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Section Starter Question

What is the most important probability distribution? Why do you choose
that distribution as most important?

Key Concepts

1. The statement, proof and meaning of the de Moivre-Laplace Central
Limit Theorem.

Vocabulary

1. The standard Gaussian density is

φ(x) =
1√
2π

e−
x2

2 .

2. The complementary cumulative distribution function Φ(y) of
the Gaussian density is Φc(y) = 1√

2π

∫∞
y

e−x
2/2 dx. Φc(y) measures the

area under the upper tail of the Gaussian density.

3. The complementary error function erfcx is defined by erfc(x) =
2√
π

∫∞
x

e−x
2

dx.

4. The de Moivre-Laplace Central Limit Theorem is the statement
that for a, b ∈ R ∪ {±∞} with a < b, then

lim
n→∞

Pn

[
a ≤ Sn − np√

np(1− p)
≤ b

]
=

1√
2π

∫ b

a

e−
x2

2 dx
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Mathematical Ideas

History of the de Moivre-Laplace Central Limit Theo-
rem

The first statement of what we now call the de Moivre-Laplace Central Limit
Theorem occurs in The Doctrine of Chances by Abraham de Moivre in 1738.
He proved the result for p = 1/2. This finding was far ahead of its time,
and was nearly forgotten until the famous French mathematician Pierre-
Simon Laplace rediscovered it. Laplace generalized the theorem to p 6= 1/2
in Théorie Analytique des Probabilités published in 1812. Gauss also con-
tributed to the statement and proof of the general form of the theorem.

Laplace also discovered the more general form of the Central Limit The-
orem but his proof was not rigorous. As with De Moivre, Laplace’s finding
received little attention in his own time. It was not until the end of nineteenth
century that the generality of the central limit theorem was realized. The
Russian mathematician Aleksandr Liapunov gave the first rigorous proof of
the general Central Limit Theorem in 1901-1902. As a result a general ver-
sion of the Central Limit Theorem is occasionally referred to as Liapunov’s
theorem. A theorem with weaker hypotheses but with equally strong con-
clusion is Lindeberg’s Theorem of 1922. It says that the sequence of random
variables need not be identically distributed, instead the random variables
only need zero means with individual variances small compared to their sum.

George Pólya first used the name “Central Limit Theorem” (in German:
“zentraler Grenzwertsatz”) in 1920 in the title of a paper, [4].
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Figure 1: Comparison of the binomial distribution with n = 12, p = 4/10
with the normal distribution with mean np and variance np(1− p).

Interpretation of the de Moivre-Laplace Central Limit
Theorem

Theorem 1 (de Moivre-Laplace Central Limit Theorem). Let a, b ∈ R ∪
{±∞} with a < b. Then

lim
n→∞

Pn

[
a ≤ Sn − np√

np(1− p)
≤ b

]
=

1√
2π

∫ b

a

e−
x2

2 dx

and the convergence is uniform in a and b.

If y ∈ R, n ∈ Z and 0 < p < 1 define

k(y) = bnp+ y
√
np(1− p)c.

Then

lim
n→∞

k(y)∑
j=0

(
n

j

)
pj(1− p)n−j =

1√
2π

∫ np+y
√
np(1−p)

−∞
e
−(x−np)2

2np(1−p) dx .

This is illustrated in Figure 1

Heuristic Proof of the de Moivre-Laplace Central Limit
Theorem

We are interested in the natural random variation of Sn around its mean.
From the Weak Law of Large Numbers, we know that Pn

[
|Sn

n
− p| > ε

]
→ 0.
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From the Large Deviations result we also know that Pn
[
|Sn

n
− p| > ε

]
≤

e−nh+(ε) + e−nh−(ε). Equivalently, we can say that Sn will fall outside the
range np(1± ε) with probability near 0. Finally, note that E [(Sn − np)2] =
np(1 − p). We ask, “How large a fluctuation or deviation of Sn from np
should be surprising?”. We want a function ψ(n) with

lim
n→∞

Pn [|Sn − np| > ψ(n)] = α, for 0 < α < 1. (1)

To measure the surprise of a fluctuation, we specify α, then ask what
is the order of ψ(n) as a function of n? Small but fixed values of α would
indicate large surprise, i.e. unlikely deviations, and so we expect ψ(n) to grow
but more slowly than εn.

