Astrofisica Nucleare e Subnucleare GeV Astrophysics

Exercise #4

- Find the web sites of AGILE and Fermi/LAT
- Check the status of future gamma-ray detectors (CALET, DAMPE, Gamma-400(?), HERD)

Photon Interactions

Detector Project

Gamma-ray astrophysics above 100 MeV

Picture of the day, Feb. 28, 2011, NASA-HEASARC

Astrofisica Nucleare e Subnucleare Electromagnetic Showers

ELECTROMAGNETIC SHOWERS
SCIAMI ELETTROMAGNETICI

$$\frac{-dE}{dX} = \frac{E}{X_{o}} \qquad \text{SIA } e^{\frac{1}{2}} \text{ che } 8$$

$$\frac{-dE}{dX} = \frac{E}{X_{o}} \qquad \text{SIA } e^{\frac{1}{2}} \text{ che } 8$$

$$E = \frac{e}{2}e^{\frac{1}{X_{o}}} \qquad E = \frac{1}{X_{o}} \qquad E = \frac{$$

Fig. 4.6. The total number of particles N in a shower initiated by an electron of energy E_0 , as a function of depth n, measured in radiation lengths; E_c is the critical energy of the material. (From Leighton, 1959, p. 693, after Rossi & Greisen, 1941.)

Astrofisica Nucleare e Subnucleare Hadronic showers

Hadronic showers

 \rightarrow photo effect, scattering (γ)

Hadronic

- \rightarrow ionization (π ±, p)
- → invisible energy (binding, recoil)

Hadronic shower

Rule of thumb argument: the geometric cross section goes as the square of the size of the nucleus, a_N^2 , and since the nuclear radius scales as $a_N \sim A^{1/3}$, the nuclear mean free path in gm/cm² units scales as $A^{1/3}$.

NUCL.

Table 5. Radiation length X_0 , critical energy E_c and hadronic absorption length λ_{had} for some materials

Material	X _o (g/cm ²)	Kg/m²	E _c (MeV)	λ _{had} (1.45) (g/cm ²)
<u>ne</u> .	63	630	340	52.4
1 2111111	24	240	47	106.4
A MARINE MANIMUM	20 -	200		119.7
Ar	13.8	138	24	131.9
Personal and a second	00 35.0	62 1	6.9 Pett	
Pb	0.5	84	~11.8	
Lead glass Sr 5	9.0	56	80	83.6
Plexiglas	40.5	405	93	84.9
H ₂ O	30	560	12.5	152.0
Nal(TI)	9.5	35	10.5	164
Bi ₄ Ge ₃ O ₁₂	12 (1) 8.0 , (*) (80	10.5	

Comparison hadronic vs EM showers

50

Astrofisica Nucleare e Subnucleare Calorimeters

Calorimetry

Iron return yoke interspersed

with Muon chambers

Transverse slice through CMS

Calorimetry: Energy Measurement by total Absorption of Particles

77

The e^I in the Colorimeter ionize and erail the Matirial Ionizohion: e^T, I⁺ pairs in the Material Excitation: Photons in the Material Measuring the total Number of e^T, I⁺ pairs or the total Number of Photons gives the particle Energy. If N is the total Number of e^+, I^+ pairs or photons, on $N = c_n E_0^{\circ}$ $\Delta N = \overline{N}'$ (Poisson Statistics) $\frac{\Delta E}{E} = \frac{\Delta N}{N} = \frac{1}{\overline{N}'} = \frac{\alpha}{\overline{VE'}} \Rightarrow Resolution$

Only Electrons and High Energy Photons show EM cascades at current GeV-TeV level Energies.

Strongly interacting particles like Pions, Kaons, produce hadonic showers in a similar fashion to the EM cascade →Hadronic calorimetry

Bremsstrahlung + Pair Production → EM Shower

Detectors for Particle Physics Calorimetry

D. Bortoletto

What is a calorimeter ?

- In nuclear and particle physics calorimetry refers to the detection of particles through total absorption in a block of matter
 - The measurement process is destructive for almost all particle
 - The exception are muons (and neutrinos) → identify muons easily since they penetrate a substantial amount of matter
- In the absorption, almost all particle's energy is eventually converted to heat → calorimeter
- Calorimeters are essential to measure neutral particles

Electromagnetic shower

Dominant processes at high energies (E > few MeV) :

