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1D Halfspace

Considering an elastic body of volume V and surface S, the application of body 
forces, as well as the application of tractions, will generate a displacement field  
that is constrained to satisfy the equations of motion:

Elastodynamic equations

The equation for elastic displacement can be written also using the vector 
differential operator,
as:     

� 

L(u)( )i = ρ˙ ̇ u i − cijkluk,l( ),j
= ρ˙ ̇ u i − σ ij,j

    

L(u)= 0    homogeneous
L(u)= f    inhomogeneous

ρ!!u
i
= f

i
+
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ij

∂x
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= f
i
+ σ

ij,j



1D Halfspace

Isotropic medium

And for an isotropic medium, in absence of body forces, the equations of motion 
become:

    
L(u)( )i = ρ˙ ̇ u i −

∂
∂j

λ∂kukδij +µ(∂iu j +∂ jui )( ) = 0

i.e. a linear system of three differential equations with three unknowns: the 
components of the displacement vector, whose coefficients depend upon the 
elastic parameters of the material. It is not possible to find the analytic 
solution for this system of equations, therefore it is necessary to add further 
approximations, chosen according to the adopted resolving method. Two ways 
can be followed: 
a) an exact definition of the medium is given, and a direct numerical 
integration technique is used to solve the set of differential equations; 
b) exact analytical techniques are applied to an approximated model of the 
medium that may have the elastic parameters varying along one or more 
directions of heterogeneity. 



1D Halfspace

1D heterogeneity
 Let us consider a halfspace in a system of Cartesian coordinates with the vertical 

z axis positive downward and the free surface, where vertical stresses (σxz, σyz, σzz) 
are null, is defined by the plane z=0.

 Let us assume that ρ, λ and µ are piecewise continuous functions of z, that 
displacement and stress components are continuous along z, and that body wave 
velocities, α and β, assume their largest value, αH and βH, when z=H, remaining 
constant for greater depths. 

If the parameters depend only upon the vertical coordinate, the equations become:

    

� 

ρ˙ ̇ u = λ + µ( )∇ ∇ ⋅u( ) + µ∇2u+ ∂λ
∂z

ˆ z ∇ ⋅u( ) + ∂µ
∂z

∇ ⋅ ˆ z ( )u+ ∇ ˆ z ⋅u( )[ ]
we can consider solutions of  having the form of plane harmonic waves propagating 
along the positive x axis:

    u x,t( ) = F(z)ei ωt−kx( )



1D Halfspace

Apparent horizontal (phase) velocity

  

� 

kx = k sin(i) = ω sin(i)
α

= ω
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kz = kcos(i) = k2 − kx
2 = ω 1
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Remember: when c is less then the 
body wave velocity kz  is imaginary and 
represent inhomogeneous waves, i.e. 
waves exponentially decaying or 
increasing with depth; 
examples are Rayleigh waves in a 
homogenous halfspace, or Love waves 
in low velocity layer over a 
homogeneous halfspace
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2 = ω 1
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In current terminology, kx is k



1D Halfspace

P-SV problem
We have to solve two independent eigenvalue problems for the three components of 
the vector F=(Fx,Fy,Fz). The first one describes the motion in the plane (x,z), i.e., P-SV 
waves and it has the form:

  

∂
∂z

µ ∂Fx

∂z
− ikµFz

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ − ikλ

∂Fz

∂z
+ ω2ρ− k2 λ +2µ( )[ ]Fx = 0

∂
∂z

λ + 2µ( ) ∂Fz

∂z
− ikλFx

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ − ikµ ∂Fx

∂z
+ ω2ρ− k2µ[ ]Fz = 0

and must be solved with the free surface boundary condition at z = 0

  

� 

σzz = λ + 2µ( ) ∂Fz

∂z
− ikλFx

⎡ 
⎣ ⎢ 
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⎦ ⎥ 
z=0
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σxz = µ ∂Fz

∂z
− ikµFz
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⎦ ⎥ 
z=0

= 0



1D Halfspace

SH problem
The second eigenvalue problem describes the case when the particle motion is 
limited to the y-axis, and determines phase velocity and amplitude of SH waves. 
It has the (Sturm-Liouville) form:

