Misure di rischio

270

Gestione del Rischio Finanziario

MISURE DI RISCHIO

- > obbiettivo: misurazione dei rischi finanziari al fine del loro controllo
- ⊳ rischi: di mercato (tasso, cambio, ...), credito, operativo, ...
- > utilizzo:
 - * stabilire requisiti di capitale (interni o imposti dall'autorità di sorveglianza), e.g. Basilea, Solvency
 - * ordinare i vari fattori di rischio in base alla loro importanza
 - ★ comunicazione con i clienti
 - * valutazione dell'efficacia di una strategia di copertura
 - ★ stabilire margini nei mercati dei futures e delle opzioni
 - * stabilire limiti per i traders / unità operative
 - * allocazione del capitale fra diversi rami / unità / ...
 - ***** ...

MISURE DI RISCHIO

- - ⋆ varianza
 - ★ Value-at-Risk
 - ★ expected shortfall
 - * misure basate su scenari
 - * ...
- > proprietà / relazioni tra queste misure?
- - ★ analitico (parametrico)
 - ★ storico / Monte Carlo
- > aggregazione di rischi (dipendenza) / modelli per rischi estremi

272

Gestione del Rischio Finanziario

PERDITA

- \triangleright sia L una perdita; esempi:
 - ★ variazione di valore di un titolo / portafoglio:

$$L = -P\&L$$
, $P\&L = profitto / perdita = V(T) - V(t)$

con V(t) valore del portafoglio in t

- ⋆ perdita su un singolo contratto assicurativo / portafoglio / ramo assicurativo / intera compagnia
- \triangleright perdita relativa a un certo intervallo temporale (t,T): $L \equiv L_{t,T}$
- > perdita lorda / netta (al netto delle attività messe a copertura)
- $\,\triangleright\, L \ge 0$: rischio puro; L < 0 and $L \ge 0$: rischio speculativo

MISURE DI RISCHIO

- $\triangleright L$ è una variabile aleatoria in uno spazio di probabilità (Ω, \mathcal{F}, P)
- \triangleright misura di rischio di L:

 $\rho(L)$ = capitale da allocare a L per renderlo accettabile

la perdita post-allocazione è $L - \rho(L)$

- \triangleright formalmente, sia \mathcal{L} è un insieme di variabili aleatorie su (Ω, \mathcal{F}, P) contenente tutte le perdite di interesse
 - \star \mathcal{L} è uno spazio vettoriale contenente le costanti
 - * misura di rischio: funzionale

$$\rho: \mathcal{L} \to \mathbb{R}$$

274

Gestione del Rischio Finanziario

MISURE DI RISCHIO

- \triangleright esempi di \mathcal{L} (spazio vettoriale contenente le costanti)
 - * $\mathcal{L} = \{\text{variabili aleatorie su } (\Omega, \mathcal{F}, P)\}$ (Value-at-Risk)
 - * $\mathcal{L} = \{ \text{variabili aleatorie integrabili su } (\Omega, \mathcal{F}, P) \}$ (Expected shortfall)
 - * $\mathcal{L} = \{ \text{variabili aleatorie quadrato integrabili su } (\Omega, \mathcal{F}, P) \}$ (varianza)
 - * $\mathcal{L} = \{ \text{variabili aleatorie limitate su } (\Omega, \mathcal{F}, P) \}$
 - * $\mathcal{L} = \{ \text{variabili aleatorie p-integrabili su } (\Omega, \mathcal{F}, P) \} \ (p \geq 1)$
- > quantità di interesse: capitale di rischio

$$\rho(L) - E[L]$$

capitale allocato in eccesso alla perdita attesa (riserva)

MISURE DI RISCHIO BASATE SU SCENARI

- \triangleright idea: dati un numero finito di scenari $\omega_1, \ldots, \omega_n \in \Omega$ e dei pesi $w_1, \ldots, w_n \in [0, 1]$, non necessariamente di somma 1

$$\rho(L) = \rho(L; \{\omega_i\}, \{w_i\}) = \max\{w_1 L(\omega_1), \dots, w_n L(omega_n)\}\$$

- → approccio worst-case scenario
- - * ω_i = "tassi d'interesse \uparrow 6%, tassi di cambio \downarrow 20%, volatilità \uparrow 15%, . . . "
 - * ω_i = "shock nella mortalità +15% ..."

