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Nucleosynthesis

Basic Understanding of SNe Ia

What we know...:
* WD in binary system accretes hydrogen
» when Chandrasekhar mass is reached, WD collapses, explosively
ignites Carbon, and is destroyed completely
* SNe la are very good standard candles: same maximum luminosity
« Powered by the decay of *°Ni - >°Co - °Fe
~0.6 M, = 10% erg/s at peak

this explains the light curves (temporal evolution of photometry)
* produces velocities ~ 0.1c
 Lack H/He, show strong intermediate mass and iron peak elements
* They occur in all types of galaxies

...and what we don’t:
*Evolution with redshift
*Asphericities



Radioisotope Gamma-Rayv Lines and their Messaqges
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Nucleosynthesis
Modeling the SNe Ia

Simple relationship: More °Ni - Higher Temperatures - Higher Opacities

= Brighter/Broader SNe la

The higher opacities allow to trap
the radiation more effectively and
release it later making for broader
light curves.

Parameters for modelling
SN Ia light curve:

* 6Ni mass
* Opacity
 Kinetic Energy
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SNila Models and Radioacivity Gamma-Ravs
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Nucleosynthesis

Gamma-Rays from Supernovae Ia
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Aspects of a Core-Collapse Supernova

* Nuclear Energy Conversions +...
v« Dynamics of Explosions
vc Structure of Stars
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Nucleosvnthesis in CC-Supernova Models and #4Ti

Shell-Structured Gravitational Supernova

Core Collapse
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Are Core Collapse Supernovae 411 Sources?
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Massive-Star Interiors

Dense Molecular

¢ Massive Stars are: &~ ‘ Cloygs
“"Key Producers of Cosmic 'Metals' 3
“"Key Agents for Cosmic Evolution in Galaxies

Intergalactic
-
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7« How does the Interior Structure Evolve ., T 1
in Late Stages? ﬁ S
“"Which "Shells" are Active?
“"Which Nuclei are Produced? (ejected?)
“"What are the Time Scales?
““"How does all this Depend on Rotation?
“"How does all this Depend on Metallicity?
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20Al in our Galaxy: y-ray Image and Spectrum
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Where are the Candidate Sources?

v« OB Associations,
Massive Binaries, ...

“"We Need to 5:
Account for
Incomplete
Knowledge:

— Biases in Time

— Biases in
Radiation

— Biases in
Space
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LECTURE NOTES IN PHYSICS 812

@ Astronomy with
Radioactivities

Summary

v« Radioactivity provides a unique / different astronomical tool
“Intensity change only due to radioactive decay
“"Thermodynamic gas state unimportant

v« Supernova interiors can be explored

““SNIla brightness evolution and 5¢Ni yield calibration

“~Core collapse evolution into an explosion with 56Ni and 44Ti production

v« Massive-star shell structure and evolution can be explored

F=26A| production in core H burning and late shell burning B

5 pe; 0/ogy = 1 300.00 Myr
8
S

&~60Fe production in C and He shells

v« Chemical evolution uncertainties can be explored

SEa )
“"|SM state and dynamics around massive-star regions -

““Nucleosynthesis ejecta recycling times

9 Nuclear Astrophysics Workshop, Russbach (A), 11-17 Mar 2012
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Improved observational capabilities
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Improved supernovae models
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@ New radioactive ion beam facilities (RIBF, SPIRAL 2, FAIR, FRIB) are
being built or developed that will study many of the nuclei

produced in explosive events. Hydrostatic burning phases studied
in underground labs (LUNA)

@ We need improved theoretical models to fully exploit the potential
offered by these facilities.
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@ Nuclear astrophysics aims at understanding the nuclear processes that
take place in the universe.

@ These nuclear processes generate energy in stars and contribute to the
nucleosynthesis of the elements and the evolution of the galaxy.

3. The solar abundance distribution

Hydrogen mass fraction X=0.71
Helium mass fraction Y=0.28
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. star formation (~3%)

i condensation

interstellar
medium

A

i infall :

TRLIRIII PRI TR TR AR

compact
remnant
(WD,
NS,BH)




Introduction
000@000000

In 1957 Burbidge, Burbidge, Fowler and Hoyle and independently
Cameron, suggested several nucleosynthesis processes to explain the
origin of the elements.

