Astrofisica Nucleare e Subnucleare UHECR

Spettro dei raggi cosmici (richiamo)

Φ_{τοτ}~1000 m⁻²s⁻²sr⁻¹
Misure dirette: 90% p, 9% He, 1% nuclei pesanti
Si estende per 13 ordini di grandezza in energia
Per 32 ordini di grandezza in flusso
Legge di potenza su tutto lo

spettro, con almeno due cambi di pendenza

Metodi di misura dei raggi cosmici

- Misure dirette $E < 10^{14} \text{ eV}$
- Misure indirette, E>10¹⁴ eV

KASCADE - Grande

KArlsruhe Shower Core and Array DEtector - Grande

https://web.ikp.kit.edu/KASCADE/welcome.html

KASCADE Cosmic Ray Data Centre (KCDC) / Open β

KCDC Homepage

KCDC Regulations

Information

Announcements

FAQs

- User Account
- Data Shop

Publications

Education/Lehre

Report a Bug

Welcome to KCDC

ASCADE

The aim of the project **KCDC** (**K**ASCADE **C**osmic Ray **D**ata **C**entre) is the installation and establishment of a public data centre for high-energy astroparticle physics based on the data of the KASCADE experiment. KASCADE was a very successful large detector array which recorded data during more than 20 years on site of the KIT-Campus North, Karlsruhe, Germany (formerly Forschungszentrum, Karlsruhe) at 49,1°N, 8,4°E; 110m a.s.l. KASCADE collected within its lifetime more than 1.7 billion events of which some 425.000.000 survived all quality cuts. Initially about 147 million events are available here for public usage.

https://kcdc.ikp.kit.edu

Institute for Nuclear Physics (IKP)

KIT Campus North

Address:

Institute for Nuclear Physics Karlsruhe Institute of Technology Hermann-v.Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen

Postal Address:

Institute for Nuclear Physics Karlsruhe Institute of Technology Postbox 3640 D-76021 Karlsruhe

Phone: +49/721/608-23546 **Fax:** +49/721/608-23548

E-Mail: ikp-kcdc[at]lists.kit.edu

Downloads KCDC Manual (english)

The Knee in the Energy Spectrum of Cosmic Rays

Observation of cosmic rays

Fluorescence light

Cerenkov light (imaging & non-imaging)

Sciami estesi in Atmosfera

- L'interazione di un primario in Atmosfera origina uno sciame di particelle con 3 componenti:
 - Elettromagnetica (EM)
 - Muoni
 - adroni
- Le Energie dei RC molto maggiori delle E raggiungibili con acceleratori. E' possibile esplorare interazioni adroniche in regioni cinematiche non ancora studiate.
- Tevatron: protoni e antiprotoni collidono frontalmente con energia nel CdM pari a $\sqrt{s} = 2TeV$

LHC: protoni protoni "head-on" con $\sqrt{s} = 14TeV$

Flusso verticale di Raggi Cosmici vs. profondita' nell'atmosfera

 $E = \chi_{me}^2$ $\tau = 8\tau_0 \Rightarrow 8>20$ $m_m = 105 \text{ MeV}/2$ RELATINISTIC

Le componenti dello sciame

Caratteristiche generali dello sciame

- Gli adroni vengono esponenzialmente attenuati
- Lo sciame EM si sviluppa esponenzialmente sino ad un massimo, la cui profondità aumenta con E_o (E primario)
- Sulla superficie terrestre (ed underground), prevalentemente muoni

Caratteristiche generali dello sciame

 Un altro modo di vedere le cose:

Figure 5.12. The vertical fluxes of different components of cosmic rays in atmosphere. (From A. M. Hillas (1972). Cosmic rays, page 50, Oxford: Pe

"Superposition" model

- The superposition model assumes that a nucleus with atomic mass number A and energy \mathbf{E}_0 is equivalent to A individual single nucleons, each with energy \mathbf{E}_0/\mathbf{A} , each acting independently
- Number of particles at the maximum:

 $N_{max}(p) = E_0/E_c \rightarrow N_{max}(A) = A \times [(E_0/A)E_c] = N_{max}(p) !!$

