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Surface Waves and Free Oscillations

Surface waves in an elastic half spaces: Rayleigh waves
- Potentials
- Free surface boundary conditions
- Solutions propagating along the surface, decaying with depth
- Lamb’s problem

Surface waves in media with depth-dependent properties: Love waves
- Constructive interference in a low-velocity layer
- Dispersion curves
- Phase and Group velocity

Free Oscillations
- Spherical Harmonics
- Modes of the Earth

- Rotational Splitting
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Traveling surface waves

O O El| ds.iris.edu/seismon/swaves/index.php?lat=38.32&lon=142.36&depth=32&mag=9&t

Untitled 'Giornom Seismic Waves Sonicwonders ESP-SEIS Router-Lup PAAG Fisica PAGEOPH_Spring WordReference Esteri U-GOV esse3 nuxeo Earth's Dynamis

Seismic Waves - 2011 Tohoku Quake & Tsunami

Seismograms S

A visualization of earthquake waves
traveling both through Earth's interior
and radiating outward on the surface.
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Traveling surface waves

Sumatra - Andaman Islands Earthquake (M,=9.0)
Global Displacement Wavefield from the Global Seismographic Network
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recorded by seismometers.
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ST T N amplitude, signal is that of the compressional
oSy Y2IC s TOC SERA (P) wave, which takes about 22 minutes to
5 e esT reach the other side of the planet (the

@aK 5386 coun surface waves that reach the antipode after

S " s ges and to subsequently circle the planet to return
Vool 0 o e to the epicentral region after about 200

A major aftershock (magnitude 7.1) can be seen
at the closest stations starting just after the
200 minute mark (note the relative size of this
aftershock, which would be considered a major
earthquake under ordinary circumstances,
compared to the mainshock).



Traveling surface waves
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Figure prepared by Richard Aster, New Mexico Tech
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Traveling surface waves

PRINCETON
UNIVERSITY
0:00:00

http://www.princeton.edu/geosciences/tromp/index.xml

http://qlobal.shakemovie.princeton.edu
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Surface waves and free modes

Standing waves

Propagating Rayleigh waves (oscillating mode)

A few minutes after A few hours after
the earthquake the earthquake

https:// jbrussell.github.io/other/normal_modes/
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Traveling and standing waves

Periods from 200s-50s-R1-to-R2

T T

-

= 55 5 _
50 o - &
':.71., > R

40

800.0s

12 September, 2007 - Sumatra - Magnitude 8.4

1000 2000 3000 4000 5000 6000 7000 8000

Seconds After Earthquake

3D Modes

| Vertical ground velocity in the 750-50s period

range observed across the western United States
by the EarthScope transportable array and
generated by the great 12 September, 2007
earthquake offshore southern Sumatra. Each

| circle represents a seismometer and the colors
-|{ change to reflect variations in the signal
| amplitude crossing the array. Near the end of this

animation you can see the waves that traveled
the long way around Earth fo reach the western
United States (they propagate from NW to SE).

-| Station 319A is located at the Douglas, AZ.

14 September 00:00, 2007 - Sumatra Normal Modes
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If you watch closely, you'll see the waves from
the 06:01:34 Magnitude 6.4 aftershock sweep
through. This movie starts several just over one
day after the Mw 8.4 earthquake (the horizontal
axis label is incorrect). The time step for this
longer animation is 20 seconds per frame. Each
second of this animation represents almost 7
minutes. I didn't screen the data so some seismic
stations with glitches more or less have large
amplitudes throughout the animation. The
amplitude scale for this animation is about 1000
times smaller than the main-shock animations.

http://egseis.geosc.psu.edu/~cammon/QA/sumatral2Sep2007.html
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Seismic waves

Seismic . Boundar
, Wavefield type Data Application . 4
domain conditions
Bod Travel times . Unbounded
ocy P-SV SH Waveforms Local, regional Free surface
waves tomography
(>1 Hz) Interfaces
c Dispersion L?rcal, regiohnal Fre: s:rFace
Surface . omography Interfaces
Rayleigh Love Waveforms
waves (0.05-1 Hz) Crustal, Flat
' lithospheric geometry
Free surface
Normal Spheroidal Torsional Power spectra Global Interfaces
eroliaa orsiona :
modes P (mHz) seismology Spherical
geometry