Vp-process L
“neutrino-proton process” S-process . 184
@ rp-process ";Iowb;?rocesT".vi; chairr: i
S “rapid proton process” of stable nuclei throug y Wmaksisi i
o via unstable proton-rich nuclei neutron capture S | et
Q through proton capture rgaioiaatanasias| HHEEEEE
4 Pb (2=82) —=2E=
(o] . "1.
: Praiiias ,-._'Hm'
-g Proton dripline S
2 (edge nuclear stability) i ._.' glly=t"
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T 4.. 1
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Sn (Z=50)

r-process
“rapid process” via
unstable neutron-rich nuclei

o it S Neutron dripline
assas 50 (edge nuclear stability)
. 28 . .
Fusion up to iron

Big Bang Nucleosynthesis
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Stars are responsible of destroing Hydrogen and producing “metals”.
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@ Stars are formed from the
contraction of molecular clouds
due to their own gravity.

@ Contraction increases
temperature and eventually
nuclear fusion reactions begin. A
star is born.

@ Contraction time depends on
mass: 10 millions years for a star
with the mass of the Sun; 100,000

e —— T——TT HST - WEPC2 years for a star 11 times the mass

AU Al T Bed O M B, Tl of the Sun.

J. Hester and P. Scowen (AZ State Univ.), NASA

The evolution of a Star is governed by gravity



The HR diagram
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Hydrostatic Burning Phases
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Stellar Evolution
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Am = (AAr) p

o

A star is a self-luminous gaseous sphere.

Stars produce energy by nuclear fusion reactions. A star
is a self-regulated nuclear reactor.

Gravitational collapse is balanced by pressure gradient:
hydrostatic equilibrium.

d
dF oy = -G =2 = [P(r + dr) — P(N]dA = dF e,
r
dm = 4nr’pdr
mp _ dP
2 dr

Further equations needed to describe the transport of
energy from the core to the surface, and the change of

composition (nuclear reactions). Supplemented by an
EoS: P(p, T).

@ Star evolution, lifetime and death depends on mass. Two groups
e Stars with masses less than 9 solar masses (white dwarfs)
o Stars with masses greater than 9 solar masses (supernova explosions)
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Energy comes from nuclear reactions in the core.

4'H - “He + 2¢* + 2v, + 26.7 MeV

H=Hydrogen
He=Helium

596 million
lons

600 million
lons

The Sun converts 600 million tons of

hydrogen into 596 million tons of helium

every second. The difference in mass is

converted into energy. The Sun will

continue burning hydrogen during 5 billions

years.

Energy released by H-burning:

6.45 x 1018 ergg™! = 6.7 MeV/nuc

Solar Luminosity: 3.85 x 10*® erg s™!




Life of small star (<1,4 M)
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years for 100,000 years
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star for Eternity
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Liberated energy is due to the gain in nuclear binding energy.
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Astrophysical reaction rates
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Transfer (strong interaction)

PN(p,o)'*C, o =~05batE, =2.0MeV
Capture (electromagnetic interaction)
SHe(a, v)Be, oc~10"°batE, =2.0MeV
Weak (weak interaction)
p(p.etvd, o=~10"batE,=20MeV

b = 100 fm? = 10™%* cm?



Astrophysical reaction rates
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Nuclei in the astrophysical environment can suffer different reactions:

@ Deca
! SNi — °Co + e* + v,
BO+y - “N+p
dn,
dt

In order to dissentangle changes in the density (hydrodynamics) from
changes in the composition (nuclear dynamics), the abundance is

- _/lana

introduced:
Na Jo, :
Y, = —, n= — = Number density of nucleons (constant)
n m,
dy,
dta =AY

Rate can depend on temperature and density



Astrophysical reaction rates

00000000000

Nuclei in the astrophysical environment can suffer different reactions:

@ Capture processes
a+b->c+d

dn,

CZ = —nanp{ov)
¥y, p

dt — muYaYb<0-v>

decay rate: 1, = pY,{(ov)/m,
@ 3-body reactions:
3%He —» 2C +y
dY, p?