• The depth in atmosphere of the shower maximum :

 $X_{max}(A)=X_f+X_o \ln(E_0/AE_c)=X_{max}(p)-X_0 \ln A$

An air shower initiated by He, O and Fe nuclei of the same total energy reach maximum 50, 100 and 150 g/cm² earlier than that initiated by a proton with the same energy

Simulation of the longitudinal profile obtained with the CORSIKA code for 50 **proton-induced (red)** and 50 **iron-induced (blue)** showers. The same total energy of 10^{19} eV is assumed. Shower by shower fluctuations on N_{max} and X_{max} are evident.

- Il numero di particella al massimo dipende linearmente da E_{o}
- Solo una frazione (~1/3) di E_o viene convertina nello sciame EM; dalla misura (effettuata a *campionamento* con un rivelatore di sciami estesi) del numero di particella si può risalire tramite MC ad E_o. In genere: E_o=(1.1÷ 1.6) N_{max} (GeV).
- La profondità *D* del massimo dello sciame dipende in maniera logaritmica dall'energia del primario $D \xi_0 \ln(E_0/E_0)$
- II n. di particelle non alla posizione del massimo D è una funzione più complicata dell'energia (→MC).

Spettro dei RC ad alta energia

L'asse y viene moltiplicato per E^{2.5}, in modo da rendere "più piatta" la figura, ed accentuare il *cambiamento di pendenza!*

I dati sperimentali

Dati e sorgenti ipotizzate

Composizione chimica dei RC nella regione degli EAS

- Il modello del *leaky box* prevede un arricchimento di elementi pesanti nei RC sino al ginocchio.
- Gli EAS possono misurare <A> con difficoltà.
- Le misure possono essere poi confrontate con *modelli estremi* (solo p o Fe) via MC

I RC di Energia Estrema >10¹⁸ Ev (Extragalattici?)

"Hillas Plot"

$$E^{max} \simeq Z\beta \cdot \left(\frac{B}{\mu G}\right) \cdot \left(\frac{L}{kpc}\right)$$
 [EeV]

Fissata la massima energia (in fig. 10²⁰ eV), i meccanismi astrofisici candidati devono avere campi magnetici intensi o grandi regioni di accelerazione.

Confinamento (richiamo)

$$r(kpc) \cong \frac{E(EeV)}{ZB(\mu G)}$$

~ 10¹⁸ eV: RC ben confinati nella galassia

- $\gtrsim 10^{19} \,\mathrm{eV}$: sorgenti extragalattiche
- ~ 10²⁰ eV la deviazione nella galassia è inferiore ad 1°

La misure del flusso RC con EAS

- Gli EAS sono diversi, ed errori sistematici del 20% sono tipici per la misura dell'energia del primario
- Lo spettro energetico misurato nell'intervallo 10¹⁶<Eo<10¹⁹ eV è dato dalla funzione:

$$\Phi(E) = K \cdot E^{-3.1} \qquad cm^{-2} \, s^{-1} sr^{-1} GeV^{-1}$$

- La regione tra 10¹⁴<Eo<10¹⁵ eV è detta *Ginocchio*, a causa del cambiamento di pendenza.
- I RC sono completamente isotropi.
- I RC si arricchiscono di nuclei pesanti nella regione oltre il ginocchio, sino ad energie Eo<10^{19.}

Come rivelare I RC di alta energia?

Per rivelare I raggi cosmici di energia elevata, occorre: Una grande area di raccolta, S Una grande accettanza in angolo solido Un grande tempo di esposizione T **L'esposizione** $A \cdot \Delta \Omega \cdot T = cm^2 - sr - s$ determina il numero di eventi rivelabili.