Analytic shower Model

- Simplified model [Heitler]: shower development governed by X₀
 - e^{-1} loses [1 1/e] = 63% of energy in 1 X₀ (Brems.)
 - the mean free path of a γ is 9/7 X₀ (pair prod.)
- Assume:
 - E > E_c : no energy loss by ionization/excitation
- Simple shower model:
 - N(t)=2^t particles after t =x/X₀ each with energy E(t)=E₀/2^t
 - Stops if E (t) < $E_c = E_0 2^{tmax}$
 - Location of shower maximum at

$$t_{\max} = \frac{\ln(E/Ec)}{\ln 2} \propto \ln\left(\frac{E}{E_c}\right)$$

Longitudinal shower distribution

Lateral development of EM shower

Opening angle:

bremsstrahlung and pair production

$$\left\langle \theta^2 \right\rangle \approx \left(\frac{m_e c^2}{E_e} \right)^2 = \frac{1}{\gamma^2}$$

multiple coulomb scattering [Molière theory]

$$\left|\left\langle\theta\right\rangle = \frac{E_s}{E_e}\sqrt{\frac{x}{X_0}}$$
 where $E_s = \sqrt{\frac{4\pi}{\alpha}}\left(m_ec^2\right) = 21.2MeV$

• Main contribution from low energy e^- as $\langle \theta \rangle \sim 1/E_e$, i.e. for e^- with $E < E_c$

Molière Radius

$$R_M = \frac{E_s}{E_c} X_0 \approx \frac{21.2 MeV}{E_c} X_0$$

Assuming the approximate range of electrons to be X_0 yields $<\theta>\approx 21.2$ MeV/E_e \rightarrow lateral extension: R = $<\theta>X_0$

Calorimetry: Energy Measurement by total Absorption of Particles

The Meanwarment is Bestructive. The porticle can not be subject to for the study.

Measuring the Photons produced by the collision of the et with Alon thermas of the noterial.

Total Anound of E, It pairs or Photons is proportional to the total track length is proportional to the particle Energy. Scintillating Crystals, Plastic Scintillators

Calorimetry

Calorimeters can be classified into:

Electromagnetic Calorimeters,

to measure electrons and photons through their EM interactions.

Hadron Calorimeters,

Used to measure hadrons through their strong and EM interactions.

The construction can be classified into:

Homogeneous Calorimeters,

that are built of only one type of material that performs both tasks, energy degradation and signal generation.

Sampling Calorimeters,

that consist of alternating layers of an absorber, a dense material used to degrade the energy of the incident particle, and an active medium that provides the detectable signal.

C.W. Fabjan and F. Gianotti, Rev. Mod. Phys., Vol. 75, No. 4, October 2003

EM Calorimeter configurations

Total absorption

- Electrons and photons stop in calorimeter
- Scintillation proportional to energy of electron
- Usually non-organic scintillator (BGO, PbWO_{4,...}) or liquid Xe
- Advantage: Excellent energy resolution
 - see all charged particles in the shower (but for shower leakage) → best statistical precision
 - Uniform response → good linearity
- Disadvantages:

If W is the mean energy required to produce a signal (eg an e⁻-ion pair in a noble liquid or a 'visible' photon in a crystal)

$$\frac{\sigma_E}{E} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{E/W}}$$

Examples:

- B factories: small photon energies
- CMS ECAL which was optimized for H→γγ

EM Calorimeter configurations

Sampling Calorimeter

- One material to induce showering (high Z)
- Another to detect particles (typically by counting number of charged tracks)
- Many layers sandwiched together
- Resolution $\propto E^{-1/2}$
- Advantages
 - Depth segmentation
 - Spatial segmentation
- Disadvantages:
 - Only part of shower seen, less precise
- Examples
 - ATLAS ECAL
 - Most HCALs

Sampling fraction

$$f_{sampling} = \frac{E_{visible}}{E_{deposited}}$$

Crystals for Homogeneous EM Calorimetry

In crystals the light emission is related to the crystal structure of the material. Incident charged particles create electron-hole pairs and photons are emitted when electrons return to the valence band.

The incident electron or photon is completely absorbed and the produced amount of light, which is reflected through the transparent crystal, is measured by photomultipliers or solid state photon detectors.

Crystals for Homogeneous EM Calorimetry

	NaI(Tl)	CsI(Tl)	CsI	BGO	PbWO ₄
Density (g/cm ³)	3.67	4.53	4.53	7.13	8.28
X_0 (cm)	2.59	1.85	1.85	1.12	0.89
R_M (cm)	4.5	3.8	3.8	2.4	2.2
Decay time (ns)	250	1000	10	300	5
slow component			36		15
Emission peak (nm) slow component	410	565	305 480	410	440
Light yield γ /MeV	4×10^{4}	5×10^{4}	4×10^{4}	8×10^{3}	1.5×10^{2}
Photoelectron yield (relative to NaI)	1	0.4	0.1	0.15	0.01
Rad. hardness (Gy)	1	10	10^{3}	1	10^{5}