— 3
W = —Z—m%Ya(cma)

decay rate: A, = Y2p*(aaa)/(2m?)



Astrophysical reaction rates
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Stars’ interior is a neutral plasma made of charged particles (nuclei and
electrons). Nuclear reactions proceed by tunnel effect. For the p + p reaction
the Coulomb barrier is 550 keV, but the typical proton energy in the Sun is only
1.35 keV.

CouLoMB
BARRIER

PROJECTILE

L 2222222 =

DISTANCE r

CLASSICAL TURNING
POINT R, (E)

POTENTIAL V (r)

}
NUCLEAR
RADIUS Rp,

Cross section given by:

Ll om 3 Z\Zpe* [m b
O'(E)—Ee S (E), U—T\/ﬁ—m



Astrophysical reaction rates
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Using definition S factor:

g8\ 1 [ E b
(0'1)):(7%) Wﬁ S(E)CXp[—kT—El/zldE

MAXWELL - BOLTZMANN
DISTRIBUTION
o exp (-E/kT)

GAMOW PEAK

TUNNELING
THROUGH

— COULOMB BARRIER
acexp (-VEG/E)

RELATIVE PROBABILITY

kT Eo ENERGY



Problem of extrapolation in nuclear astrophysics
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LUNA @ LNGS

LUNA - Laboratory for Underground

Nuclear Astrophysics

Laboratori Nazionali del Gran Sasso

Welcome on the LUNA pages at LNGS
What is LUNA about

It is in the nature of astrophysics that many of the processes and objects
one tries to understand are physically inaccessible. Thus, it is important that
those aspects that can be studied in the laboratory be rather well
understood. One such aspect are the nuclear fusion reactions, which are at
the heart of nuclear astrophysics: they influence sensitively the
nucleosynthesis of the elements in the earliest stages of the universe and in
all the objects formed thereafter, and control the associated energy
generation, neutrino luminosity, and evolution of stars. LUNA (Laboratory for
Underground Nuclear Astrophysics) is a new experimental approach for the
study of nuclear fusion reactions based on an underground accelerator
laboratory.

Since 20 years the LUNA Collaboration has been directly measuring cross
sections of the Hydrogen burning in the underground laboratories of
Laboratori Nazionali del Gran Sasso (LNGS) publishing more than 40 papers.

The present program of LUNA is descibed in the Proposal presented to the
Scientific Commitee of LNGS in March 2007.

| LNGS Home
| LUNA Home
| Collaborators

| List of Publications

| LNGS Annual Reports
| Conferences

| Thesis

| Technical Description

| Useful Information
| LUNA Phone numbers at LNGS

| Internal

| Important information for working at LUNA
| Online LUNA sCS

| LUNA Electronic Logbooks (LEL)



Voltage Range :
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Output Current:
1mA
B Beam energy spread:
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Hydrostatic Burning Phases

00000000

Step 1: p + p — 2He (not possible)
p+p—od+e +v,

Step2:d + p — °He
d + d — *He (d abundance too low)

Step 3: °He + p — 4Li (*Li is unbound)
SHe + d — “He + n (d abundance too low)
SHe + *He — “He + 2p

d + d not going because Y, is small and d + p leads to rapid destruction.
SHe + *He goes because Y3y gets large as nothing destroys it.



Hydrostatic Burning Phases
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Once “He is produced can act as catalyst initializing the ppll and pplll chains.

p-p reaction branch 2 (15%) branch 3 (0.01%)
1 5 8
e+ 8 —> e + + vV
i Yo a0 — g0 a0 — %0
H iH H 0.42 MeV [max) s . .
He iHe Be He iHe Be
«pep» reaction (one time in 400)
2 6
o +e+ 8 — o + ¥ ++V ,+o—)'+®
1
H H tH 144 MeV (max) st il - Be H B
3

' M 10

3 i
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