Il flusso di primari con energia E_o>10¹⁹ eV è circa: 0.5 particelle per km²-sr-<u>year</u>

Caratteristiche generali dei rivelatori di sciami

- La distanza media tra i contatori determina la *energia minima* dello sciame rivelabile.
- Il numero dei contatori, la precisione della misura
- L'area totale coperta, determina la massima energia misurabile.
- Ciascun contatore (*casetta*) misura in modo proporzionale la perdita di energia delle particelle che lo attraversa; da qui, si risale al numero di particelle incidenti
- Dalle misure della densità di particelle in ciascuna casetta dell'array, si risale alla distribuzione laterale D(r).
- Dalla misura di *D(r)* si risale all'energia del primario, *e dalla frequenza del numero di conteggi* si risale al flusso.
- La direzione dello sciame può essere determinata dalla *misura dei tempi di ritardo temporale* nell'arrivo dello sciame su diverse casette (le particelle dello sciame sono ⊥ al suo asse)

Rivelatori di Sciami

• Apparati sperimentali (Extensive Air Shower Arrays, EAS) che misurano sciami estesi sono in genere situati in alta quota.

Tibet

J. Huang (ICRC2011, Beijing, China)

- Il rivelatore di sciami KASKADE (Karlsruhe) in Germania
- Ciascuna casetta contiene un rivelatore
- Distanza media: 13 m. L'edificio centrale contiene l'elettronica necessaria per l'esperimento
- Ottimizzato per lo studio dei RC nella regione del ginocchio. Non deve essere un array di grandissime dimensioni.

Altri metodi di Rivelazione

- Le particelle cariche dello sciame EM che giungono al suolo possono essere rivelate da <u>rivelatori di sciami estesi</u>
- Gli sciami di particelle producono anche <u>luce nell'atmosfera per</u> <u>effetto Cerenkov</u> (gli elettroni con E>20÷30 MeV).
- La luce Cerenkov può venire rivelata (<u>telescopi Cerenkov</u>) nelle notti senza luna da appositi rivelatori al suolo.
- Gli sciami EM inducono anche <u>l'eccitazione dell'azoto</u> <u>atmosferico</u>, che riemette irraggiando luce. Questa fluore-scenza può essere rivelata al suolo (<u>Rivelatori fluorescenza</u>).
- La componente di muoni può essere rivelata da rivelatori "<u>underground</u>".

Rivelatori di sciami di alta energia

Il rivelatore Fly's Eye (USA)

Utah, 160 km da Slat Lake City Specchi con fotomoltiplicatori rivelano la fluorescenza (visibile e UV) di N₂ indotta dalla cascata Si può quindi studiare lo sviluppo dello sciame e risalire alla energia del primario

Il rivelatore Fly's Eye - 2

- 67 specchi con PM osservano la volta celeste
- È possibile ricostruire il profilo della cascata

Si misura così energia (sviluppo shower) e direzione del primario FE2: visione stereoscopica

- Sketch of the detection principles of a fluorescent detector.
- The fluorescent light emitted by the EAS is collected on a large mirror and focused onto a camera composed of photomultipliers (PMTs)

HiRes (Utah)

$Fly's eye \rightarrow HiRes$

- Stereo Hires: due insiemi di rivelatori per ricostruire in 3D lo sviluppo dello sciame
 - Migliore risoluzione angolare, studio correlazioni a piccoli angoli
 - Migliore comprensione della composizione chimica dei primari

Agasa (Giappone)

• 100 km², 111 rivelatori a scintillazione, 27 per muoni, separazione ~1 km – $5 \cdot 10^{16}$ m²s sr per E>10¹⁹ eV, θ < 45°

AGASA Akeno Giant Air Shower Array

111 Electron Det.27 Muon Det.

The Highest Energy Event ($2.46 \times 10^{20} \text{eV}, \text{E} > 1.6 \times 10^{20} \text{eV}$) on 10 May 2001

Risultati sperimentali per E>10¹⁹ eV prima del 2007

- Linea BLU: spettro atteso per distribuzione uniforme di sorgenti e cut-off di GZK.
- AGASA: osservati 11 eventi con E> 10²⁰ eV
- Eventi attesi: 1.9 eventi, assumendo cutoff GZK

AGASA Results

The dashed curve represents the spectrum expected for extragalactic sources distributed unifomly in the Universe, taking account of the energy determination error.

GZK cut ?

Greisen-Zatsepin-K'uzmin (**GZK** cut-off predicted at $\sim 6 \times 10^{19}$ eV, which results from photo-pion production in collisions with the cosmic background microwave photons.