276

Gestione del Rischio Finanziario

Misure di rischio basate su scenari

 \triangleright generalizzazione (se esiste $\omega' \in \Omega$ tale che $L(\omega') = 0$, oppure se $w_i = 1$ per ogni i): date P_1, \ldots, P_n probabilità su (Ω, \mathcal{F}) ,

$$\rho(L) = \max\{E^{P_1}(L), \dots, E^{P_n}(L)\}$$

⇒ più in generale ancora,

$$\rho(L) = \sup\{E^P(L) : P \in \mathcal{P}\},\$$

dove \mathcal{P} è un insieme di probabilità (scenari) su (Ω, \mathcal{F})

FUNZIONE DI RIPARTIZIONE

- \triangleright concentriamoci su misure di rischio invarianti rispetto alla distribuzione: per ogni $L_1, L_2 \in \mathcal{L}$ tali che $F_{L_1} = F_{L_2}$, allora $\rho(L_1) = \rho(L_2)$; non è il caso delle misure basate su scenari!
- ightharpoonup X variabile aleatoria; funzione di ripartizione: $F_X : \mathbb{R} \to [0, 1],$ $F_X(x) = P(X \le x)$
- > proprietà caratterizzanti:
 - \star F_X non decrescente
 - \star F_X continua a destra
 - $\star \lim_{x \to -\infty} F_X(x) = 0, \qquad \lim_{x \to +\infty} F_X(x) = 1$
- > altre proprietà:
 - \star $P(a < X \le b) = F_X(b) F_X(a)$
 - $\star \lim_{y \uparrow x} F_X(y) = P(X < x)$
 - $\star F_X(x) \lim_{y \uparrow x} F_X(y) = P(X = x)$

278

Gestione del Rischio Finanziario

VALUE-AT-RISK

- ▷ ingredienti:
 - \star un certo intervallo temporale (t,T)
 - \star un certo livello di confidenza $0 < \alpha < 1$
- \triangleright idea:
 - \star per un dato capitale allocato x, siamo interessati all'evento

$$(L \le x) = (L - x \le 0)$$

cioè il capitale allocato assorbe le perdite se L = -P&L è, allora l'evento è $(P\&L + x \ge 0)$

 \star la probabilità di tale evento non deve essere inferiore a α

$$P(L \le x) \ge \alpha$$

* si sceglie poi il "minimo" capitale che garantisce tale condizione:

$$\operatorname{VaR}_{\alpha}(L) = \inf\{x \in \mathbb{R} : P(L \le x) \ge \alpha\}$$

QUANTILE

 \triangleright data una variabile aleatoria X con funzione di ripartizione F_X , il q-quantile sinistro (0 < q < 1) è dato dall'inversa generalizzata

$$F_X^{-1}(q) = F_X^{-1,-}(q) = \inf\{x \in \mathbb{R} : F_X(x) \ge q\}$$

il quantile $F_X^{-1,-}(q)$ lascia alla sua sinistra una probabilità almeno uguale a q

 \triangleright il q-quantile destro (0 < q < 1) è

$$F_X^{-1,+}(q) = \inf\{x \in \mathbb{R} : F_X(x) > q\}$$

$$F_X^{-1,-}(q) \le F_X^{-1,+}(q)$$

e $F_X^{-1,-}(q) < F_X^{-1,+}(q)$ se e solo se la funzione di ripartizione è costante al livello q; in questo caso, ogni numero di questo intervallo è chiamato q-quantile della distribuzione

280

Gestione del Rischio Finanziario

QUANTILE

- ightharpoonup proprietà del quantile sinistro $F_X^{-1}(q) \equiv F_X^{-1,-}(q)$, noto anche come inversa generalizzata della funzione di ripartizione F_X
 - $\star q \to F_X^{-1}(q)$ è non-decrescente, continua a sinistra
 - ★ limiti:

 $\lim_{q\downarrow 0} F_X^{-1}(q) = \sup\{x \in \mathbb{R} : F_X(x) = 0\} =: \text{estremo inferiore di } X,$

 $\lim_{q \uparrow 1} F_X^{-1}(q) = \inf\{x \in \mathbb{R} : F_X(x) = 1\} =: \text{estremo superiore di } X$