Barbar@PEPII,	KTeV@Tev	L3@LEP,	CMS@LHC,
10ms	atron,	25us	25ns bunch
interaction	High rate,	bunch	crossing,
rate, good light	Good	crossing,	high
yield, good S/N	resolution	Low	radiation
		radiation	dose
		dose	

Noble Liquids for Homogeneous EM Calorimetry

	Ar	Kr	Xe			
Ζ	18	36	58			HV
A	40	84	131	07		4
X_0 (cm)	14	4.7	2.8	e		E
R_M (cm)	7.2	4.7	4.2		PTI VE	1
Density (g/cm^3)	1.4	2.5	3.0			0
Ionization energy (eV/pair)	23.3	20.5	15.6		5	U
Critical energy ϵ (MeV)	41.7	21.5	14.5		+ L	
Drift velocity at saturation $(mm/\mu s)$	10	5	3			

When a charge particle traverses these materials, about half the lost energy is converted into ionization and half into scintillation.

The best energy resolution would obviously be obtained by collecting both the charge and light signal. This is however rarely done because of the technical difficulties to extract light and charge in the same instrument.

Krypton is preferred in homogeneous detectors due to small radiation length and therefore compact detectors. Liquid Argon is frequently used due to low cost and high purity in sampling calorimeters (see later).

Sampling Calorimeters

Energy resolution of sampling calorimeters is in general worse than that of homogeneous calorimeters, owing to the sampling fluctuations – the fluctuation of ratio of energy deposited in the active and passive material.

The resolution is typically in the range 5-20%/Sqrt[E(GeV)] for EM calorimeters. On the other hand they are relatively easy to segment longitudinally and laterally and therefore they usually offer better space resolution and particle identification than homogeneous calorimeters.

The active medium can be scintillators (organic), solid state detectors, gas detectors or liquids.

Sampling Fraction = Energy deposited in Active/Energy deposited in passive material.

W. Riegler/CERN

Hadron Calorimeters are Large because λ is large

Because part of the energy is 'invisible' (nuclear excitation, slow nucleons), the resolution of hadron calorimeters is typically worse than in EM calorimeters 20-100%/Sqrt[E(GeV)]. Hadron Calorimeters are large and heavy because the hadronic interaction length λ , the 'strong interaction equivalent' to the EM radiation length X₀, is large (5-10 times larger than X₀)

HE Gamma-ray Astrophysics The EGRET legacy

EGRET

COMPTON OBSERVATORY INSTRUMENTS

The HE sky from EGRET

Analysis Topics

EGRET >300 MeV

- First a word about interstellar gamma-ray emission:
- Brightest at low latitudes, but detectable over the whole sky
- >60% of EGRET celestial gamma rays
- It fundamentally affects the approach to the analysis

Data Analysis

Analysis Topics: Source detection

- Source detection means at least 2 things:
 - Recognizing that you've detected a point source that you didn't know about (and defining its statistical significance and location on the sky)
 - Determining the significance of the detection of (or measuring an upper limit for) an already-known source

Source location contours for two 3EG sources (Hartman et al. 1999). Potential (additional) counterparts, unresolved by EGRET, are indicated

Frg. 3.—TS maps of possible composite 3EG sources. Left: 3EG J0118+0248. The 3EG identification 0119+041, the steep spectrum Mattox et al. (2001) counterpart 3C 037 (*diamond*), and our two new blazar counterparts (along the uncertainty region major axis) are shown. Right: 3EG J0808+5114. Again, two high-confidence identifications lie along the major axis.

Sowards-Emmerd, Romani, & Michelson (2003, ApJ, 590, 109)

Analysis Topics: Spectral analysis

- Well, this means measuring spectra
 - Mostly power laws resulting from shock acceleration, which is scale free
 - Spectral breaks occur for physics reasons and measuring them is diagnostic of the sources.
- For EGRET, the analysis of source spectra was a 2-step process
 - Fluxes were derived for fairly broad ranges of energy independently
 - Then a spectral model was fit
- The complication was that the exposure for a broad energy range depends on the source spectrum, so the fitting process was iterative.

 $F_{\gamma} = (2.01 \pm 0.12) \times 10^{-6} (E/0.214 \text{ GeV})^{-2.18 \pm 0.08}$

photon $(cm^2 s \text{ GeV})^{-1}$.

FIG. 3.—High-energy gamma ray spectrum of 3C 454.3 during the time interval 1992 January 23 to February 6. See text for comments on the 30-70 MeV point.