Take p = 1/2 to simplify the calculations for the discovery oriented proof
in this subsection. We can make some useful guesses about ψ(n). Interpret
the probability on the left in as the area in the histogram for the binomial
distribution of Sn. From the expression of Wallis’ Formula for the central
term in the binomial distribution, the maximum height of the histogram bars
is of the order 1√

nπ
, see Wallis’ Formula. That means that to get a fixed area

α around that central term requires an interval of width at least a multiple of√
n. If we take ψ(n) = xn

√
n/2 (with the factor 1/2 put in to make variances

cancel nicely), then we are looking for a sequence xn which will make

lim
n→∞

Pn
[
|Sn − n/2| > xn

√
n/2
]

= αas n→∞

true for 0 < α < 1. By Chebyshev’s Inequality, we can estimate this proba-
bility as

Pn
[
|Sn/n− 1/2| > xn/(2

√
n)
]
≤ 1/x2

n.

If lim supn→∞ xn =∞, we could only obtain α = 0, so xn is bounded above.
If lim infn→∞ xn = 0 then for a fixed ε > 0 and some subsequence nm such
that for sufficiently large m

Pnm [|Snm/nm − 1/2| > ε > xnm/(2
√
nm)]→ 0.

which is also contradiction to the assumption α > 0. Hence xn is bounded
below by a positive value. We guess that xn = x so ψ(n) = x

√
n/2 for all

values of n.
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Breiman’s Proof of the de Moivre-Laplace Central Limit
Theorem

To simplify the calculations, take the number of trials to be even and p = 1/2.
Then the expression we want to evaluate and estimate is

P2n

[
|S2n − n| < x

√
2n/2

]
.

This is evaluated as∑
|k−n|<x

√
n/2

2−2n

(
2n

k

)
=

∑
|j|<x
√
n/2

2−2n

(
2n

n+ j

)
.

Let Pn = 2−2n
(
2n
n

)
be the central binomial term and then write each binomial

probability in terms of this central probability Pn, specifically

2−2n

(
2n

n+ j

)
= Pn ·

n(n− 1) · · · (n− j + 1)

(n+ j) · · · (n+ 1)
.

Name the fractional factor above as Dj,n and rewrite it as

Dj,n =
1

(1 + j/n)(1 + j/(n− 1)) · · · (1 + j/(n− j + 1))

and then

log(Dj,n) = −
j−1∑
k=0

log(1 + j/(n− k)).

Now use the common two-term asymptotic expansion for the logarithm func-
tion log(1 + x) = x(1 + ε1(x)). Note that

ε1(x) =
log(1 + x)

x
− 1 =

n∑
k=2

(−1)k+1xk

k

so −x/2 < ε1(x) < 0 and limx→0 ε1(x) = 0.

log(Dj,n) = −
j−1∑
k=0

j

n− k

(
1 + ε1

(
j

n− k

))
.
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Let

ε1,j,n

j−1∑
k=0

j

n− k
=

j−1∑
k=0

j

n− k
ε1

(
j

n− k

)
.

Then we can write

log(Dj,n) = −(1 + ε1,j,n)

j−1∑
k=0

j

n− k
.

Note that j is restricted to the range |j| < x
√
n/2 so

j

n− k
<

x
√
n/2

n− x
√
n/2

=
x√

2n− x

and then

ε1,j,n = max
|j|<x
√
n/2

ε1

(
j

n− k

)
→ 0 as n→∞ .

Write
j

n− k
=
j

n
· 1

1− k/n
and then expand 1

1−k/n = 1 + ε2(k/n) where ε2(x) = 1/(1−x)−1 =
∑∞

k=1 x
k

so ε2(x) → 0 as x → 0. Once again k is restricted to the range |k| ≤ |j| <
x
√
n/2 so

k

n
<
x
√
n/2

n
=

x√
2n

so that

ε2,j,n = max
|k|<x
√
n/2

ε2

(
k

n

)
→ 0 as n→∞ .

Then we can write

log(Dj,n) = −(1 + ε1,j,n)(1 + ε2,j,n)

j−1∑
k=0

j

n
.

Simplify this to

log(Dj,n) = −(1 + ε3,j,n)

j−1∑
k=0

j

n
= −(1 + ε3,j,n)

j2

n
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where ε3,j,n = ε1,j,n + ε2,j,n + ε1,j,n · ε2,j,n. Therefore ε3,j,n → 0 as n → ∞
uniformly in j. Exponentiating

Dj,n = e−j
2/n(1 + ∆j,n)

where ∆j,n → 0 as n→ 0 uniformly in j.
Using Stirling’s Formula,

Pn = 2−2n (2n)!

n! · n!
=

1√
nπ

(1 + δn).