- * F_X^{-1} continua $\Leftrightarrow F_X$ crescente; F_X^{-1} crescente $\Leftrightarrow F_X$ continua; discontinuità di F_X corrispondono a tratti di costanza di F_X^{-1} , e viceversa
- * se F_X è crescente e continua, allora tale è F_X^{-1} e coincide con l'inversa di F_X , definita da

$$F_X(x) = q \Leftrightarrow x = F_X^{-1}(q)$$

QUANTILE

- \triangleright proprietà del quantile sinistro $F_X^{-1}(q) \equiv F_X^{-1,-}(q)$
 - * per ogni $x \in \mathbb{R}$ e 0 < q < 1,

$$F_X^{-1}(q) \le x \Leftrightarrow q \le F_X(x)$$

conseguenza 1: per ogni 0 < q < 1 riesce $F_X(F_X^{-1}(q)) \ge q$; vale l'uguaglianza se F_X è continua in $x = F_X^{-1}(q)$ conseguenza 2: per ogni $x \in \mathbb{R}$ riesce $F_X^{-1}(F_X(x)) \le x$; vale l'uguaglianza se F_X è crescente in x

- * Trasformata funzione di ripartizione: se F_X è continua, allora $F_X(X) \sim U(0,1)$
- * Trasformata funzione di ripartizione inversa: se $U \sim U(0,1)$, allora $F_X^{-1}(U) \sim F_X$
- \star se g è non decrescente, continua a sinistra, allora

$$F_{g(X)}^{-1}(q) = g(F_X^{-1}(q))$$

"il quantile di una trasformata è la trasformata del quantile"

▷ Proprietà simili sono verificate dal quantile destro

282

Gestione del Rischio Finanziario

VALUE-AT-RISK

 \triangleright il Value-at-Risk è quindi un quantile della distribuzione della perdita L / inversa generalizzata di L:

$$\operatorname{VaR}_{\alpha}(L) = \inf\{x \in \mathbb{R} : F_L(x) \ge \alpha\} = F_L^{-1}(\alpha)$$

 \triangleright usando la distribuzione del profit/loss P&L = -L, è

$$VaR_{\alpha}(L) = -\sup\{x \in \mathbb{R} : P(P\&L < x) \le 1 - \alpha\}$$

perdite superiori a VaR_{α} si possono verificare con probabilità inferiore a $1-\alpha$

 $\,\rhd\,$ nel caso in cui la distribuzione di Lsia invertibile, la definizione richiede

$$P(L \le \operatorname{VaR}_{\alpha}(L)) = \alpha$$

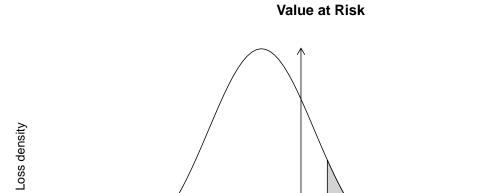
o

$$P(P\&L \le -VaR_{\alpha}(L)) = 1 - \alpha$$

cioè

$$VaR_{\alpha}(L) = F_L^{-1}(\alpha) = -F_{P\&L}^{-1}(1-\alpha)$$

VALUE-AT-RISK



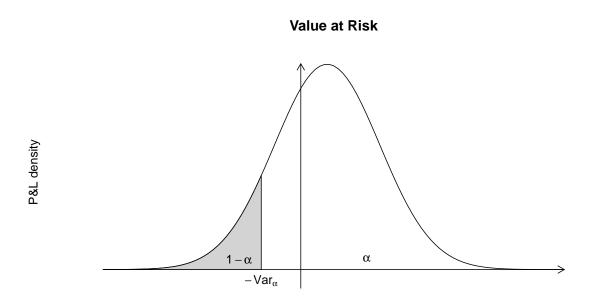
α

 VaR_{α}

284

Gestione del Rischio Finanziario

VALUE-AT-RISK



SOLVENCY II E VALUE-AT-RISK

- requisito di capitale in Solvency II = "the level of capital that enables the insurer to meet its obligations over a one-year time horizon with a high (99.5%) confidence level."
- - \star A(t) = valore (di mercato) in t delle attività: azioni, obbligazioni, beni immobili, . . .
 - \star B(t) = valore (di mercato) in t delle passività: riserve + margine per rischi non hedgeable
 - * V(t) = A(t) B(t) = Net Assets Value (NAV) = Own Funds
- > requisito di capitale in SII: partiamo da

$$C = \inf\{x \in \mathbb{R} : P(V(t+1) + x(1 + L(t, t+1)) \ge 0) \ge \alpha\}$$

con L(t, t+1) tasso semplice privo di rischio su (t, t+1), da cui capitale richiesto = $V(t) + C = VaR_{\alpha}(L)$,

