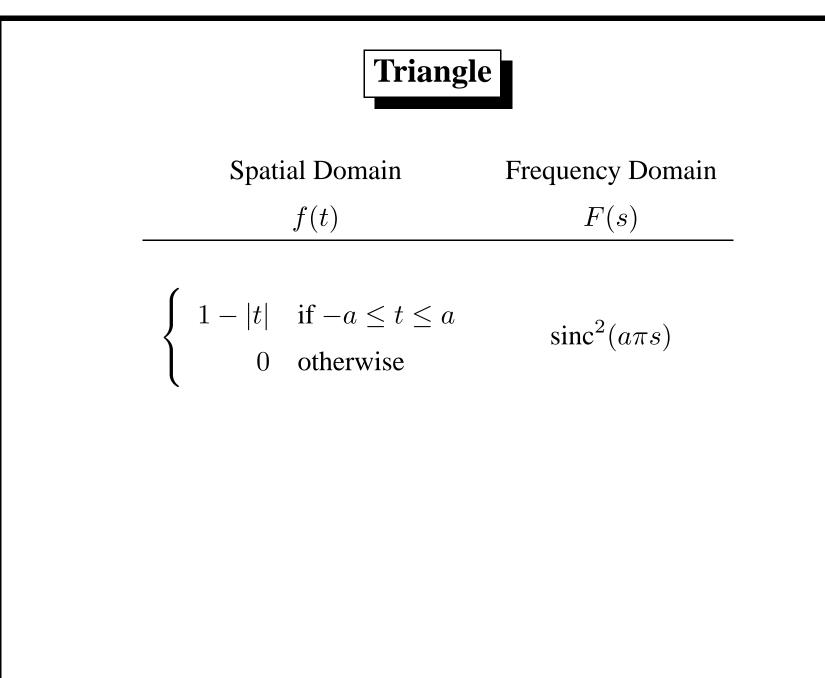
Constant Functions

	Spatial Domain	Frequency Domain
	f(t)	F(s)
_	1	$\delta(s)$
	a	$a ~~ \delta(s)$

Delta Functions

Spatial Domain	Frequency Domain
f(t)	F(s)
$\delta(t)$	1





Comb

Spatial Domain	Frequency Domain
f(t)	F(s)

$\delta(t \bmod k)$	$\delta(s \bmod 1/k)$
---------------------	-----------------------

Spatial DomainFrequency Domainf(t)F(s)

Spatial Domain	Frequency Domain
f(t)	F(s)
$rac{d}{dt}$	$2\pi i s$

Some Common Fourier Transform Pairs

Spatial Domain		Frequency Domain	
f(t)		F(s)	
Cosine	$\cos(2\pi\omega t)$	Shifted Deltas	$\frac{1}{2} \left[\delta(s+\omega) + \delta(s-\omega) \right]$
Sine	$\sin(2\pi\omega t)$	Shifted Deltas	$\frac{1}{2}i\left[\delta(s+\omega)-\delta(s-\omega) ight]$
Unit Function	1	Delta Function	$\delta(s)$
Constant	a	Delta Function	$a\delta(s)$
Delta Function	$\delta(t)$	Unit Function	1
Comb	$\delta(t \bmod k)$	Comb	$\delta(s ext{ mod } 1/k)$

More Common Fourier Transform Pairs

Spatial Domain		Frequency Domain	
f(t)		F(s)	
Square Pulse	1 if $-a/2 \le t \le a/2$	Sinc Function $sinc(a\pi s)$	
Square i dise	0 otherwise		Sine(ane)
Triangle	$1 - t \text{if } -a \le t \le a$	Sinc Squared	$\operatorname{sinc}^2(a\pi s)$
	0 otherwise	Sine Squarea	
Gaussian	$e^{-\pi t^2}$	Gaussian	$e^{-\pi s^2}$
Differentiation	$rac{d}{dt}$	Ramp	$2\pi is$

Properties: Notation

Let \mathcal{F} denote the Fourier Transform:

 $F = \mathcal{F}(f)$

Let \mathcal{F}^{-1} denote the Inverse Fourier Transform:

 $f = \mathcal{F}^{-1}(F)$

Properties: Linearity

Adding two functions together adds their Fourier Transforms together:

$$\mathcal{F}(f+g) = \mathcal{F}(f) + \mathcal{F}(g)$$

Multiplying a function by a scalar constant multiplies its Fourier Transform by the same constant:

$$\mathcal{F}(af) = a \ \mathcal{F}(f)$$

Properties: Translation

Translating a function leaves the magnitude unchanged and adds a constant to the phase.

If

$$f_2 = f_1(t - a)$$
$$F_1 = \mathcal{F}(f_1)$$
$$F_2 = \mathcal{F}(f_2)$$

then

$$|F_2| = |F_1|$$

$$\phi(F_2) = \phi(F_1) - 2\pi sa$$

Intuition: magnitude tells you "how much", phase tells you "where".

Change of Scale

Frequency and distance (period) are inversely proportional.

So, if

$$f_2 = f(at)$$

$$F_1 = \mathcal{F}(f_1)$$

$$F_2 = \mathcal{F}(f_2)$$

then

$$F_2(s) = F(s/a)$$

Rayleigh's Theorem

Total "energy" (sum of squares) is the same in either domain:

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(s)|^2 ds$$

Linear Systems and Responses

	Time/Spatial	Frequency
Input	f	F
Output	g	G
Impulse Response	h	
Transfer Function		Н
Relationship	g = f * h	G = F H

The Convolution Theorem

Let F, G, and H denote the Fourier Transforms of signals f, g, and h respectively.

g = f * h	g = fh
implies	implies
G = FH	G = F * H

Convolution in one domain is multiplication in the other and vice versa.

Convolution Theorem

Thus,

$$\mathcal{F}(f(t) \ast g(t)) = \mathcal{F}(f(t))\mathcal{F}(g(t))$$

Likewise,

 $\mathcal{F}(f(t)g(t)) = \mathcal{F}(f(t)) * \mathcal{F}(g(t))$

System Characterization

We can measure the transfer function by comparing the frequencies of the input and output signals:

H = F/G

Transfer Functions

Expressing H(s) in polar (magnitude-phase) form:

 $H(s) = A(s)e^{i\phi\left(s\right)}$

Recall that the magnitudes multiply and the phases add:

$$H(s)e^{i2\pi st} = A(s)e^{i2\pi s(t+\phi(s))}$$

A(s) is the Modulation Transfer Function (MTF)

 $\phi(s)$ is called the **Phase Transfer Function (PTF)**

The MTF and PTF are simply the magnitude and phase of the transfer function.

Active vs. Passive Systems

Systems can also be categorized by whether they diminish or amplify components:

Passive systems do not use energy, hence they only diminish signals, not amplify them:

 $|H(s)| \le 1$

Active systems use energy and can amplify signals:

 $|H(s)| \ge 1$

Types of Systems

Systems can be characterized by the shape of their MTF:

Low-pass lets low frequencies through better than high ones

High-pass lets high frequencies through better than low ones

Band-pass lets a particular range of frequencies through better than others