Summarizing

P2n

[
|S2n − n| < x

√
2n/2

]
=

∑
|j|<x
√
n/2

2−2n

(
2n

n+ j

)
=

∑
|j|<x
√
n/2

Pn ·Dj,n

=
∑

|j|<x
√
n/2

Pn · e−j
2/n(1 + ∆j,n)

= (1 + δn)
∑

|j|<x
√
n/2

1√
2π
· e−j2/n

√
2

n

Make the change of variables tj = j
√

2/n, ∆t = tj+1 − tj =
√

2/n so the
summation is over the range −x < tj < x. Then

P2n

[
|S2n − n| < x

√
2n/2

]
= (1 + δn)

∑
−x<tj<x

1√
2π

e−t
2
j 2∆t.

The factor on the right is the approximating sum for the integral of the
standard normal density over the interval [−x, x]. Therefore,

lim
n→∞

P2n

[
|S2n − n| < x

√
2n/2

]
=

1√
2π

∫ x

−x
e−t

2/2 dt .

8



Formal Proof of the de Moivre-Laplace Theorem

Theorem 2 (de Moivre-Laplace Central Limit Theorem). Let a, b ∈ R ∪
{±∞} with a < b. Then

lim
n→∞

Pn

[
a ≤ Sn − np√

np(1− p)
≤ b

]
=

1√
2π

∫ b

a

e−
x2

2 dx

and the convergence is uniform in a and b.

For the proof of the de Moivre-Laplace Central Limit Theorem, we need
several lemmas.

Lemma 3.
1√
2π

∫ ∞
−∞

e−
x2

2 dx = 1.

See the proofs in Gaussian Density.

Definition. Define the complement of the cumulative distribution func-
tion (ccdf) as Φc(y) = 1√

2π

∫∞
y

e−x
2/2 dx. The ccdf Φc(y) measures the area

under the upper tail of the standard Gaussian density while Φ(y) is the cu-
mulative density function of the standard Gaussian density.

Definition. Some mathematicians and engineers use alternative accumulation
functions for a scaled Gaussian density called the error function erf(x) and
the complementary error function erfcx. Define erfc(y) := 2√

π

∫∞
y

e−x
2

dx

and erf(y) := 1− erfc(y). Note that Φc(y) = 1
2

erfc(y/
√

2).

Lemma 4.

1√
2π(y + 1)

(e−y
2/2 − e−(y+1)2/2) ≤ Φc(y) ≤ 1√

2πy
e−y

2/2.
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Proof. For the lower bound on Φc(y):

1√
2π

∫ ∞
y

e−
t2

2 dt ≥ 1√
2π

∫ y+1

y

e−
t2

2 dt

=
1√
2π

∫ y+1

y

te−
t2

2

t
dt

≥ 1√
2π

∫ y+1

y

te−
t2

2

y + 1
dt

=
1√

2π(y + 1)

[
−e−

t2

2

]y+1

y

=
1√

2π(y + 1)
(e−y

2/2 − e−(y+1)2/2).

For the upper bound on Φc(y):

1√
2π

∫ ∞
y

e−
t2

2 dt =
1√
2π

∫ ∞
y

te−
t2

2

t
dt

≤ 1√
2π

∫ ∞
y

te−
t2

2

y
dt

=
1√
2πy

[
−e−

t2

2

]∞
y

=
1√
2πy

e−y
2/2.

Lemma 5. Φc(y) ∼ 1√
2πy

e−y
2/2 as y →∞.

Proof. Using Lemma 4

y

(y + 1)
(1− e−(y+1)2/2

e−y2/2
) ≤ Φc(y)

(1/
√

2πy)e−y2/2
≤ 1.

Since
e−(y+1)2/2

e−y2/2
= e

−2y−1
2
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then

Φc(y) ∼ 1√
2πy

e−y
2/2.

Alternative Proof.

Φc(y) =
1√
2π

∫ ∞
y

e−x
2/2 dx

=
1√
2π

∫ ∞
y

xe−x
2/2

x
dx

Integration by parts gives

=
1√
2π

[
e−y

2/2

y
−
∫ ∞
y

e−x
2/2

x2
dx

]

=
1√
2π

[
e−y

2/2

y
−
∫ ∞
y

xe−x
2/2

x3
dx

]

Again integrating by parts

=
1√
2π

[
e−y

2/2

y
− e−y

2/2

y3
+

∫ ∞
y

3e−x
2/2

x4
dx

]
.