3D Modes




Spherical geometry

3D Modes

Figure 2.9-1: Spherical coordinate geometry for normal modes.
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Wave equation & Laplacian

© Wave equation

vVeu=vAu=u,,

© Laplacian in Spherical system

Af
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Separation of variables

u(r.8,0,t) =R(r)O(6)@(¢) T(t)

®"(9) Hm?d(9) = 0 T"(1)+ckIT(1)=0
®(0) = C cos(md) +D sin(mo) T(t)= Acos(wt)+Bsin(wt)
1 df . de
sind | @(I + 1) ©=0
sinddo|  de | | Sin‘ 6_

( )
1 0 rz dR g @ [I(I_I_l)jIR:O
r“ dr{ dr) [ r°
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Legendre polynomials

Spherical harmonics: defined by an orthogonal set of
functions called Legendre Polynomials

Figure 2.9-3: Examples of Legendre polynomials.

6 = angular distance from the pole (colatitude) T
¢ = azimuth around the pole (longitude)
Legendre polynomials:  P;(x) = 14 (JC2 - 1)1 0>
Senete poly C R TI gyd
[ = degree, or angular order ?;\ 0
The first several polynomials are 05
Py(x) =1
Pi(x)=x 1
P5(x)=(1/2)(3x* - 1) 0 1 2 3
Ps(x) = (1/2)(5x> = 3x) ‘

On a sphere, x = cos @ so x ranges from —1 < x <1
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Spherical harmonics

3D Modes

The azimuthal variations are included by forming the

Associated Legendre functions,

’_(1 _ x2)m/2q i d1+m
201! dx!+m

— —

Pp'(x) =

(x* = 1)

=

—

(the azimuthal order, m, varies over —[ < m <)

Fully normalized spherical harmonics:

pr—

1/2

201+ 1\(I - m)!
17(e.0)= 1| (F )

ar (I +m)

T

P7"(cos@)e™?




Spherical harmonics

In mathematics, the spherical harmonics are the angular portion of an orthogonal set of
solutions to Laplace's equation represented in a system of spherical coordinates.

Spherical harmonics are orthogonal:

27

j J- sin @ Y ¢) Y[m(9> ¢) d9d¢ = 51'15n1'm
0 0

The spherical harmonics are easily visualized by =13 ‘ 1=3 “
counting the number of zero crossings they possess in m =0 m= 1

both the latitudinal and longitudinal directions. For the l=m =3 U f=m =2

latitudinal direction, the associated Legendre functions S ,

possess | — Im| zeros, whereas for the longitudinal
direction, the trigonomentric sin and cos functions
possess 2 Im| zeros.

>
m D +

When the spherical harmonic order m is zero, the lem — 0
-m

spherical harmonic functions do not depend upon

longitude, and are referred to as zonal.

When | = Im| , there are no zero crossings in latitude,
and the functions are referred to as sectoral.

For the other cases, the functions checker the sphere,
and they are referred to as tesseral.
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Spherical harmonics

3D Modes

Figure 2.9-4: Examples of spherical harmonics.

Re(Y3) Re(Y?)
2l +1\([ — m)! "

The angular order, /, gives the number of nodal lines on the surface.

If the azimuthal order m 1s zero, the nodal lines are small circles about the
pole. These are called zonal harmonics, and do not depend on ¢

If m = [, then all of the surface nodal lines are great circles through the pole.
These are called sectoral harmonics.

When 0 < |m| < [, there are combined angular and azimuthal (colatitudinal and
longitudinal) nodal patterns called tesseral harmonics.