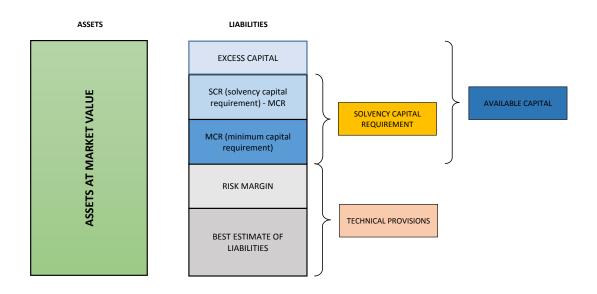
dove
$$L = V(t) - \frac{V(t+1)}{1 + L(t,t+1)}$$
;

ightharpoonup se C<0 (la compagnia è ben capitalizzata) $\leadsto -C=$ capitale in eccesso

286

Gestione del Rischio Finanziario

SOLVENCY II BALANCE SHEET



Value-at-Risk

- > elementi costituenti il Value-at-Risk:
 - \star orizzonte temporale T-t
 - \star livello di confidenza α
 - \star distribuzione di probabilità della perdita L o del profitto/perdita P&L
- > orizzonte temporale: scelto dall'utilizzatore in base al business
 - * scelte tipiche: 1 ora / 1 giorno / 10 giorni (2 settimane) / 1 anno
 - ★ portafogli frequentemente ribilanciati: 1 giorno
 - * trading desks: intraday VaR, 1 ora
 - ★ Solvency, Basilea: 1 anno
 - * tipicamente, VaR cresce con l'orizzonte temporale

288

Gestione del Rischio Finanziario

VALUE-AT-RISK

- ▷ livello di confidenza: dipende dall'appetito per il rischio o fissato dal autorità di sorveglianza
 - * usualmente $90\% < \alpha < 100\%$
 - * trading floors: $\alpha = 90\%$
 - \star calcolo del margine di solvibilità/capitale economico: 95%, 99.5% (evento "1 su 20", "1 su 200")
 - \star il Value-at-Risk cresce con α
- \triangleright la costruzione della distribuzione di probabilità di L o P&L è lasciata all'utilizzatore: approcci più comuni
 - * parametrico
 - * non parametrico (historical VaR, bootstrapping)
 - * semi-parametrico (teoria dei valori estremi)

APPROCCIO PARAMETRICO

 \triangleright approccio parametrico: scegliere una distribuzione da una famiglia parametrica (normale, lognormale, t-student, ...) $F_L(\cdot;\theta)$ con $\theta \in \Theta \subset \mathbb{R}^d$ parametro (da stimare) poi calcolare

$$\rho(L;\theta) = \rho(F_L(\cdot,\theta))$$

analiticamente o numericamente

> nel caso del Value-at-Risk, si deve calcolare

$$\operatorname{VaR}_{\alpha}(L) = F_L^{-1}(\alpha; \theta)$$
 o $F_L(\operatorname{VaR}_{\alpha}(L); \theta) = \alpha$ se invertibile

quindi si ottiene $VaR_{\alpha}(L;\theta)$

- > problemi del metodo parametrico:
 - * rischio di modello
 - ⋆ rischio di parametro

290

Gestione del Rischio Finanziario

VALUE-AT-RISK

 \triangleright VaR con distribuzione esponenziale $L \sim \exp(\lambda)$

$$VaR_{\alpha}(L) = -\frac{1}{\lambda}\log(1-\alpha)$$

- ightharpoonup VaR con distribuzione normale: $L \sim N(\mu, \sigma^2)$
 - \star indicando con Φ e Φ^{-1} la funzione di ripartizione e la sua inversa (quantile) della normale standard

$$VaR_{\alpha}(L) = \mu + \sigma\Phi^{-1}(\alpha)$$

- * Value-at-Risk $\uparrow \mu, \uparrow \sigma \text{ (se } \alpha > 50\%)$
- * $\rho(L) E(L) =$ capitale di rischio nel caso di VaR con distribuzione normale $VaR_{\alpha}(L) - E(L) = \sigma\Phi^{-1}(\alpha) \leadsto "VaR = SD"$ nel caso normale

Value-at-Risk

 \triangleright Sia F una funzione di ripartizione; la famiglia scala-locazione associata a F è la famiglia di funzioni di ripartizione

$$F_{\mu,\sigma}(x) = F\left(\frac{x-\mu}{\sigma}\right), \ \mu \in \mathbb{R}, \ \sigma > 0$$

- * se X ha funzione di ripartizione F, allora Y ha funzione di ripartizione $F_{\mu,\sigma}$ se e solo se Y e $\mu + \sigma X$ hanno la stessa distribuzione
- \star si dice che X e Y sono dello stesso tipo o che differiscono per un cambio di scala e locazione
- \triangleright se $F_L = F_{\mu,\sigma}$ allora $VaR_{\alpha}(L) = \mu + \sigma F^{-1}(\alpha)$

