Basic elements of protein structure

Why?

Protein structures have a large number of variables, due to the number of atoms present in the protein.

For each atom:

- 3 variables for the position (x, y, z)
- 1 or 6 varibles for the thermal factor (isotropic or anisotropic)

For medium/low resolution structures, data could be insufficient to refine all parameters: a good refinement requires 8/10 data for each parameter.
Geometrical restraints are added to increase number of data.

In addition, geometrical considerations help in validation.

Proteins

Large and diverse group of molecules, different for structure and function, divided in $60^{\circ} 000$ protein families (and growing!)

Primary structure: residue sequence

MET THR GLY GLY MET LYS PRO PRO ALA ARG LYS PRO ARG ILE LEU ASN SER ASP GLY SER SER ASN ILE THR ARG LEU GLY LEU GLU LYS ARG GLY TRP LEU ASP ASP HIS TYR HIS ASP LEU LEU THR VAL SER TRP PRO VAL PHE ILE THR LEU ILE THR GLY LEU
[The structure depends on the primary sequence, but not only! The folding is determined also by the action of chaperones, interactors, solution composition, protein partners...]

Secondary structure: local folding of the polypeptide (H-bonds!)

Tertiary structure: overall folding of the protein

Quaternary structure: biologically functional complex formed by more than one polypeptide chain

Biosynthesis of proteins

Geometry of the polypeptide chain

20 amino acids, linked by peptide bonds

Residue
number
Geometry of the polypeptide chain: - Bond distances (defined by 2 atoms)

- Bond angles (defined by 3 atoms)

- Torsion angles (defined by 4 atoms)
- Planarity of the peptide bond
- Chirality of $C \alpha$ (and $C \beta$ in Ile and Thr)

Geometry of the polypeptide chain

Torsion angles

(1) Torsion angle of the peptide bond: close to 180° (trans) or 0° (cis conformation, very rare! except for proline residues)
ϕ, ψ Torsion angles of the backbone: their variation shapes the conformation of the peptide chain
$\chi_{1}, \chi_{2}, \chi_{3} \ldots$ Torsion angles of the side chain: vary according to side chains

Ramachandran Plot

Analysis of the energetically favored conformations of the protein backbone, taking into account torsion angles ϕ and ψ.

Chirality

In natural proteins, $\mathrm{C} \alpha$ s of all residues have the S configuration except for Cys (R configuration) and Gly (non chiral).
Glutamine

In Threonine and Isoleucine, $C \beta$ is also chiral, with R configuration.

Cysteine

Isoleucine

Side chains

Residue 1
number
A. Amino Acids with Electrically Charged Side Chains

D. Amino Acids with Hydrophobic Side Chain

Methionine (Met) (M)

Tyrosine
Tyrosine

Tryptophan
(Trp) W

B. Amino Acids with Polar Uncharged Side Chains

C. Special Coses

Side chains

A. Amino Acids with Electrically Charged Side Chains

Negative

Charged residues are often present on the protein surface. pK_{a} of these residues depends on their surroundings in the protein folding.
Involved in salt bridges.
Both positively and negatively charged residues are often crucial for enzymatic activity and, therefore, located in active sites.

Side chains

Often involved in enzyimatic reaction mechanisms.

Act as hydrogen bond donors and acceptors.

Often sites of common posttranslational modifications. (Tyrosine residue may be included in this list, despite its large hydrophobic surface.)
B. Amino Acids with Polar Uncharged Side Choins

Side chains

Located in the core of the protein, their exclusion from water contact is an important driving force for protein folding. Structure predictions are also based on patterns formed by hydrophobic residues.

Side chains

Cysteine residues may form disulfide bridges - and are usually a serious issue for correct folding of recombinantly expressed proteins. Cysteine residues are useful for phasing as they can bind metal ions and the sulfur anomalous signal may be detected.

Glycine residues are often located in hinge regions of protein, due to their very small size. Glycine is the only non-chiral residue.

Proline is the only cyclic aminoacid. In protein folding it is often involved in breaking secondary structure elements (particularly α-helices). Cis and trans conformations have a similar energy.

Residue 1
number

Post-translational modifications

Frequent in eukaryotic systems, include:
Phosphorylations of Ser, Thr, Tyr residues (fundamental for activation pathways of many enzymes by kinases)

Hydroxylation (e.g. Hydroxy-Pro are fundamental for collagen)

N -glycosylations on Asn and Gln, Oglycosylation on Thr and Ser

Methylation or acetylation of Lys and Arg in histones play a crucial role in gene expression

Side chain conformations

According to the different side chain, a number of different conformations (torsion angles $\chi_{1}, \chi_{2}, \chi_{3}$, etc.) are energetically favored.

Possible conformers of Gln

Side chain conformations

According to the different side chain, a number of different conformations (torsion angles $\chi_{1}, \chi_{2}, \chi_{3}$, etc.) are energetically favored.

Possible conformers of Lys

Side chain interactions

Fundamental for protein folding.

Covalent interactions: disulfide bonds involving Cys residues, other covalent bonds involving cofactors, inhibitors, ligands...

Hydrophilic interactions: Hydrogen bonds (average donor-acceptor distance 2.8 Å) involving polar groups or water, salt bridges involving charged groups or ions, dipole-dipole interactions involving side chains or solvent molecules.

Hydrophobic interactions: interactions based on London dispersion forces, or π - π stacking.

Secondary structure

Local arrangements of the peptide chain defined according to the geometry of hydrogen bonds involving backbone polar groups ($\mathrm{C}=\mathrm{O}$ as acceptor and N H as donor).

