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The generic viewpoint
assumption in a framework
for visual perception
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A visuaL system makes assumptions in order to interpret visual
data. The assumption of ‘generic view’'™ states that the observer
is not in a special position relative to the scene. Researchers com-
monly use a binary decision of generic or accidental view to dis-
qualify scene interpretations that assume accidental viewpoints® '°,
Here we show how to use the generic view assumption, and others
like it, to quantify the likelihood of a view, adding a new term
to the probability of a given image interpretation. The resulting
framework better models the visual world and reduces the reliance
on other prior assumptions. It may lead to computer vision algo-
rithms of greater power and accuracy, or to better models of human
vision. We show applications to the problems of inferring shape,
surface reflectance properties, and motion from images.
Consider the image of Fig. la. Perceptually, there are two
possible interpretations: a bump, lit from the left, or a dimple,
lit from the right. Yet many shapes and lighting directions (Fig.
1b) could explain the image. How should a visual system choose?
We note that the ridges in shapes 2-4 of Fig. 15 must line up
with the assumed light direction. We can study the ‘accidental-
ness’ of this alignment by exploring how the image of the illumin-
ated shape changes as we perturb the azimuthal light direction.
Figure 1¢ shows that shape 3 presents images similar to that in

542

shapes for different assumed light directions

c shape 3 image

assumed
light direction

d  shape5s

assumed

light direction = - :

FIG. 1 a, Perceptually, this image has two possible interpretations. It
could be a bump, lit from the left, or a dimple, lit from the right.
b, Mathematically, there are many possibilities. The five shown here
were found by a linear shape from shading algorithm, assuming shallow
incident light from different azimuthal directions and the boundary con-
ditions described in ref. 8. Shapes 2—4 require coincidental alignment
with the assumed light direction. For shape 3 in ¢, the rendered image
changes quickly with assumed light angle; only a small range of light
angles yields an image like that shown in a. The generic view term of
the scene probability equation, equation (7), penalizes an interpretation
that has high image derivatives with respect to the generic variable, in
this case light direction. For shape 5 in d, a much larger range of light
angles gives the observed image. If all light directions are equally likely,
shape 5 should be the preferred explanation. The probabilities of the
candidate shapes, found using equation (7), are shown in e. The results
favour shapes 1 and 5, in agreement with the perceptual appearance
of a.

Fig. la only for a small range of assumed light directions. The
bump in Fig. 14 (shape 5) presents images like that in Fig. la
over a broader range of light directions. If all azimuthal light
directions are equally likely, shape 5 has more chances to create
the image in Fig. la than does shape 3.

To quantify such probabilities, we use a bayesian framework
(as in ref. 11, for example). This combines the data (Fig. la)
with known or estimated prior probabilities to find the posterior
probability of each candidate shape.

We treat the azimuthal light direction as a random variable,
an example of what we call a generic variable, ¥, with prior
probability density P:(¥). (We use subscripts to distinguish
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FIG. 2 a and b, Two images with intensity vari-
ations along only one dimension. Such images
can be explained by many different combina-
tions of surface reflectance function and shape.
We use a two-parameter family of reflectance
functions (a subset of the model of ref. 21) and
a fixed light position to generate a family of
possible shape and reflectance function expla-
nations for each of a and b. ¢, Visual key to the
parameters provided by showing the appear-
ance of the surface reflectance functions,
rendered on the surface of a sphere. For every
specularity and roughness, shapes exist that
produce image a or b. (For each shape we
assumed boundary conditions of constant
height at the vertical picture edge.) One wants
to choose between these competing explana-
tions without resorting to an ad hoc bias toward
some shapes or reflectance functions. Each of
the explanations will present the images shown
over differing ranges of the generic variables,
taken here to be vertical light angle and object
orientation. The scene probability equation cal-
culates their relative probability densities®. 7
Plots d and e show the probability that the
images a and b, respectively, were created by
each surface reflectance function in the
parameter space and corresponding shape.
The probabilities are the highest for the
reflectance functions that look like the material
of the corresponding original image (compare 0.2
with ¢). Ol

relative
probability

between probability densities, P.) Generic variables can include
viewpoint, lighting direction, or object pose. These are variables
that we do not need to estimate precisely. a

We assume a prior probability density, Pg(f), for the scene
parameter 5 we want to estimate. For this example, shapes 1-5
are_assigned equal probabilities. The posterior distribution,
P(B, X| y). gives the probability that scene parameter § (shape)
and generic variable X (light direction) created the visual data y
(Fig. 1a). From P(f3, X| ¥), we will find the posterior probability
P15,

We use Bayes’ theorem to evaluate P(f, X| 7):
_P(J| B, )Ps(B)P<(%)
Py(¥)

where we have assumed that X and f§ are independent. The
denominator is constant for all models § to be compared.