292

Gestione del Rischio Finanziario

VALUE-AT-RISK

- \triangleright alternativa alla distribuzione normale: t di Student, con code più pesanti rispetto alla normale (cmq simmetrica)
- \triangleright VaR con distribuzione t di Student: $L \sim \mu + \sigma t_{\nu}$, dove t_{ν} distribuzione t di Student con $\nu > 1$ gradi di libertà
 - \star se ν intero, allora

$$t_{\nu} \sim \frac{Z}{\sqrt{\frac{Z_1^2 + \dots + Z_{\nu}^2}{\nu}}} \sim \frac{Z}{\sqrt{\frac{\chi_{\nu}^2}{\nu}}}$$

dove Z, Z_1, \ldots, Z_{ν} sono normali standard indipendenti

 \star in generale, la densità di t_{ν} è

$$f_{t_{\nu}}(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}, \ x \in \mathbb{R}$$

- * più piccolo è ν , più pesanti sono le code; quando ν è grande, $t_{\nu} \approx N(0,1)$
- * momenti: $E[t_{\nu}] = 0$, $var[t_{\nu}] = \frac{\nu}{\nu 2}$ per $\nu > 2 \Rightarrow E[L] = \mu$, $var[L] = \frac{\sigma^2 \nu}{\nu 2}$

VALUE-AT-RISK

- \triangleright VaR con distribuzione t di Student: $L \sim \mu + \sigma t_{\nu}$
 - ★ con calcolo simile al caso normale,

$$\operatorname{VaR}_{\alpha}(L) = \mu + \sigma F_{t_{\nu}}^{-1}(\alpha)$$

 \triangleright Esempio: confronto tra $VaR_{\alpha}(L) - E[L]$ con distribuzione normale e t di Student; μ e σ tali che E[L] = 100, SD[L] = 10

α	90.0%	95.0%	99.0%	99.5%	99.9%
Normale	12.82	16.45	23.26	25.76	30.90
t Student - ν					
10.0	12.27	16.21	24.72	28.35	37.06
4.0	10.84	15.07	26.49	32.56	50.72
2.5	7.74	11.44	23.94	32.04	61.81
2.1	4.03	6.17	14.25	20.00	43.36

294

Gestione del Rischio Finanziario

VALUE-AT-RISK

 \triangleright VaR per una distribuzione lognormale, $L = \exp(N(\mu, \sigma^2))$

$$\operatorname{VaR}_{\alpha}(L) = \exp(\mu + \sigma \Phi^{-1}(\alpha))$$

 \triangleright VaR per una distribuzione Pareto, $L \sim \text{Pareto}(\beta, \lambda)$

$$F_L(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\beta}, x \ge 0,$$

con $\lambda > 0$, $\beta > 0$; riesce

$$\operatorname{VaR}_{\alpha}(L) = \lambda \left[(1 - \alpha)^{-1/\beta} - 1 \right]$$

Value-at-Risk: Limiti

- ightharpoonup il Value-at-Risk non è subadittivo: esistono perdite L_1 , L_2 tali che $\operatorname{VaR}_{\alpha}(L_1 + L_2) > \operatorname{VaR}_{\alpha}(L_1) + \operatorname{VaR}_{\alpha}(L_2) \rightsquigarrow$ non è coerente
- \triangleright similmente, il Value-at-Risk non è convesso: esistono perdite L_1, L_2 e $0 < \lambda < 1$ tali che $\operatorname{VaR}_{\alpha}(\lambda L_1 + (1 \lambda)L_2) > \lambda \operatorname{VaR}_{\alpha}(L_1) + \operatorname{VaR}_{\alpha}(L_2)$
- \triangleright il Value-at-Risk non è robusto: variazioni piccole in F_L possono risultare in variazioni importanti del Value-at-Risk
- ▷ di conseguenza diverse misure di rischio alternative al Value-at-Risk sono state proposte ⇒ Expected-Shortfall viene usata spesso in pratica come alternativa al Value-at-Risk
- \triangleright le limitazioni elencate sopra vengono attenuate se ci si restringe a opportuni insiemi di perdite \mathcal{L}

