Linearity (Revisited)

A function *f* is **linear** iff

$$
f(ax + by) = af(x) + bf(y)
$$

1.
$$
f(ax) = af(x)
$$

2. $f(x + y) = f(x) + f(y)$

Multiplying an Input to ^a Linear Transformation

This also means that

$$
x(t) \rightarrow y(t)
$$

$$
a \, x(t) \rightarrow a \, y(t)
$$

Applying ^a linear operation to an signal multiplied by ^a constant is the same as applying the transformation and then multiplying by that constant.

Adding Inputs to ^a Linear Transformation

This means that

$$
x_1(t) \rightarrow y_1(t)
$$

$$
x_2(t) \rightarrow y_2(t)
$$

$$
x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t)
$$

Applying ^a linear operation to the sum of two signals is the same applying it to each separately and adding the results.

Linearity and shift invariance are nice properties for ^a signal-processing operation to have.

- input devices
- output devices
- processing.

A transformation that is linear and shift invariant is called ^a **system**.

Impulses

One way of probing what ^a system does is to test it on ^a single input point (a single spike in the signal, ^a single point of light, etc.)

Mathematically, ^a perfect single-point input is written as

$$
\delta(t) = \begin{cases} \infty & \text{if } t = 0\\ 0 & \text{otherwise} \end{cases}
$$

and

$$
\int_{-\infty}^{\infty} \delta(t) \ dt = 1
$$

This is called the Dirac **delta function**.

More on Impulse Functions

Multiplying ^a delta function by ^a constant multiplies the integrated area:

$$
\int_{-\infty}^{\infty} a \ \delta(t) \ dt = a
$$

Because ^a system is shift-invariant, it responds the same everywhere:

 $\delta(t) \to h(t)$

implies

$$
\delta(t+T) \to h(t+T)
$$

This response $h(t)$ is called the **impulse response**.

Because ^a system is linear, the response to ^a multiplied impulse is the same multiple of the response:

$$
\delta(t) \to h(t)
$$

implies

$$
a\;\;\delta(t)\to a\;\;h(t)
$$

Because ^a system is linear, the response to two impulses is the same as the sum of the two responses to them individually:

$$
\begin{array}{rcl}\n\delta(t) & \to & h(t) \\
\delta(t+T) & \to & h(t+T)\n\end{array}
$$

implies

$$
\delta(t) + \delta(t+T) \to h(t) + h(t+T)
$$

Putting it all together:

$$
\delta(t) \to h(t)
$$

implies

$$
a \ \delta(t) + b \ \delta(t+T) \to a \ h(t) + b \ h(t+T)
$$

Implication: If you know the impulse response at any point, you know everything there is to know about the system!

Harmonics and Systems

$$
x_1(t) = e^{i\omega t}
$$

$$
x_1(t) \rightarrow y_1(t)
$$

$$
y_1(t) = K(\omega, t) \ x_1(t)
$$

(Just define $K(\omega, t) = \frac{y_1(t)}{x_1(t)}$)

Shifted Input Harmonic

$$
x_2(t) = e^{i\omega(t-T)}
$$

$$
x_2(t) \rightarrow y_2(t)
$$

$$
y_2(t) = K(\omega, t - T) x_2(t)
$$

Shifted Input Harmonic

$$
x_2(t) = e^{i\omega(t-T)}
$$

= $e^{i\omega t}e^{-i\omega T}$
= $x_1(t)e^{-i\omega T}$

$$
x_2(t) \quad \to \quad y_1(t)e^{-i\omega T}
$$

$$
y_2(t) = y_1(t)e^{-i\omega T}
$$

= $K(\omega, t) x_1(t) e^{-i\omega T}$
= $K(\omega, t) x_2(t)$

Shifted Input Harmonic

So, we have both

$$
y_2(t) = K(\omega, t) x_2(t)
$$

$$
y_2(t) = K(\omega, t - T) x_2(t)
$$

Thus

$$
K(\omega, t) = K(\omega, t - T)
$$

So, *K* is just ^a constant function with respec^t to *t*:

^K(*ω*)

Harmonics and Systems

So, for any harmonic function

$$
x(t) = e^{i\omega t}
$$

$$
x(t) \rightarrow y(t)
$$

$$
y(t) = K(\omega) \, x(t)
$$

When a system is applied to a harmonic signal, the result is the same **harmonic signal multiplied by ^a constant that depends on the frequency.**

Transfer Functions

We now have a second way to characterize systems: the function $K(\omega)$ that defines the degree to which harmonic inputs transfer to the output.

This is the **transfer function**.

Transfer Functions

Expressing $K(\omega)$ in polar (magnitude-phase) form:

$$
K(\omega) = A(\omega)e^{i\phi(\omega)}
$$

Recall that the magnitudes multiply and the phases add:

$$
K(\omega)e^{i\omega t} = A(\omega)e^{i\omega(t+\phi(\omega))}
$$

 $A(\omega)$ is called the **Modulation Transfer Function** (MTF) $\phi(\omega)$ is called the **Phase Transfer Function** (**PTF**) The MTF and PTF are simply the magnitude and phase of the transfer function.