Hartman et al. 1993 (ApJ, 407,L41),

EGRET Gamma-ray Sources

Challenge #1

Need simultaneous multiwavelength data to study variability and emission processes

Active Galactic Nuclei

Active Galactic Nuclei

Models of AGN Gamma-ray Production

(credit: J. Buckley)

(from Sikora, Begelman, and Rees (1994))

Active Galactic Nuclei

Artistic picture by S.Ciprini

Active Galactic Nuclei

Artistic picture by S.Ciprini

the Chandra X-ray Observatory, the Nuclear Spectroscopic Telescope Array, the Ferni-LAT Collaboration, the H.E.S. collaboration; the VARTAS collaboration; NASA and ESA. Composition by J. C. Algaba

AGN and the Extragalactic Background Light (EBL)

Look for roll-offs in blazar spectra due to attenuation: (Stecker, De Jager & Salamon; Madau & Phinney; Macminn & Primack) the start: A.I. Nikishov, Sov. Phys. JETP 14 (1962) 393.

If $\gamma\gamma$ c.m. energy > 2m_e, pair creation will attenuate flux. For a flux of γ -rays with energy, E, this cross-section is maximized when the partner, ϵ , is

$$\epsilon \sim \frac{1}{3} (\frac{1TeV}{E}) eV$$

For 10 GeV- 100 GeV γ - rays, this corresponds to a partner photon energy in the <u>optical - UV range</u>. Density is sensitive to time of galaxy formation.

AGN and EBL

• Important advances offered by Fermi:

(1) thousands of blazars - instead of peculiarities of individual sources, look for <u>systematic effects</u> vs redshift.

(2) key energy range for cosmological distances (TeV-IR attenuation more local due to opacity).

Challenge # 2

• Need more exposure and optimal timing (and radio monitoring) to discover more gamma-ray PSRs.

Challenge # 3

 Need fast timing for gamma-ray detection (improving EGRET deadtime, 100 msec → 100 microsec or less).

Prompt Emission (GRB 930131)

Solar flares

Solar Flares

Challenge # 4

• Need arcminute positioning of gamma-ray sources (improving EGRET error box radii by a factor of 2-10).

Supernova Remnants

SNR

Challenge # 5

• Need improvements in Spectral Resolution fo check for DM signals

Dark Matter

Particle Dark Matter

Some important models in particle physics could also solve the dark matter problem in astrophysics. If correct, these new particle interactions could produce an anomalous flux of gamma rays ("indirect detection").

or yy or Zy "lines"?

- Key interplay of techniques (see Baltz et al., astro/ph-0602187):
 - colliders (TeVatron, LHC, ILC)
 - direct detection experiments
 - indirect detection (best shot: gamma rays)
 - GLAST full sky coverage look for clumping throughout galactic halo, including off the galactic plane (if found, point the way for ground-based facilities)
 - Intensity highly model-dependent
 - Challenge is to separate signals from astrophysical backgrounds

Just an example of what might be waiting for us to find!

Dark Matter Searches

WIMP annihilation in galactic centre or galactic halos Extragalactic WIMP

annihilation relic

- SUSY dark matter
- Kaluza Klein dark matter

this science require large sensitivity on a broad energy range, localization power, energy resolution, time resolution for variability search ... key elements for the whole GLAST physics program

Detector Project

Sources Classes Predicted for GLAST

Source Class	Basis for Prediction
Active Galactic Nuclei (AGN)	EGRET quasars
Diffuse Cosmic Background	EGRET, Theory
Gamma Ray Bursts (GRBs)	EGRET, BATSE, Milagrito
Molecular Clouds, Supernova Remnants Normal Galaxies	COS-B, EGRET, Theory
Galactic Neutrons Stars (NS) &	
Black Holes (BHs)	COS-B, EGRET
Unidentified Gamma-ray Sources	COS-B, EGRET
Dark Matter	Theory

Detector Project

- Instrument must measure the <u>direction</u>, <u>energy</u>, and <u>arrival time</u> of high energy photons (from approximately 20 MeV to greater than 300 GeV):
 - photon interactions with matter in GLAST energy range dominated by pair conversion: determine photon direction clear signature for background rejection
 - limitations on angular resolution (PSF)
 low E: multiple scattering => many thin layers
 high E: hit precision & lever arm

Energy loss mechanisms:

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

- must detect γ-rays with high efficiency and reject the much larger (~10⁴:1) flux of background cosmic-rays, etc.;
- energy resolution requires calorimeter of sufficient depth to measure buildup of the EM shower. Segmentation useful for resolution and background rejection.

Detector Project

The LAT design is based on detailed Monte Carlo simulations. Integral part of the project from the start.

- Background rejection
 Calculate effective area and resolutions (computer models now verified by beam tests). Current reconstruction algorithms are existence proofs -- many further improvements under development.
 Trigger design.
- > Overall design optimization.

Simulations and analyses are all C++, based on standard HEP packages.

Detailed detector model includes gaps, support material, thermal blanket, simple spacecraft, noise, sensor responses...

Instrument naturally distinguishes gammas from backgrounds, but details matter.

Beam test

AGILE calibration

After a long story ...