296

Gestione del Rischio Finanziario

Value-at-Risk e subadditività

 \triangleright il Value-at-Risk non soddisfa la subadditività (e convessità) \Rightarrow esistono L_1, L_2 tali che

$$\operatorname{VaR}_{\alpha}(L_1 + L_2) > \operatorname{VaR}_{\alpha}(L_1) + \operatorname{VaR}_{\alpha}(L_2)$$

aggregare due rischi richiede più capitale che detenere i due rischi separatamente

- ▷ ESEMPIO: due bond soggetti a rischio di default, con uguali caratteristiche
 - ★ prezzo 90
 - ★ valore facciale 100
 - ★ perdita totale in caso di default
 - ★ probabilità di default 4%
 - * il default del primo e secondo bond sono indipendenti
 - * riesce $VaR_{95\%}(L_1) = VaR_{95\%}(L_2) = -10$ mentre $VaR_{95\%}(L_1 + L_2) = 80$
- > problema: la distribuzione della perdita è fortemente asimmetrica
- ESEMPIO: mostrare che per ogni $0 < \lambda < 1$, $VaR_{95\%}(\lambda L_1 + (1-\lambda)L_2) > \lambda VaR_{95\%}(L_1) + (1-\lambda) VaR_{95\%}(L_2)$

Value-at-Risk e "blindness to the tail"

- - * il VaR_{\alpha} stabilisce solo il livello della perdita che non viene superato con probabilità (almeno) pari ad $\alpha \Rightarrow$ non dà informazioni sul livello delle perdite se queste superano VaR_{\alpha}(L)
 - * due perdite L_1 , L_2 possono avere lo stesso Value-at-Risk, $VaR_{\alpha}(L_1) = VaR_{\alpha}(L_2)$ mentre le perdite in eccesso (\equiv conditional tail expectation) possono essere diverse

$$E[L_1|L_1 \ge \operatorname{VaR}_{\alpha}(L_1)] \ne E[L_2|L_2 \ge \operatorname{VaR}_{\alpha}(L_2)]$$

★ ESEMPIO:

$$L_1 = \begin{cases} -100 & \text{con prob. } 50\% \\ 50 & 46\% \\ 100 & 4\% \end{cases}, \qquad L_2 = \begin{cases} -100 & \text{con prob. } 50\% \\ 50 & 46\% \\ 1000 & 4\% \end{cases}$$

$$VaR_{95\%}(L_1) = VaR_{95\%}(L_2) = 50,$$

$$E[L_1|L_1 \ge \text{VaR}_{95\%}(L_1)] = 54, \qquad E[L_2|L_2 \ge \text{VaR}_{95\%}(L_2)] = 126$$

298

Gestione del Rischio Finanziario

Value-at-Risk e "blindness to the tail"

 \triangleright ESEMPIO: perdita $L \sim \exp(1/100)$. Confrontare $VaR_{99\%}(L)$ con $VaR_{99\%}(M)$, dove

$$M = \min\{L, 500\}$$

M = ritenzione in un trattato riassicurativo stop-loss

* si trova

$$VaR_{99\%}(M) = VaR_{99\%}(L) = -100\log(0.01) = 460.5$$

- ★ VaR invariato rispetto allo spostamento della probabilità nella coda della distribuzione
- \star stesso VaR anche se $P[L \ge M] = 1$
- ⋆ osserviamo che

$$VaR_{99.5\%}(L) = -100 \log(0.005) = 529.8$$

mentre

$$VaR_{99.5\%}(M) = 500$$

Value-at-Risk e dominanza stocastica

- > nell'esempio precedente una delle due perdite domina (è sempre più grande) l'altra
- \triangleright una condizione più debole è la dominanza stocastica: L_1 domina stocasticamente L_2 se

$$F_{L_1}(x) \leq F_{L_2}(x)$$
 per ogni $x \in \mathbb{R}$

cioè

$$P(L_1 > x) \ge P(L_2 > x)$$
 per ogni $x \in \mathbb{R}$

quindi L_1 comporta perdite superiori ad ogni livello fissato con probabilità più elevata

$$VaR_{\alpha}(L_1) \geq VaR_{\alpha}(L_2)$$

per ogni α : L_1 è più rischiosa di $L_2 \leadsto$ richiede non meno capitale

300

Gestione del Rischio Finanziario

ALTRE MISURE DI RISCHIO

- > altri esempi di misure di rischio
 - * varianza: $\rho(L) = E[L] + \lambda var[L], \lambda > 0$
 - * deviazione standard: $\rho(L) = E[L] + \lambda \sqrt{var[L]}, \ \lambda > 0 \rightsquigarrow$ simmetriche
 - * massimo: $\rho(L)$ = estremo superiore di $X = \inf\{x \in \mathbb{R} | F_L(x) = 1\} = \operatorname{VaR}_1(L) \longrightarrow \text{elimina la rovina, ma troppo oneroso}$
 - * misure di scenario
 - * $\rho(L) = E[(L-c)_+]$ con c livello di perdita dato e $(x)_+ = \max\{x, 0\}$; ad esempio,