Continuing in this way, we obtain the asymptotic series

Φcy =
e−y

2/2

√
2πy

[
1− 1

y2
+

3

y4
− 15

y6
+

105

y8
− . . .

]
.

Lemma 6. If

1. {fn} is a sequence of monotone functions fn : R→ [0, 1]

2. {fn} converges pointwise to f

3. f : R→ R with f(R) ⊇ (0, 1)
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4. f is continuous.

Then this convergence is uniform.

Proof. 1. Let ε > 0 be given.

2. Without loss of generality, fn is monotone increasing and limx→−∞ fn(x) =
0 and limx→∞ fn(x) = 1. This means that limx→−∞ f(x) = 0 and
limx→∞ f(x) = 1.

3. There exists x so that for all z ≥ x, |f(z) − 1| < ε. Let N1 ∈ N be so
that n ≥ N1 means that |fn(x) − f(x)| < ε and so |fn(x) − 1| < 2ε.
Since fn is monotone for all z ≥ x, |fn(z)−1| ≤ |fn(x)−1| < 2ε. Thus,
for all z ≥ x and n ≥ N1,

|fn(z)− f(z)| ≤ |fn(z)− 1|+ |f(z)− 1| < 3ε.

4. Similarly, there exists y and N2 so that for all z ≥ y and all n ≥ N2

|fn(z)− f(z)| ≤ |fn(z)|+ |f(z)| < 3ε.

5. Since [y, x] is compact, f(t) is uniformly continuous on [y, x]. There
exists δ > 0 for continuity on [y, x]. Choose R so large that (x−y)/R <
δ. Define aj = y + j((x− y)/R). and j = 1, . . . , R partition [y, x] into
subintervals [aj−1, aj] each of diameter less than δ.

6. There exists mj so that for all n ≥ mj, |fn(aj−1)− f(aj−1)| < ε. There
exists m̂j so that for all n ≥ m̂j, |fn(aj)− fj(aj)| < ε.

7. Choose n ≥Mj := max{mj, m̂j} and pick z ∈ [aj−1, aj]. Note that

fn(aj−1) ≤ fn(z) ≤ fn(aj)implies f(aj−1)− ε ≤ fn(z) ≤ f(aj) + ε.

Since |f(aj) − f(aj−1)| < ε implies f(aj) − 2ε ≤ fn(z) ≤ fn(aj) + ε.
Thus, we have

|f(z)− fn(z)| ≤ |f(z)− f(aj)|+ |fn(z)− f(aj)|
< ε+ 2ε

= 3ε.
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8. Choose N := max{N1, N2,M1, . . . ,MR}. Then for n > N and for all
z, |f(z)− fn(z)| ≤ 3ε.

Lemma 7. The convergence in the de Moivre-Laplace Central Limit Theorem
is uniform in both a and b.

Proof. Let fn(b) = Pn
[
−∞ ≤ Sn−np√

np(1−p)
≤ b

]
and f(b) = 1√

2π

∫ b
∞ e−

x2

2 dx.

Then fn is monotone increasing and fn : R → [0, 1]. By the de Moivre-
Laplace Central Limit Theorem to be proved below, {fn} converges pointwise
to f . Clearly by Lemma 3, f : R → R with f(R) = [0, 1]. Finally f(b) is
continuous. Therefore, by Lemma 6.

We need the following statement of Stirling’s Formula:

Lemma 8 (Stirling’s Formula). For each n > 0, set

n! =
√

2πnn+1/2e−n(1 + εn).

There exists a real constant A so that |εn| < A
n

.

Proof. From Theorem 1 in Stirling’s Formula from the Sum of Average Dif-
ferences we know that

n! =
√

2πnn+1/2e−n(1 + εn).

There exists a real constant A so that |εn| < A
n

.
From Theorem 13 in Stirling’s Formula Derived from the Gamma Func-

tion we know that for n ≥ 2,∣∣∣∣ n!√
2πnn+1/2e−n

− 1− 1

12n

∣∣∣∣ ≤ 1

288n2
+

1

9940n3
.

Therefore, we can take

εn <
1

n
(

1

12
+

1

288n
+

1

9940n2
)

and we can take A can be taken as an upper bound on 1
12

+ 1
288n

+ 1
9940n2 .