  

∂
∂z

µ
∂Fy

∂z
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ω2ρ− k2µ( )Fy = 0

and must be solved with the free surface boundary condition at z = 0
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µ
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∂z
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⎦ 
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z=0

= 0



1D Halfspace

Layered halfspace

Let us now assume that the vertical heterogeneity in the halfspace is modelled 
with a series of N-1 homogeneous flat layers, parallel to the free surface, 
overlying a homogeneous halfspace. 
Let ρm, αm, βm, and dm, respectively be the density, P-wave and S-wave 
velocities, and the thickness of the m-th layer. 
Furthermore, let us define:
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1D Halfspace

Love (SH) problem

The SH solutions (displacement and stress) for the m-th layer are:

ux=uz=0

  uy = vm
' e−ikrβmz + vm

" e+ikrβmz( )ei ωt−kx( )

  
σzy = µ

∂uy

∂z
= ikµrβm −vm

' e−ikrβmz + vm
" e+ikrβmz( )ei wt−kx( )

where vm’ and vm‘’are constants. 
Given the sign conventions adopted, the term in v' represents a plane wave 
whose direction of propagation makes an angle cot–1rβm with the +z direction 
when rβm is real, and a wave propagating in the +x direction with amplitude 
diminishing exponentially in the +z direction when rβm is imaginary. Similarly 
the term in v'' represents a plane wave making the same angle with the 
direction -z when rβm is real and a wave propagating in the +x direction with 
amplitude increasing in the +z direction when rβm is imaginary.



1D Halfspace

Love (SH) problem 
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Fig. 2. For the adopted reference system the term in v' of equation (14) represents a plane wave 

whose direction of propagation makes an angle cot–1r!m with the +z direction when r!m is real (a), 

and a wave propagating in the +x direction with amplitude diminishing exponentially in the +z 

direction when r!m is imaginary (b). Similarly the term in v'' represents a plane wave making the 

same angle with the direction -z when r!m is real (c) and a wave propagating in the +x direction 

with amplitude increasing in the +z direction when r!m is imaginary (d). 

 

the term in v' represents a plane wave 
whose direction of propagation makes an 
angle cot–1rβm with the +z direction when 
rβm is real (a), 
and a wave propagating in the +x 
direction with amplitude diminishing 
exponentially in the +z direction when 
rβm is imaginary (b). 

Similarly the term in v'' represents a 
plane wave making the same angle with 
the direction -z when rβm is real (c)
and a wave propagating in the +x 
direction with amplitude increasing in 
the +z direction 
when rβm is imaginary d).



1D Halfspace

Love (SH) problem

Consider the m-th layer and the (m-1) 
interface, set temporarily as the origin of 
the coordinate system. It is convenient to 
u s e [ ( d u y / d t ) / c ] = i k u y i n s t e a d o f 
displacement, to deal with adimensional 
quantities.   
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˙ u y
c
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= ik v'm + v''m( )

σzy( )m−1
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m, z=dm
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σzy( )m
= −kµmrβm

v''m + v'm( )sinQm + ikµmrβm
v''m - v'm( )cosQm

Qm=krβmdm
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Love layer matrix

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

=
˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

cosQm + i σzy( )m−1
µmrβm( )−1

sinQm

σzy( )m
=

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

i µmrβm
sinQm + σzy( )m−1

cosQm   

� 

am =
cosQm

i sinQm

µmrβm

i µmrβm
sinQm cosQm

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

σzy( )m

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= am

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m−1

σzy( )m−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

  

� 

˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
N−1

σzy( )N−1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

= A
˙ u y
c

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

σzy( )0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

    

� 

A = aN−1aN−2…a2a1



1D Halfspace

Love dispersion equation

remembering that the boundary conditions of a) surface waves and b) the 
free surface implies that vN"=0 and σzy(z=0)=0, we have that:

  A21 +µNrβN
A11 = 0

The left-hand side is the dispersion function for Love modes (SH waves), 
where A21 and A11 are elements of the matrix A. 
The couples (ω,c) for which the dispersion function is equal to zero are its 
roots and represent the eigenvalues of the problem.
 