$$\rho(L) = E[(L - \operatorname{VaR}_{\alpha}(L))_{+}]$$

si osservi che

$$\rho(L) = E[(L - \operatorname{VaR}_{\alpha}(L)); L \ge \operatorname{VaR}_{\alpha}(L)]$$
$$= E[(L - \operatorname{VaR}_{\alpha}(L)); L > \operatorname{VaR}_{\alpha}(L)]$$

(dove $E[X; A] = E[X1_A]$ per ogni v.a. integrabile X e evento A) tale misura è collegata all'expected shortfall

EXPECTED SHORTFALL

ightharpoonup Expected shortfall: dato L con $E[|L|]<+\infty$ ed un livello di confidenza $0<\alpha<1$

$$ES_{\alpha}(L) = \frac{1}{1-\alpha} \int_{\alpha}^{1} VaR_{\beta}(L) d\beta$$

- * a volte chiamato Tail-Value-at-Risk, $TVaR_{\alpha}(L)$
- \star media dei capitali che garantiscono una probabilità almeno pari a α di assorbire le perdite
- \star per definizione, ES riflette il peso della coda della distribuzione oltre VaR
- \triangleright terminologia non uniforme: a volte si chiama expected shortfall la quantità $E[(L \text{VaR}_{\alpha}(L))_{+}]$

302

Gestione del Rischio Finanziario

EXPECTED SHORTFALL

- ⊳ proprietà dell'Expected shortfall
 - \star è sub-additiva (e coerente)
 - \star $\mathrm{ES}_\alpha \geq \mathrm{VaR}_\alpha,$ ES_α funzione nondecrescente e continua di α
 - ★ limiti:

$$\lim_{\alpha \downarrow 0} \mathrm{ES}_{\alpha} = E[L]$$

 $\lim_{\alpha \uparrow 1} \mathrm{ES}_{\alpha} = \text{estremo superiore di } L = \inf \{ x \in \mathbb{R} | F_L(x) = 1 \}$

- * $\mathrm{ES}_{\alpha}(g(L)) = g(\mathrm{ES}_{\alpha}(L))$ se g lineare, non decrescente
- * $\mathrm{ES}_{\alpha}(L_1) \geq \mathrm{ES}_{\alpha}(L_2)$ se L_1 domina stocasticamente L_2
- > tuttavia, VaR esiste sempre, ES richiede speranza finita

EXPECTED SHORTFALL

 \triangleright l'Expected shortfall può essere rappresentato al modo seguente (facile da ottenere nel caso di F_L invertibile):

$$ES_{\alpha}(L) = VaR_{\alpha}(L) + \frac{E[(L - VaR_{\alpha}(L))_{+}]}{1 - \alpha}$$

da questa espressione si deduce che

$$E[L|L \ge \operatorname{VaR}_{\alpha}(L)] \le \operatorname{ES}_{\alpha}(L) \le E[L|L > \operatorname{VaR}_{\alpha}(L)]$$

dove $E[X|A] = E[X1_A]/P(A)$; la quantità a destra è chiamata conditional tail expectation

 \triangleright se la distribuzione di L è continua,

$$\mathrm{ES}_{\alpha}(L) = E[L|L \ge \mathrm{VaR}_{\alpha}(L)] = E[L|L > \mathrm{VaR}_{\alpha}(L)]$$

 \Rightarrow ES = perdite attese sopra il VaR

304

Gestione del Rischio Finanziario

EXPECTED SHORTFALL

 \triangleright se si adotta l'expected shortfall come capitale, $C = \mathrm{ES}_{\alpha}(L)$, allora

$$E[L - C|L \ge VaR_{\alpha}(L)] = 0$$

- \longrightarrow perdite attese nulle sopra il VaR
- \triangleright ES con distribuzione esponenziale, $L \sim \exp(\lambda)$

$$ES_{\alpha}(L) = \frac{1}{\lambda}(1 - \log(1 - \alpha))$$

 \rhd per una famiglia scala-locazione, $L\sim \mu+\sigma\widetilde{L}$ ($\widetilde{L}\sim F$ e quindi $L\sim F_{\mu,\sigma}),$ allora

$$\mathrm{ES}_{\alpha}(L) = \mu + \sigma \, \mathrm{ES}_{\alpha}(\widetilde{L})$$