To find P(f, ¥|¥) independently of the value of the generic
variable X, we integrate the joint probability of equation (1) over
the possible ¥ values:

P(B, %|7) (1)

Ps(B) 5

P,(7) (7| B, X)P:(x) dx

P(B|y)= (2)

We will assume that the prior probability P(x) of the generic
variables is a constant. The generalization for other priors is
straightforward. P(y|f, ¥) is large where the scene f and the
value ¥ give an image similar to the observation j. The integral
of equation (2) integrates the area of x for which f yields the
observation. In our example, it effectively counts the frames in
Fig. lc or d, where the rendered image is similar to the input
data.
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We assume zero mean gaussian observation noise of variance
o’, which plays two roles. It measures the similarity between
images as the probability that noise accounts for the differences.
It can also model physical noise. For this noise model,

—IF—f(z.0)12/202

- 1
P(}"Iﬁ,)?)=—“7j;, 3)

(VfZJr
where f(%, B) is a known ‘rendering function’ which gives the
image created by the generic and scene parameters ¥ and f3, and
N is the dimensionality of the visual data y.

For the low noise limit, we can find an analytic approximation
to the integral of equation (2). We expand f(x, ) in equation
(3) in a second-order Taylor series,

JG, By=fiko, B)+ X fil%—Soli+3 ¥ [R=%ol: f[X =%, (4)

where [ - ]; indicates the ith component of the vector in brackets,
and

Y &
OX; X=1%n
and
2 _ O, B)
fi._ 0x; ax;‘ =3 (6)

We take X, to be the value of ¥ which can best account for the
observed image data; that is, for which |p—A%, f)|* is
minimized.

Using equations (3)-(6) to second order in X — X, in the inte-
gral of equation (2), we find the posterior probability for the
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FIG. 3 Showing the need for the generic view
term of equation (7). We compare the probabil-
ity densities of two explanations for the image
in a. The surface in b (shown at 7 x vertical
exaggeration), lit at a grazing angle, yields the
image in d. The surface in c gives the image in
e, which accounts less well for the image in a.
Thus, based on an image fidelity criterion, b is
a better explanation. The common prior
assumption of a smooth surface™® would also
favour b {the surface is very smooth at the true
vertical scale). However, the object and light
source must be precisely positioned for the
shape in b to give the image in d; the generic
view term of the scene probability equation (7)
penalizes this. Including the generic view term
makes the overall probability densities (shown
in 1), favour the perceptually reasonable expla-
nation of shape ¢ over shape b. (We made this
example by construction. Gaussian random
noise at a 7 dB signal-to-noise ratio was added
to e to make a; b was found from a using a
shape from shading algorithm, assuming con-
stant surface height at the left picture edge™.
We evaluated the likelihood of b and ¢, assum-
ing both generic object pose and generic light-
ing direction”®. The strength of a prior
preference for smooth surfaces is arbitrary and
none was included in the final densities. The
actual noise variance was used for ¢ in the
fidelity term of equation (7), although a wide
range of assumed variances would give the
preferences shown here.)

scene parameters § given the visual data y:
— [y —f%, B)Ilf) !
267 Jdet (C)

=k (fidelity) (prior probability) (generic view)

(7

P(B| )=k exp ( Ps(B)

where the i and jth elements of the matrix C are
Cy=Ffi- Fi— (5=Fxo, B)) - I ®)
We call equation (7) the scene probability equation. The nor-
malization constant k does not enter into comparisons between
interpretations 3. The exponential term, which we call the image
fidelity term, favours scene hypotheses that have a small mean-
squared difference from the visual data. This and the prior
probability term Pg(ff) are familiar in computational vision.
Regularization, from which many vision algorithms have been
derived'>"?, finds the maximum probability density'*'® using
these two terms, when viewed in a bayesian context. The third,
generic view term, accounts for the assumptions of generic view-
point, pose or lighting position. The scene probability equation
favours interpretations that can generate the observed image
over a relatively large range of generic variables, by penalizing
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large image derivatives with respect to those variables. If the
prior probability of the generic variable were not constant,
then the factor Pi(x,) would be included in the prior term of
equation (7).