From the last conclusion in we know that
√

2πnn+1/2e−n < n! <
√

2πnn+1/2e−n+1/(12n) .
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From Corollary 1 in Stirling’s Formula by Euler-Maclaurin Summation
we know that

√
2πnn+1/2e−n < n! <

√
2πnn+1/2e−n+1/(12(n−1/2)).

Any of these error estimates on Stirling’s Formula is sufficient to establish
the conclusion of the Lemma.

Definition. Let (sn,k)n>0,k∈In and (tn)n>0 for tn > 0 be two sets of real num-
bers. Then we say sn,k = Ou(tn) if |sn,k| ≤ ctn for all k ∈ In. Here, Ou means
big-O uniformly.

Lemma 9 (de Moivre-Laplace Binomial Point Mass Limit).(
n

k

)
pk(1− p)n−k =

1√
2π · np(1− p)

e

„
− (k−np)2

2np(1−p)

«
· (1 + δn(k))

where for a > 0,
lim
n→∞

max
|k−np|<a

√
n
|δn(k)| = 0.

Proof. 1. Set In := {k : np − a
√
n < k < np + a

√
n}. Then the max in

the statement of the lemma is taken over In.

2. Using Stirling’s Formula(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k

=
1√
2π

√
n

k(n− k)

(np
k

)k (n(1− p)
(n− k)

)n−k (
1 + εn

(1 + εk)(1 + εn−k)

)
.

3. For k ∈ In, we have

n

(np+ a
√
n) (n(1− p) + a

√
n)
≤ n

k(n− k)

≤ n

(np− a
√
n) (n(1− p)− a

√
n)
. (2)

This inequality is established in an exercise at the end of the section.
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4. Then

1

np(1− p)
·
(

1 +
a

p

1√
n

)−1(
1 +

a

1− p
1√
n

)−1

≤ n

k(n− k)

≤ 1

np(1− p)

(
1− a

p

1√
n

)−1(
1− a

1− p
1√
n

)−1

so

1

np(1− p)
·
(

1− a

p

1√
n

+O

(
1

n

))(
1− a

1− p
1√
n

+O

(
1

n

))
≤

n

k(n− k)

≤ 1

np(1− p)

(
1 +

a

p

1√
n

+O

(
1

n

))(
1 +

a

1− p
1√
n

+O

(
1

n

))
.

Thus,

1

np(1− p)
·
(

1− c√
n

+O

(
1

n

))
≤ n

k(n− k)

≤ 1

np(1− p)

(
1 +

c√
n

+O

(
1

n

))
.

5. Summarizing√
n

k(n− k)
=

1√
np(1− p)

(
1 +Ou

(
1√
n

))
,

because
√

1 + h = 1 + 1
2
h+ . . ..

6. This establishes the square root factor in the de Moivre-Laplace Bino-
mial Point Mass Limit. Next is the approximation of the pk(1− p)n−k
factors as an exponential.

7. Recall the series expansions and inequalities

(a) ln(1 + t) = t− t2

2
+O (t3),

(b) For k ∈ In,

−a
√
n

np− a
√
n
≤ k − np

k
≤ a

√
n

np+ a
√
n
.
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(c) For k ∈ In, k−np
k

= Ou

(
n−1/2

)
,

(d) For k ∈ In, k−np
n−k = Ou

(
n−1/2

)
,

These expansions are established in the exercises at the end of the
section.

8. For k ∈ In

ln

[(n
k
p
)k ( n

n− k
(1− p)

)n−k]

= k ln

(
1− k − np

k

)
+ (n− k) ln

(
1 +

k − np
n− k

)
= −1

2
(k − np)2

(
1

k
+

1

n− k

)
+ kOu(n

−3/2) + (n− k)Ou(n
−3/2)

= −1

2
(k − np)2 1

np(1− p)
+Ou(n

−1/2).

9. Therefore,

(n
k
p
)k ( n

n− k
(1− p)

)n−k
= exp

(
− (k − np)2

2np(1− p)

)(
1 +Ou(n

−1/2)
)

10. Recall that for k ∈ In

(a) εn < A/n,

(b) εk < A/k,

(c) εn−k < A/(n− k),

(d)
1

k
= Ou

(
1

n

)
,

(e)
1

n− k
= Ou

(
1

n

)
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so that
1 + εn

(1 + εk)(1 + εn−k)
=

(
1 +Ou

(
1

n

))
11. Now combining parts (a), (b) and (c) above, we get(

n

k

)
pk(1−p)n−k =

1√
2πp(1− p)n

exp

(
−(k − np)2

2np(1− p)

)(
1 +Ou(n

−1/2)
)
.