Eigenvalues, according to the number of zeroes of the corresponding 
eigenfunctions, uy(z,ω,c) and σzy(z,ω,c), 
can be subdivided in the dispersion curve of the fundamental mode (which has 
no nodal planes), of the first higher mode (having one nodal plane), of the 
second higher mode and so on. 

Once the phase velocity c is determined, we can compute analytically the group 
velocity using the implicit functions theory, and the eigenfunctions.



1D Halfspace

Rayleigh (P-SV) problem
The P-SV solutions (displacement and stress) for the m-th layer can be found 
combining dilatational and rotational potentials:

  

� 

Δm = ∂ux

∂z
+ ∂uz

∂x
= Δm

' e−ikrαmz + Δm
" e+ikrαmz( )ei ωt−kx( )

δm = 1
2

∂ux

∂z
− ∂uz

∂x
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ = δm

' e−ikrβmz + δm
" e+ikrβmz( )ei ωt−kx( )

where Δm’, Δm’’, δm’ and δm‘’ are constants. 
Given the sign conventions adopted, the term in Δm’ represents a plane wave 
whose direction of propagation makes an angle cot–1rαm with the +z direction 
when rαm is real, and a wave propagating in the +x direction with amplitude 
diminishing exponentially in the +z direction when rαm is imaginary. Similarly the 
term in Δm’’ represents a plane wave making the same angle with the direction -z 
when rαm is real and a wave propagating in the +x direction with amplitude 
increasing in the +z direction when rαm is imaginary.
The same considerations can be applied to the terms in δm’ and δm‘’, substituting 
rαm with rβm.



1D Halfspace

Rayleigh (P-SV) problem
The P-SV solutions (displacement and stress) components can be written as:

Starting with the free surface condition (σzz(z=0)=σzx(z=0)=0), iterating the 
continuity boundary conditions at every interface, and applying the condition of 
no radiation in the final halfspace, one can build up the dispersion function 
whose roots are the eigenvalues associated with the Rayleigh modes.
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1D Halfspace

receiversourcepropagation

GF for heterogeneous halfspace
The GF, at a large distance, will consist entirely of surface waves propagating 
outward from the source:

    
Gik

L,R = Gik
L,Rm x,x0;t( )

m=1

∞

∑
for Love (L) modes (m):

and Rayleigh (R) modes (m):

  

� 

Gik
mL ω( ) = e−i3π/4

8πω
e−ikmx

x
RPik

L (hs,ω)( )
cmvmIm

RCik
L (z,ω)( )
vmIm

  

� 

Gik
mR ω( ) = e−i3π/4

8πω
e−ikmx

x
RPik

R(hs,ω)( )
cmvmIm

RCik
R (z,ω)( )
vmIm



1D Halfspace

RP for heterogeneous halfspace
where x, is the source-receiver distance; c is the phase velocity, v is the group 
velocity (c, v are calculated for the m-th Love or Rayleigh mode, at frequency ω, and 
thus are the “eigenvalues”); I is the energy integral, RP is the radiation pattern and 
RC is the receiver factor (calculated for the m-th Love or Rayleigh mode, at 
frequency ω, and thus are connected to the “eigenvectors” (Fx,Fy.Fz)):

  

� 

RPik
mLRCik

mL = Fy
m hs,ω( )

sin2φ -sinφcosφ 0
-sinφcosφ cos2φ 0

0 0 0
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Fy
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mRRCik

mR =
Fx

m hs,ω( )Fx
m z,ω( )cos2φ Fx

m hs,ω( )Fx
m z,ω( )sinφcosφ -iFz

m hs,ω( )Fx
m z,ω( )cosφ

Fx
m hs,ω( )Fx

m z,ω( )sinφcosφ Fx
m hs,ω( )Fx

m z,ω( )sin2φ -iFz
m hs,ω( )Fx

m z,ω( )sinφ
iFx

m hs,ω( )Fz
m z,ω( )cosφ iFx

m hs,ω( )Fz
m z,ω( )sinφ Fz

m hs,ω( )Fz
m z,ω( )
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Seismic source in a layered halfspace
The source is introduced in the medium by representing 
the (planar) fault 

as a discontinuity in the displacement field (shear 
dislocation), and thus it is equivalent to a double-couple.
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where the asterisk, *, indicates the imaginary part of a complex quantity, i.e., ux*, 

!zz*, and !zy* are real quantities. 