The generic view term is especially useful when several explan-
ations account equally well for visual data, as occurs commonly
in problems of stereo, shape, motion and colour perception; ref.
16, for example. Then the image fidelity term is the same for
the competing explanations. The prior probabilities may not be
known well*. The generic view term allows a choice based on
the relatively reliable assumptions of generic view, pose, or light
source position.

Our approach relates to bayesian analyses of data interpola-
tion, image restoration and other problems'"'*>'”. In that work,
as in this, one favours hypotheses that could have generated the
observed data in many ways (see also ref. 18, a related non-
bayesian approach).

Using the scene probability equation (7), we plot in Fig. le
the relative probabilities of shapes 1-5 of Fig. 15. Note the agree-
ment with the bump/dimple shapes perceived to be the true
explanation of Fig. la. (Presumably, these are perceptually fav-
oured because they are more probable.) Without the generic
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FIG. 4 Application of the scene probability equation to velocity estima-
tion. a, Within a local aperture, the object velocity direction is
ambiguous'®. V,, the component of velocity normal to the local con-
trast, is constrained by the measurement, while V, is unconstrained.
b, Line in velocity space of object velocities consistent with observed
normal velocity. High values of V| imply a concidental alignment of
the local contrast orientation with the object velocity direction. In our
framework, the measurement vector y is the normal velocity vector; the
scene parameter f§ is V| ; the generic variable x is the angle 8 between
the object velocity and the orientation of local contrast. The scene
probability equation (7), penalizes high derivatives of the normal velocity
with respect to contrast orientation. ¢, Resulting posterior probability
for V,, showing a bias in favour of the normal velocity (V, = 0). This bias
is consistent with psychophysical observations?°,

view term, one would have to state an arbitrary preference for
bumps or dimples to choose between the candidate shapes.

In Fig. 2 we use the scene probability equation to choose
between surface reflectance functions in a case where they would
otherwise be indistinguishable. Figure 3 shows an example in
which both the fidelity and the prior probability terms favour a
perceptually implausible explanation. Only when the generic
view term of equation (7) is included does the perceptually fav-
oured explanation rank higher.

In Fig. 4, we apply the scene probability equation to the prob-
lem of estimating the local image velocity from local measure-
ments of the velocity components normal to the contrast
orientation'®. All velocity components parallel to the local con-
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trast orientation are possible, but high speeds would imply a
coincidental alignment of the local contrast with the image
velocity. The scene probability equation predicts a bias toward
zero parallel velocity component, which is supported by psycho-
physical evidence”.

From an equation that ranks scene interpretations, such as
the scene probability equation (equation (7)), one can develop
vision algorithms that find an optimum interpretation. Including
the generic view term gives a better statistical model of the visual
world. It may result in more powerful and accurate algorithms
for vision. O
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NEWS AND VIEWS
VISION

Improbable views

Andrew Blake

THE problem of shape-from-shading
analysis — estimating the relief of a visible
surface from its pattern of light and shade
in an image — has vexed researchers in
vision for around 20 years'. From an
experimental point of view, psychologists
seem to disagree whether the human
visual system can® or cannot® make effec-
tive use of shading information to estimate
even the orientation of a surface, let alone
its entire shape. Horn’s" elegant demon-
stration of the reconstruction of a human
tace by growing height contours outwards
from shading highlights showed that infer-
ring shape from shading is theoretically
possible, at least under certain conditions.
The difficulty comes when, as is usually
the case, some parameters of the physical
environment are unknown, for example
the directions and strengths of the sources
ofillumination. The parameters of a single
light-source can be recovered if certain
fairly strong assumptions (isotropy’ or
smoothness”) are made about the shape of
the surface, but William Freeman (page
542 of this issue’) has now devised a
theory founded on the far more general
assumption of ‘generic illumination’.
This assumption is akin to the concept
of ‘generic viewpoint’ (Fig. 1), already
familiar from computational and psycho-
logical theories of vision. A viewpoint is
generic if it avoids accidental alignments,
in the image, of features on a visible
object. The assumption of generic view-
point seems to underlie human visual
analysis, explaining why certain line-
drawings, for example the well-known
Penrose triangle, are perceived as

paradoxical® or ‘impossible’. The assump-

FIG. 1 The assumption of generic viewpoint. The drawing depicted
in a may be interpreted as a line drawing of a three-dimensional
object such as b. The drawing ¢ could be a line-drawing of an object
such as d. This interpretation implies, however, that the viewpoint is
a special one in which two vertices have coincided in the image.
A more plausible interpretation of ¢ would therefore be one that
involves no accidental alignment, for instance a planar shape such

as that shown by e.
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tion is so strong that, even for a solid
object, if seen from a certain, special
viewpoint, an ‘impossible’ object may be
perceived in preference to the real one’.
Early theories of generic viewpoint ap-
plied only to line-drawings of polyhedra;
more recently they have been generalized
to include drawings of curved surfaces'’.