Lemma 10. Let [a, b] be an interval of R and let f be a function defined on
R that is zero outside of [a, b] and continuous on [a, b]. Then for any t

lim
h→0,h≥0

h
∞∑

k=∞

f(t+ kh) =

∫ b

a

f(x) dx

Remark. This lemma is a generalization and extension of the definition of
Riemann integration.

Proof. The result follows from the uniform continuity of the function f on
the interval [a, b]. Let ε > 0 be given, and then choose h small enough that
|f(x)− f(y)| < ε whenever x, y ∈ [a, b] and |x− y| < h. Let

{k ∈ Z|a ≤ t+ kh ≤ b} = {i, i+ 1, i+ 2, . . . , j}

and M = supa≤x≤b |f(x)|. Then with the Triangle Inequality we have that∣∣∣∣∣∣h
∑

k:t+kh∈[a,b]

f(t+ kh)−
∫ b

a

f(x) dx

∣∣∣∣∣∣
≤ hM +

j−1∑
k=i

∣∣∣∣∣hf(t+ kh)−
∫ t+(k+1)h

t+kh

f(x) dx

∣∣∣∣∣+ 2hM

3hM + (j − 1)hε ≤ 3hM + (b− a)ε.

The term hM at the beginning comes from the term hf(t + jh) which does
not occur in the sum. The term 2hM at the end comes from the two leftover
integral portions

∫ t+ih
a

f(x) dx and
∫ b
t+jh

f(x) dx.
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Now we can complete the proof of the de Moivre-Laplace Central Limit
Theorem.

Proof. Completion of Proof of the Central Limit Theorem The proof shows
that a sum of binomial point masses can be expressed in the form of Lemma 10

Case 1, a and b are finite real numbers
Let Kn be the interval

[a
√
np(1− p), b

√
np(1− p)]

1. We start with

Pn [Sn − np ∈ Kn] =
n∑
k=0

1Kn(k − np) · Pn [Sn = k]

=
1√

2πnp(1− p)

n∑
k=0

[
1Kn(k − np) exp

(
− (k − np)2

2np(1− p)

)
· (1 + δn(k))

]
where limn→∞maxk |δn(k)| = 0 by the de Moivre-Laplace Binomial
Point Mass Limit.

2. Then

Pn [Sn − np ∈ Kn]

=
1 + δn√

2πnp(1− p)

n∑
k=0

1Kn(k − np) · exp

(
− (k − np)2

2np(1− p)

)
where limn→∞ δn = 0.

3. When n is large enough, the expression in the previous paragraph as a
sum

∑n
k=0 becomes a sum

∑
k∈Z so that

1√
2π

1 + δn√
np(1− p)

×
∑
k∈Z

[
1[a,b]

(
k√

np(1− p)
−
√

np

1− p

)

× exp

−1

2

(
k√

np(1− p)
−√np1− p

)2
 (3)
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4. Expanding over the numerator of the fraction 1+δn√
np(1−p)

there is a term

1√
2π

1√
np(1− p)

×
∑
k∈Z

[
1[a,b]

(
k√

np(1− p)
−
√

np

1− p

)

× exp

−1

2

(
k√

np(1− p)
−√np1− p

)2


which converges to a finite value as shown in the next paragraph. Then
the term

1√
2π

δn√
np(1− p)

×
∑
k∈Z

[
1[a,b]

(
k√

np(1− p)
−
√

np

1− p

)

× exp

−1

2

(
k√

np(1− p)
−
√

np

1− p

)2


converges to 0 and can be dropped.

5. Set h = 1/
√
np(1− p) and f(x) = 1√

2π
e−x

2/2. Then the expression in

the equation (3) has the form of the limit in Lemma 10. Therefore, the
expression in the equation (3) approaches

1√
2π

∫ b

a

e−x
2/2 dx

proving the de Moivre-Laplace Central Limit Theorem for finite values
of a and b.

Case 2, a = −∞ and b is a finite real number The proof must show that

Pn
[
Sn − np ≤ b

√
np(1− p)

]
→ 1√

2π

∫ b

−∞
e−x

2/2 dx .
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1. Let b ∈ R and ε > 0. Fix c > max(0, b) so that

1√
2π

∫ ∞
c

e−x
2/2 dx < ε.