Helices

Sheets

Turns

α-Helix

Clockwise helix - turns clockwise moving away from observer.

Helix 3_{10}

Clockwise helix, tightened with respect to α-helix

Hydrogen bonding pattern of the backbone: $\mathrm{C}=\mathrm{O}$ of residue $n \cdots \cdots \mathrm{H}-\mathrm{N}$ of residue $n+3$

Each hydrogen bond
forms a 10 -atom closed circle (including H atom)
4% of all secondary structure elements

3 residues/turn, H -bonds tilted with respect to helix axis.

Usually short helices

Antiparallel

$C \alpha^{n}-C \alpha^{n+2}$ distance: $6 \AA$
Side chains are located above and below the plane of the hydrogen bonds.

View from side:

Turns e loops

Connect other secondary structure elements. Turns can be defined based on the geometry of their H -bonds, loops are more flexible and less regular.

In biocrystallography, loops are usually the most difficult structural elements to determine, as their electron density is often poorly defined.

Ramachandran plot and secondary structure

G-protein coupled receptor (4 j 4 q):
mostly α-helices

Outer membrane protein (2omp):
mostly β-sheets

Ramachandran plot and secondary structure

Tertiary structure: motifs and domains

Motif = combination of secondary structure elements, conserved in different structures

Zinc finger (DNA binding motif)

Domain $=$ protein sequence that folds independently and usually has a specific function

1lbi
Four- helix bundle

Leucine zipper domain

Tertiary structure databases

Primary sequence similarity is not the only criteria to compare proteins：3D structures may be conserved even when the sequence is not．

Common domain folding of diverse proteins suggests a similar function．To compare 3D structures of domains，structure classification databases：
－SCOP（scop．berkeley．edu）：hierarchical classification of protein domains， based on the classification of all－α ，all $-\beta, \alpha / \beta$ and $\alpha+\beta$ domains

Classes in SCOPe 2．07：

```
1. Funse: all alpha proteins [46456] (289 folds)
2. %% b: All beta proteins [48724] (178 folds)
3. 詃 c: Alpha and beta proteins (a/b) [51349] (148 folds)
4. che d: Alpha and beta proteins (a+b) [53931] (388 folds)
5. 鯧 e:Multi-domain proteins (alpha and beta) [56572] (71 folds)
6. 每me f: Membrane and cell surface proteins and peptides [56835] (60 folds)
7. g: Small proteins [56992] (98 folds)
8. mmen h: Coiled coil proteins [57942] (7 folds)
9. a.ce i: Low resolution protein structures [58117] (25 folds)
10. unv j: Peptides [58231] (148 folds)
11. fift k: Designed proteins [58788] (44 folds)
12. I: Artifacts [310555] (1 fold)
```


Tertiary structure databases

Primary sequence similarity is not the only criteria to compare proteins: 3D structures may be conserved even when the sequence is not.

Common domain folding of diverse proteins suggests a similar function. To compare 3D structures of domains, structure classification databases:

- SCOP (scop.berkeley.edu): hierarchical classification of protein domains, based on the classification of all- α, all $-\beta, \alpha / \beta$ and $\alpha+\beta$ domains
- CATH (www.cathdb.info/): classification according to structure and phylogenetics

Query: ATP
binding domain

Tertiary structure databases

Primary sequence similarity is not the only criteria to compare proteins: 3D structures may be conserved even when the sequence is not.

Common domain folding of diverse proteins suggests a similar function. To compare 3D structures of domains, structure classification databases:

- SCOP (scop.berkeley.edu): hierarchical classification of protein domains, based on the classification of all- α, all $-\beta, \alpha / \beta$ and $\alpha+\beta$ domains
- CATH (www.cathdb.info/): classification according to structure and phylogenetics
- Dali (ekhidna2.biocenter.helsinki.fi/dali): online software for tertiary structure comparison

PDB search

[^0]
STEP 1 - Enter your query protein structure

Structures may be specified by concatenating the PDB identifier (4 characters) and a chain identifier (1 character) or, alternatively, you may upload a PDB file.

Multidomain proteins

The tertiary structure of a multidomain protein includes different domains, that can be either subsequent in the protein sequence, or interdigitated. Each domain had a specific function connected to the protein activity.

Neurotoxin from Clostridium botulinum (3bta)

Multidomain proteins

The tertiary structure of a multidomain protein includes different domains, that can be either subsequent in the protein sequence, or interdigitated. Each domain had a specific function connected to the protein activity.

Quaternary structure

In some proteins, the functional unit is not formed by a single polypeptide chain, but by more subunits, held together by non-covalent interactions between their facing surfaces.
Multimeric proteins may be formed by repetitions of the same polypeptidic chain...

Homodimeric soluble protein

... or by different polypeptidic chains

Cofactors

Some proteins require the presence of cofactors, crucial for protein function. Cofactors may be covalently bound or interacting through non-covalent interactions.
Some cofactors are inorganic metal ion complexes...

Cofactor: dinuclear manganese (II) complex

Liver Arginase (1rla)
... other are organic molecules

Membrane proteins

Hydrophilic head
30% of the proteome, with important for many physiological functions and for pharmaceutical chemistry as drug targets

External surfaces of the protein exposed to highly hydrophobic environment, crucial influence on protein folding

Only 2 tertiary structures for the transmembrane domains
β-barrel

and $\quad \alpha$-helix bundle

[^0]: Compare query structure against Protein Data Bank.