Remember that we can entirely characterize ^a system by its *impulse response*:

$$
\delta(t) \to h(x)
$$

Problem: given an input signal $x(t)$, how do I determine the output $y(t)$?

Linearity and Shift Invariance

Because ^a system is linear:

$$
a \ \delta(t) \to a \ h(x)
$$

Because ^a system is shift invariant:

$$
\delta(t-k) \to h(t-k)
$$

A signal $x(t)$ can be thought of as the sum of a whole lot of weighted shifted impulse functions:

$$
x(t) = \int_{-\infty}^{\infty} a(\tau) \delta(t - \tau) d\tau
$$

where

δ(*t* − *τ*) is a delta function at $τ$

 $a(\tau)$ is the weight of that delta function

(Read the integral simply as "summation".)

Because of linearity, each impulse goes through the system separately:

$$
a(\tau) \ \delta(t-\tau) \to a(\tau) \ \ h(t-\tau)
$$

This means

$$
\int_{-\infty}^{\infty} a(\tau) \delta(t-\tau) d\tau \rightarrow \int_{-\infty}^{\infty} a(\tau) h(t-\tau) d\tau
$$

But isn't the weight $a(\tau)$ of the delta function at τ just $x(\tau)$?

So,

$$
x(t) \rightarrow \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau
$$

This operation is called the **convolution** of *^x* and *h*.

Convolution

Convolution of input $x(t)$ by the impulse response $h(t)$ is written as

^x(*t*) [∗] *h*(*t*)

where

$$
x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau
$$

So, the response of a system with impulse response $h(t)$ to input $x(t)$ is simply the convolution of $x(t)$ and $h(t)$:

 $x(t) \rightarrow x(t) * h(t)$

Convolution of Discrete Functions

For a discrete function $x[n]$ and impulse response $h[n]$:

$$
x[n] * h[n] = \sum_{k} x[k] \ h[n-k]
$$

One Way to Think of Convolution

$$
x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau
$$

$$
x[n] * h[n] = \sum_{k} x[k] \ h[n-k]
$$

Think of it this way:

- shift ^a copy of *h* to each position *^τ* (or discrete position *k*)
- multiply by the value at that position $x(\tau)$ (or discrete sample $x[k]$)
- add shifted, multiplied copies for all *^τ* (or discrete *k*)

Convolution - Another Way To Look At It

$$
x[n] * h[n] = \sum_{k} f[k] h[n-k]
$$

Think of it this way:

- flip the function *h* around zero
- shift ^a copy to output position *ⁿ*
- point-wise multiply for each position *k* the value of the function *f* and the *shifted inverted* copy of *h*
- add for all *k* and write that value at position *ⁿ*

Why Flip the Impulse Function?

An input at *t* produces a response at $t + \tau$ of $h(\tau)$.

Suppose I want to determine the output at *t*. What effect does the input at $t + \tau$ have on t ?

 $h(-\tau)$

Convolution in Two Dimensions

In one dimension:

$$
x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau
$$

In two dimensions:

$$
I(x,y) * h(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} I(\tau_x, \tau_y) h(x - \tau_x, y - \tau_y) d\tau_x d\tau_y
$$

Or in discrete form:

$$
I[x, y] * h[x, y] = \sum_{j} \sum_{k} I(j, k) \ h(x - j, y - k)
$$

Properties of Convolution

- Commutative
- Associative
- Distributes over addition

In simple terms, convolution has the same mathematical properties as multiplication.

(This is no coincidence.)

Useful Functions

- Square
- Triangle
- Gaussian
- Step
- Impulse/Delta
- Comb (Shah Function)

Each has their two-dimensional equivalent.

$$
\Pi_a(t) = \begin{cases} 1 & \text{if } -a \le t \le a \\ 0 & \text{otherwise} \end{cases}
$$

$$
\Lambda_a(t) = \begin{cases} 1 - |t/a| & \text{if } -a \le t \le a \\ 0 & \text{otherwise} \end{cases}
$$

Gaussian

Gaussian (maximum value $= 1$)

$$
G(t,\sigma) = e^{-t^2/2\sigma^2}
$$

Normalized Gaussian (area $= 1$)

$$
G(t,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-t^2/2\sigma^2}
$$

Convolving ^a Gaussian with another Gaussian:

$$
G(t, \sigma_1) * G(t, \sigma_2) = G(t, \sqrt{\sigma_1^2 + \sigma_2^2})
$$

Step Function

Step
$$
(t)
$$
 =
$$
\begin{cases} 1 & \text{if } t \ge 0 \\ 0 & \text{otherwise} \end{cases}
$$

What is the derivative of a step function?

Impulse Function / Delta Function

We've seen the delta function before:

$$
\delta(t) \begin{cases} \infty & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(t) \ dt = 1
$$

Shifted delta function (impulse at $t = k$):

$$
\delta(t-k)
$$

What is a function $f(t)$ convolved with $\delta(t)$? What is a function $f(t)$ convolved with $\delta(t - k)$?

Comb (Shah Function)

A set of equally-spaced impulses (sometimes called an *impulse train*)

$$
\cosh(t) = \sum_{k} \delta(t - hk)
$$

h is the spacing.

What is $f(t) * comb_h(t)$?