The assumption of gen-
eric illumination can be
regarded as the dual of gen-
eric viewpoint. The light
source and the viewer are
dual concepts, as the Table
illustrates, each being de-
fined in terms of a cone of
light-rays. By analogy with
generic viewpoint, generic
illumination is the assump-
tion that there are no accidental align-
ments of object features along illuminant
rays (Fig. 2). In principle, this assumption
can be invoked to rule out certain inter-
pretations of a shaded image which may
be physically consistent but are none-
theless highly improbable. Even so, the
generic illumination assumption is not
quite in the form that Freeman requires
for his theory.

In the case of generic viewpoint, it is
known that a ‘soft’ form of the
assumption'! can be obtained to define,
for all views and not just one pathological
view, the degree of genericity of a given
viewpoint. This is a numerical measure
that is greater for more probable views
but approaches zero as the viewpoint
approaches an accidental alignment. In a
measure of probability, it can be used to
evaluate competing hypotheses for the

Viewer

shape of a particular visible surface. What
Freeman has achieved, this time for
generic illumination, is an analogous
softening of his assumption, again leading
to a measure of probability for competing
hypotheses of surface shape. Now the
generic illumination assumption is applic-
able to shaded images rather than simply
to line drawings, and this is beautifully
illustrated in Fig. 1 of the paper (pag
542). .
But to what extent does this achieve-
ment prefigure a powerful methodology

Viewer-illuminant duality

IIIumIn_ant

for vision theories, as Freeman believes it
does? Although it is true generally that
probabilistic models of visual processing
are increasingly influential, their appli-
cation in his paper is somewhat limited
in scope.

First, the approach has been shown to
work only for the simplest of physical
models of reflectance, a single point light-
source without shadows or surface pat-
terning. This is a limitation common to
many theories of shape from shading.
Second, although construction of the
theory is based on generic illumination,
free of specific assumptions about surface
shape, they may emerge nonetheless.
Probabilistic measures of generality of
illumination like Freeman’s can depend,
after all, on surface smoothness, having
large values for surfaces that are close to
being planar or cylindrical. Indeed it does

FIG. 2 Generic illumination. Just as the viewer can be in a special
position with respect to an object, so can the source of illumination.
The image a consists of two regions of constant-intensity shading.
This could have arisen as the image of a cone b but only if the
light-source is in a special position, on the axis of the cone. Any
perturbation of the light-source’s position away from the cone axis will
lead to shaded regions whose intensity is no longer constant. A more
likely explanation is that a is the image of a planar pattern such as c.
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appear in Freeman’s Fig. 1 (though not
obviously in his Fig. 3) that the less
plausible surface shapes are also less
smooth — a greater area of the planar
background is disrupted.

One explanation of the link between
surface smoothness and generality of illu-
mination is as follows. For diffuse (‘Lam-
bertian’) illumination, image-intensity is
given by the ‘rendering function’I-n where
n is the surface normal vector at each
image position and vector I represents the
strength and direction of the light source.
In that case Freeman’s measure of gen-
ericity of illumination (equation 7) is
I/Vdet(<nnT>), where <__> denotes
spatial averaging over the image. This
measure becomes unboundedly large as
the visible surface approaches planarity
because the normal vectors n span a space
of only one dimension, so the det(..) term
approaches zero. (Something similar also
happens as the surface becomes close to
cylindrical.) After all, therefore, as the
underlying surface becomes smooth in the
sense of approaching planarity, the mea-
sure of generality of illumination becomes
large. The question is whether this link
suggests that Freeman’s approach might
somehow be limited to smooth surfaces.

NATURE - VOL 368 - 7 APRIL 1994

Overall, however, Freeman’s specific
achievement is impressive, both in seeing
a way to express probabilistically the
general illumination assumption and to
some extent verifying experimentally its
power to reject incorrect hypotheses ab-
out surface shape. The claim for greater
generality is not altogether convincing as
yet. It will be interesting to see whether
computational experiments can establish
more precisely the breadth of conditions
over which the theory is viable. O
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