Torsional & Spheroidal modes

Torsional modes ,Tm, : Spheroidal modes ,Sm, :
@ No radial component: tangential only, @ Horizontal component and vertical (radial)
normal fo the radius: motion confined to the (P-SV, Rayleigh waves). No simple
surface of n concentric spheres inside the relationship between n and nodal spheres
Earth (SH, Love waves). @ ,S; is the longest “fundamental”
@ Changes in the shape, not of volume © Affect the whole Earth (even into the
@ Do not exist in a fluid: so only in the fluid outer core !)

mantle (and the inner core?)

n - radial : nodal planes with depth n : no direct relationship with
nodes with depth
| - polar : # nodal planes in latitude | : # nodal planes in latitude
Max nodal planes = 1| -1 Max nodal planes = |
m - azimuthal : # nodal planes in longitude m : # nodal planes in longitude

3D Modes



Torsional modes

Torsional (toroidal) modes:
(analogous to SH waves)

Surface eignefunctions given by vector spherical harmonics:

l 9Y["(6,9) 0Y/'(6. ¢))

Tl (7’,9,¢):(0, sin @ a¢ - 89

The displacements are given by:

m

u’(r, 0, 9) = ZZZ A7 W\(r) T8, 9) &l

m=—1
. W,(r) - The radial eigenfunction (varies with depth)

3D Modes



Torsional modes

For ,T;":
n = radial order, / = angular order, m = azimuthal order.

The 2/ + 1 modes of different azimuthal orders —/ < m <[ are called singlets,
and the group of singlets 1s called a multiplet.

If earth were perfectly spherically symmetric and non-rotating, all singlets
in a multiplet would have the same eigenfrequency (called degeneracy).

For example, the period of , 7} would be the same for , 73", , T, , T, etc.
In the real earth, singlet frequencies vary (called splitting).

The splitting 1s usually small enough to 1gnore, so we drop the m superscript
and refer to the entire ,7;" multiplet as , 7;, with eigenfrequency , ;.

3D Modes



Torsional modes

Figure 2.9-5: Displacement associated with torsional mode T..

Example: ol 2 0
- 1/2

20+ 1\(I - m)!
17,0 = 1|t |

o Jawmn | e 77 T TN\
/R VAR

Tm_(o L 9Y['(6,9) _9Y/'(6, ¢))
[ — > . ’
sin 6 09 00

gy 5 PY(cos 6) = 3sin 6 cos 6

N\ NS
NN

Uy o< sin 6 cos @
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Torsional modes

Figure 2.9-6: Examples of the displacements for several torsional modes.

) g R
U
Torsional modes with n =0 (,7}")

are called fundamental modes.
(motions at depth 1n the same
direction as at the surface).

Modes with n > 0 are called
overtones. (motions reverse
directions at different depths)

What happened to (7 and (7?
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Toroidal normal modes: examples

oT»: «twisting» mode 112

(44.2 minutes, observed in (12.6 minutes) (28.4 minutes)
1989 with an extensometer)

Animations from Lucien Saviot
http://lucien.saviot.free.fr/terre/index.en.html
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Spheroidal modes

3D Modes

Spheroidal (poloidal) modes (involving P-SV motions):

The surface eigenfunctions are given by two other vector spherical harmonics
with (7, 8, ¢) components

R;" =(¥/", 0, 0)

m aYlm(ea ¢) 1 aYlm(ea ¢)
S[ — 0, §
00 sin @ ¢

Each corresponds to a different radial eigenfunction, ,U,(r) and ,V;(7), so the
displacement for spheroidal modes is

[
w(r,0,0)= 23 D AL ULr) RI . 9) + V1) ST'6, )0

The radial eigenfunction ,U,(7) corresponds to radial motion and
.V ;(r) corresponds to horizontal motion.




Spheroidal modes

Figure 2.9-7: Examples of the displacements for several
spheroidal modes.

03, (football mode) is the gravest (lowest frequency or
longest period) of earth’s modes, with a
period of 3233 s, or 54 minutes.

There 1s no (S| mode, which would correspond to
a lateral translation of the planet.

- =

The ;S Slichter mode due to lateral sloshing of the 0S (2) (motion)

0
092
inner core through the liquid iron outer core, which has
yet to be observed, should in theory have a period of \
1
092

about 5 1/2 hours.
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Spheroidal modes

The "breathing" mode (S, involves S~
radial motions of the entl.re earth that | 093 S, (motion)
alternate between expansion and contraction.