 

 

Fig. 3. Angle conventions used for the source system. 

 

 The quantity I1 in (28) are the energy integrals defined as 

 

  

I1L = ! z( ) uy z( )/uy 0( )( )
2

0

"

# dz

 

  (32) 

  

I1R = ! z( ) y1
2 z( )+ y3

2 z( )[ ]
0

"

# dz  
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GF for DC in heterogeneous halfspace
If the surface waves are excited by a double-couple, and we are in the 
far-field:

for Love (L) modes (m):

and Rayleigh (R) modes (m):

  

� 

uy
L x,z,ω( ) = e−i3π/4

8πω
e−ikmx

x
χm

L (hs,ω)( )
cmvmIm

Fy(z,ω)( )
vmImm=1

∞

∑
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R x,z,ω( ) = e−i3π/4

8πω
e−ikmx

x
χm

R (hs,ω)( )
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Fx(z,ω)( )
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1D Halfspace

RP for DC in heterogeneous halfspace
where, χ, the radiation pattern represents the azimuthal dependence of the 
excitation factor:

  

� 

χL = i(d1L sinϕ + d2L cosϕ)+ d3L sin2ϕ + d4L cos2ϕ
χR = d0 + i(d1R sinϕ + d2R cosϕ)+ d3R sin2ϕ + d4R cos2ϕ

  

� 

d1L =   G(hs) cosλ sinδ
d2L = −G(hs) sinλ cos2δ

d3L =   1
2
V(hs) sinλ sin2δ

d4L =  V(hs) cosλ sinδ

  

� 

d0 =  1
2
B(hs) sinλ sin2δ

d1R = −C(hs) sinλ cos2δ
d2R = −C(hs) cosλ cosδ
d3R =   A(hs) cosλ sinδ

d4R =  − 1
2
A(hs) sinλ sin2δ

where φ is the angle between the strike 
of the fault and the direction  obtained 
connecting the epicenter with the 
station, measured anticlockwise, δ is 
the dip angle and λ is the rake angle, 
and

  

� 

A(hs)= −Fx *(hs)
Fz(0)

B(hs)= − 3− 4 β2(hs)
α2(hs)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
Fx *(hs)
Fz(0)

− 2
ρ(hs) α2(hs)

σzz*(hs)
˙ F z(0)/c

C(hs)= − 1
µ(hs)

σzx(hs)
˙ F z(0)/c

G(hs)= − 1
µ(hs)

σzy *(hs)
˙ F y(0)/c

V(hs)=
˙ F y(hs)

˙ F y(0)/c
=

Fy(hs)
Fy(0)/c
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Double couple RP & surface waves

vertical strike-slip

45° dipping strike-slip

45° dipping oblique slip

45° dip-slip (thrust)

45° dip-slip (normal)

vertical dip-slip

Love   Rayleigh



Methodology - Modal Summation Technique

Example of quantities associated with a structure
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Methodology - Modal Summation Technique

Phase velocity dispersion curve
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Methodology - Modal Summation Technique

Eigenfunctions
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Source definition and radiation pattern

vertical strike-slip
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Methodology - Modal summation



Methodology - Modal Summation Technique

Synthetic seismograms
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Methodology - Modal Summation Technique

Synthetic seismograms

(s1f1) sre=168.00 dip=30.0 sde=  7.000 edi= 15.000 rde=  0.000
 mod=  0-  0 int= 1 mag=6.5
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Regional Scale - Modal Summation Technique

Earthquake scenarios for single events
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Regional Scale - Modal Summation Technique

Earthquake scenarios

s14f1tra.amx
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(s14f1) dip=89.0 rak=140.0 sde= 10.000 rde=  0.000 mod=  0-  0
 int= 0 mag=6.7
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Extendend source kinematic model

2-dimensional final slip distribution over a source rectangle

Point source 
approximation 

Focal mechanism and radiation pattern

STSPS approximation

Source - Models