2. Then
1√
2π

∫ −c
−∞

e−x
2/2 dx < ε

and
1√
2π

∫ c

−c
e−x

2/2 dx > 1− 2ε.

3. Write∣∣∣∣Pn [Sn − np ≤ b
√
np(1− p)

]
− 1√

2π

∫ b

−∞
e−x

2/2 dx

∣∣∣∣
≤ An +Bn + C

where

An = Pn
[
Sn − np ≤ −c

√
np(1− p)

]
Bn =

∣∣∣∣∣Pn
[
−c ≤ Sn − np√

np(1− p)
≤ b

]
− 1√

2π

∫ b

−c
e−x

2/2 dx

∣∣∣∣∣
C =

1√
2π

∫ −c
−∞

e−x
2/2 dx

4. We have that

0 ≤ An ≤ 1− Pn

[
−c ≤ Sn − np√

np(1− p)
≤ c

]

5. As in Part 1,

lim
n→∞

Pn

[
−c ≤ Sn − np√

np(1− p)
≤ c

]

=
1√
2π

∫ c

−c
e−x

2/2 dx > 1− 2ε
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6. This shows that An ≤ 2ε for large enough n. Similarly, limn→∞Bn = 0
and C < ε. This finishes Case 2.

Case 3, a is a finite real number and b = −∞ This case is similar to
Case 2.

Practical Applications

Weak Law

Corollary 1. The Weak Law of Large Numbers is a direct consequence of
the Central Limit Theorem. That is, we get directly that

lim
n→∞

Pn
[∣∣∣∣Snn − p

∣∣∣∣ ≥ ε

]
→0.

Actually a stronger statement is possible:

Corollary 2. Let un be a sequence such that limn→∞
un√
n

. Then =

lim
n→∞

Pn
[
un

∣∣∣∣Snn − p
∣∣∣∣ ≥ ε

]
→0.

Rules for Validity of the Approximation

Rules for deciding when to use this approximation: (according to Feller,
volume I)

np(1− p) > 18.

Application

Example. Tony Gwyn’s batting average in 1995 was 197 hits out of 535,
(about .368). His lifetime average was .338. The question is whether Tony
Gwyn was a “lucky” .300 hitter in 1995? We assume yes and that hits are in-
dependently distributed random variables. We want to know Pn [Sn ≥ 197] =

Pn
[

S535−535·.3√
535
√

(.3)(.7)
≥ 197−160.5√

112

]
≈ Φc(3.44) ≈ .00115.

That is, the probability of this many hits occurring “by chance” if Gwynn
actually was a .300 hitter are small, about 1%, so at least under the stringent
assumptions of the approximation, Gwynn actually improved in 1995.
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Another question is was whether his actual “ability” was .338. Here,
p = .338 and Pn [Sn ≥ 197] = · · · ≈ Φc(1.48) ≈ .0694. This is at least a
believably large probability, so we admit that it may be possible.

Sources

This section is adapted from: Heads or Tails, by Emmanuel Lesigne, Student
Mathematical Library Volume 28, American Mathematical Society, Provi-
dence, 2005, Chapter 7, [3]. See also the proofs in [1] and [2].

Problems to Work for Understanding

1. For equation (2) show that for k ∈ In, we have

n

(np+ a
√
n) (n(1− p) + a

√
n)
≤ n

k(n− k)
≤ n

(np− a
√
n)

(
n(1− p)− a

√
n
)

2. Show that ln(1 + t) = t− t2

2
+O (t3).

3. Show that k−np
k

= Ou

(
n−1/2

)
.

4. Show that k−np
n−k = Ou

(
n−1/2

)
.

5. Show that
−a
√
n

np− a
√
n
≤ k − np

k
≤ a

√
n

np+ a
√
n
.

6. Write out in detail Case 3 in the completion of the proof of the de
Moivre-Laplace Central Limit Theorem.
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I check all the information on each page for correctness and typographical
errors. Nevertheless, some errors may occur and I would be grateful if you would
alert me to such errors. I make every reasonable effort to present current and
accurate information for public use, however I do not guarantee the accuracy or
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timeliness of information on this website. Your use of the information from this
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I have checked the links to external sites for usefulness. Links to external
websites are provided as a convenience. I do not endorse, control, monitor, or
guarantee the information contained in any external website. I don’t guarantee
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