OSO 150

3D Modes



Spheroidal normal modes: examples

® ‘
Y

0So ¢ « balloon » or  ,S,: <« football » mode 053¢ 0529
« breathing » : (Fundamental, 53.9 (25.7 minutes) (4.5 minutes)
. minutes)
radial only

(20.5 minutes)

See also Animations from Hein Haak
http://www.knmi.nl/cms/content/64722/eigentrillingen_van_de_sumatra_aardbeving
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Spherical wavelength and ¢

Standing waves

Propagating Rayleigh waves (oscillating mode)

A few minutes after A few hours after
the earthquake the earthquake

The mode with angular order / and frequency ,w; corresponds to a traveling wave with horizontal
wavelength A, =27x/|k,|=2xa/(l + 1/2)  that has [/ + 1/2 wavelengths around the earth.

These waves travel at a horizontal phase velocity ¢, = ,o/|k,| = ,0,a/(l + 1/2)



Torsional eigenfunctions

Figure 2.9-9: Radial eigenfunctions for various modes.

1T2 2T2 3T2 4T2 5T2 6T2 7T2
670 — - 6/0
=2
for fundamental
(n=0) and higher
overtones
CMB - — CMB

Displacements W

13T7 12T25 11T34 1OT40 9T43 8T47 7T51 6T55 5T61 4T67

670 — - 670
about same
frequency (14
mHz)
CMB - - CMB

Displacements W
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Spheroidal & Torsional eigenfunctions

second overtone branch

C 2T30 2T4O ZTSO 2T6O 2T7O 2T80 2T9O 2T1 00 2T1 10 2T120 2T130

SVTLrrIrr

Displacements W

2560 257|O 258|O 259|0 251(|)O 251 ]O 251%0 2515;0

670 - - 670

Displacements U, V

second overtone branch
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Modes energy

One of the modes used in 1971 to infer the solidity of the inner core:
Part of the shear and compressional energy in the inner core

Energy densilies for g5, in model PREM

’ ' P
inner core . outer core sy mantic
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_________ compressional energy density
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Modes

energy

S can affect the whole Earth (esp. overtones)

Energy denstlies for ,55;, W model PREM

o N Do

S thh @ O O

kernel amplitudes

inner core .

i~
puter ‘core

mantic

normalized radius

2.8
2.0
1.5

kernel amplitudes

3.0

Energy denstlies for ,,5; in model PREM

puter core mantic

3D Modes

normalized radius

Energy densities for 7, in model PREM

T in the mantle only !

K)) 3.0 inner core | outer core
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2.5F
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-~ 2.0F
3
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Eigenvalues

Some toroidal and spheroidal modes.

Mode Period Description or

(s) associated phase

ol 2639.4 fundamental toroidal

ol 1707.6 fundamental toroidal

1 T4 808.4 radial overtone

1T 1875 radial overtone

e 104.4 radial overtone

0130 259.5 fundamental Love

oT130 68.9 fundamental Love

» T3 151.3 second-overtone Love

4T 71.3 SH

13 T7 71.6 SCSSH

090 1228.1 fundamental radial

150 613.0 radial overtone

092 32933 football

033 2134.4 pear-shaped

03930 262.1 fundamental Rayleigh

03130 75.8 fundamental Rayleigh

1530 160.9 second-overtone Rayleigh

1056 203.5 inner core PKJKP

1195 197.1 inner core PKIKP

1493 184.9 mantle S¢Sy

1 Sl 19500 Slichter

Mid-1800’s — music of the spheres — Earth’s revolution is a C#, 33 octaves below middle C#
( breathing mode is an E, 20 octaves below middle E)

1882 — Lamb — fundamental mode of Earth (as steel ball), 78 minutes

1911 — Love — included self-gravitation — fundamental mode period of 60 minutes

1952 — Kamchatka EQ is first to reveal Earth’s normal modes

1960 — Chile earthquake reveals over 40 modes
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Torsional modes dispersion

Torsional modes
5 iff n=10 n=1 n=0
——
0.08 // /
——— S¢S S Love
_/
—
0.06
N
:; 0.003 |
(e
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>
- L 0.002 |
o
-
Q
>
O
@
= 0.001
0.02
O | | | | |
0 2 4 6 8 10
7 Angular order (1)
7
O ] | | | J
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Angular order ()
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Torsional modes dispersion