EXPECTED SHORTFALL

- \triangleright approccio parametrico: $L \sim N(\mu, \sigma^2)$
 - $\star \operatorname{VaR}_{\alpha}(L) = \mu + \sigma \Phi^{-1}(\alpha)$
 - * caso normale standard: $\mu = 0, \, \sigma^2 = 1, \, \text{VaR}_{\alpha}(L) = \Phi^{-1}(\alpha)$

$$\mathrm{ES}_{\alpha}(L) = E[L|L \ge \mathrm{VaR}_{\alpha}(L)] = \frac{1}{1-\alpha} \int_{\Phi^{-1}(\alpha)}^{+\infty} z\phi(z) \mathrm{d}z = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha},$$

dove $\phi(z) = (2\pi)^{-1/2} \mathrm{e}^{-z^2/2}$ è la densità della normale standard \star nel caso generale, $L \sim N(\mu, \sigma^2)$

$$\mathrm{ES}_{\alpha}(L) = E[L|L \ge \mathrm{VaR}_{\alpha}(L)] = \mu + \sigma \frac{\phi(\Phi^{-1}(\alpha))}{1 - \alpha}$$

306

Gestione del Rischio Finanziario

EXPECTED SHORTFALL

- \triangleright approccio parametrico: se $L \sim \mu + \sigma t_{\nu}$ dove t_{ν} è t di student con $\nu > 2$ gradi di libertà, densità $f_{t_{\nu}}$ e funzione di ripartizione $F_{t_{\nu}}$
 - * un calcolo diretto mostra che

$$ES_{\alpha}(L) = \mu + \sigma \frac{f_{t_{\nu}}(F_{t_{\nu}}^{-1}(\alpha))}{1 - \alpha} \frac{\nu + F_{t_{\nu}}^{-1}(\alpha)^{2}}{\nu - 1}$$

 \triangleright ESEMPIO: confronto tra $\mathrm{ES}_{\alpha}(L) - E[L]$ con distribuzione normale e t di Student; μ e σ tali che E[L] = 100, SD[L] = 10

α	90.0%	95.0%	99.0%	99.5%	99.9%
Normale	17.55	20.63	26.65	28.92	33.67
t Student - ν					
10.0	17.79	21.54	30.08	33.84	43.05
4.0	17.67	22.65	36.92	44.72	68.49
2.5	14.94	20.56	40.66	53.97	103.32
2.1	8.71	12.49	27.53	38.42	82.88

Value-at-Risk e Expected Shortfall

- \triangleright la differenza tra distribuzione normale (coda leggera) e t di student (coda pesante) può essere apprezzata al modo seguente
- \triangleright se $L \sim N(\mu, \sigma^2)$

$$\lim_{\alpha \to 1} \frac{\mathrm{ES}_{\alpha}(L)}{\mathrm{VaR}_{\alpha}(L)} = 1$$

- $ightharpoonup ES_{\alpha}$ e VaR_{\alpha} coincidono quando il livello di confidenza aumenta (usare de L'Hopital, $\phi'(z) = -z\phi(z)$)
- \triangleright se $L \sim \mu + \sigma t_{\nu}$, con $\nu > 1$

$$\lim_{\alpha \to 1} \frac{\mathrm{ES}_{\alpha}(L)}{\mathrm{VaR}_{\alpha}(L)} = \frac{\nu}{\nu - 1}$$

 \longrightarrow la differenza tra ES_α e VaR_α riflette la pesantezza della coda

308

Gestione del Rischio Finanziario

EXPECTED SHORTFALL

- \triangleright verificare che $\mathrm{ES}_{95\%}(L_1 + L_2) < \mathrm{ES}_{95\%}(L_1) + \mathrm{ES}_{95\%}(L_2)$ per l'esempio di p. 297
- > l'expected shortfall riflette l'intera coda della distribuzione
 - ★ calcolare $\mathrm{ES}_{95\%}(L_1)$ e $\mathrm{ES}_{95\%}(L_2)$ per l'esempio di p. 298
 - ★ calcolare $\mathrm{ES}_{99\%}(L)$ e $\mathrm{ES}_{99\%}(M)$ per l'esempio di p. 299
- ▷ problema dell'expected shortfall: a differenza del VaR, richiede più informazione sulla forma della coda → difficile da ottenere → maggiore rischio di modello