Torsional modes
5 iff n=10 n=1 n=0
=
0.08 // /
——— S¢S S Love
_/
—
0.06
~N
L
9 1 I | I I I | I
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"g 09 | 4
L%) 004 — 08 I P |
07 |- 4
0.6 |- 4
T 05| -
T o4l | 4
0.02 03 | A 4
0.2 Example of Love modes dispersion -
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0 | I | | 1 I I | I
0 01 02 03 04 05 06 07 08 09 1
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0 / l | 1 1 |
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Spheroidal modes dispersion

Spheroidal modes

Pait Sd;'ffsv
PKP+PcP /P Scs ) SV .
4—’l—> +— /1 —> Raylelgh
20 B 23 -” ’

22-f '// .
i

i
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°T 17'
R
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/1

Frequency (mHz)

"/

JUV VL

2 | | | | | | ] | | | | | | | | | | ] | |
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Angular order (l)

3D Modes



Sumatra: spectrum

0041226 08h00-20041231 O0hOO

Membach, SG C021, 2
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002

0.0016

0.0012

0.0008
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Splitting

If SNREI (Solid Not Rotating Earth Isotropic) Earth :
Degeneracy:
for n and |, same frequency for -l < m < |

For each m = one singlet.
The 2m+1 group of singlets = multiplet

No more degeneracy if no more spherical symmetry :

@ Coriolis
© Ellipticity
@ 3D

Different frequencies and eigenfunctions for each |,m

3D Modes



Splitting

Figure 2.9-16: Splitting of the S, mode for wave from the 1960 Chile

earthquake. 555 T=53.8min
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Sumatra: time and Q
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Magnitude

Time after beginning of the rupture:

00:11
00:45
01:15
04:20
19:03

Jan. 2005

8.0 (M)
8.5 (M)
8.5 (M)
8.9 (M)
9.0 (M,,)
9.3 (My,)

P-waves 7 stations
P-waves 25 stations
Surface waves 157 stations
Surface waves (automatic)
Surface waves (revised)
Free oscillations

April 2005 9.2 (M,,) GPS displacements

3D Modes
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Magnitude

MAJO oS, OBN oS,

My =113 x 10% dyn—cm | My = 1.23 x 10% dyn-em

From aftershocks,
free oscillations,
GPS, ...

Speciral Ampitude (omes)
8

MAJO S,

Ll Ll

" My = 1.08 x 10% dyn—cm -

ge *

Rupture zone as
determined using
300-500 surface waves

t‘\i\
Speciral Ampitude (am*s)
g

HARVARD : & \\'3 Seth Stein and Emile Okal
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Modal summation on a sphere

For displacements 1n 3-D:
u(r, 6, 9)= D, D D AT ,yir) X6, 9) &'
n [ m

n, [, m - radial, angular, and azimuthal orders

,V;(r) - scalar radial eigenfunction

x;' (0, ¢) - vector surface eigenfunction

, A7 - excitation amplitudes (weights for eigenfunctions) that

depend on the seismic source.
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Modal summation (anelastic)

Normal mode synthetic seismograms:

m

" (I”,,, 0, ¢”) ZZ Z Al (rsarr) Wl(rr) T (91’9 ¢r) elna);” 6 . Ql

m=—|

n@/'t

e 2.0/ - the attenuation of the mode

,0; - quality factor of the mode

After QO cycles of oscillation, the amplitude of a mode has fallen to a
level of e or 4% of the original amplitude.
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Modal summation: ScS

Figure 2.9-12: Synthesis of a body wave from normal mode summation.
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Modal summation: Rayleigh

Figure 2.9-13: Example of modeling data with normal mode synthetic

seismograms.

| ‘ R, ‘ R,
‘WI'MN

STATION ANMO
COMP VERT
DELAY 0.11H
INSTR SRO
DELTA 124.6
AZM AT EP. 52
AMAX 2630

STATION ANMO
COMP N-5
DELAY 0.27H
INSTR SRO
DELTA 124.6
AZM AT EP. 52
AMAX 4352

STATION ANMO
COMP E-W
DELAY 0.20H
INSTR SRO
DELTA 124.6
AZM AT EP. 52
AMAX 2756

3D Modes

Time (hours)




Modal summation: S

Figure 2.9-14: Shear wave synthetic seismograms computed at a series of depths.
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