"Conflitto" AGASA-HiRes

Quale è la natura e la ragione del "conflitto" tra i due esperimenti?

- ~2.5 sigma discrepancy between AGASA & HiRes
- Energy scale difference by 25%

Arrival Direction Distribution >10¹⁹eV

Arrival Direction Distribution >4x10¹⁹eV zenith angle <50deg.

- Isotropic in large scale \rightarrow Extra-Galactic
- But, Clusters in small scale ($\Delta\theta$ <2.5deg)
 - 1triplet and 6 doublets (2.0 doublets are expected from random)
 - One doublet \rightarrow triplet(>3.9x10^{19}eV) and a new doublet(<2.6deg)

Volume di confinamento dei RC : il cutoff di Greisen-Zatsepin-Kuzmin

- L' universo è permeato dalla Radiazione Cosmica di Fondo a 3º K (CMBR). Frequenza media 280 GHz
- CMBR: fotoni di energia

 $E_{cmb} = h\overline{\mathbf{v}} \simeq 1.2 \times 10^{-3} \text{ eV}$.

- La densità dei fotoni di fondo è ~400/ cm³
- Il fondo di radiazione pone un limite sulla distanza massima da cui i RC possono provenire.

$G_{reisen}Z_{atsepin}K_{uzmin}$ cutoff Soglia per reazioni di fotoproduzione

• Fotoproduzione: Protoni di alta energia possono interagire con fotoni, producendo un pione:

$$p^+ \gamma_{cmb} \to \Delta^+ \to \pi^+ n$$

- È necessario essere sopra la soglia di fotoproduzione nel sistema del CM: $E_0^{FP} \approx 300 \text{ MeV}$
- Il processo ha una sezione d'urto in risonanza $\sigma_0^P \approx 250 \ \mu b$
- la densità numerica della CMBR è n_g=400 cm⁻³, da cui si ricava il cammino libero medio del p

Sezione d'urto per la Δ

In ogni processo, il p perde circa 1/10 della sua energia

Si può dunque stimare che i p NON possano giungere da distanze superiori a 10×3 Mpc = 30 Mp

Figura: Risultato di calcoli dettagliati.

Orizzonte dell'Universo per p

- The neighboring superclusters of galaxies (<300 Mpc)
- There are about 100 superclusters and about 3 10⁶ large galaxies.
- The central sphere corresponds to 100 Mpc (GZK limit)

Ricerca delle sorgenti

• Nella reazione di fotoproduzione (responsabile del cutoff di GZK) sono prodotti π^{\pm} , π^{0} che decadono:

$$\begin{array}{c} \pi^{\scriptscriptstyle +} \rightarrow \nu_{\mu} \mu^{\scriptscriptstyle +} \rightarrow \nu_{\mu} \nu_{\mu} \nu_{e} e^{\scriptscriptstyle +} \\ \pi_{0} \rightarrow \gamma \gamma \end{array}$$

 Neutrini e fotoni di altissima energia possono quindi essere studiati per confermare il meccanismo GZK, e per localizzare le sorgenti di RC a E > 10¹⁹ eV

Il RC di più alta energia osservato: ≥ 3.2·10²⁰ eV (?)
Se le sorgenti non possono essere troppo lontane (<30 Mpc), possiamo cercare di localizzarle tramite:
→ Studi di anisotropia con esperimenti di RC
→ Confronto con altre misure astronomiche
→ Rivelazione gamma e neutrini di fotoproduzione

L'esperimento Auger

- L'esperimento AUGER è finalizzato a risolvere il problema della bassa statistica di eventi per energie sopra il cutoff GZK, utilizzando ENTRAMBE le tecniche sperimentali di AGASA (EAS) e HiRes (Fluorescenza)
- Due rivelatori simili sono proposti: uno nell'emisfero Australe (Argentina). Quello nel Nord non è stato finanziato
- Per avere statistica sufficiente, i rivelatori sono distribuiti su un'area pari a 3000 km²
- Le differenti tecniche sperimentali permettono una buona risoluzione angolare, sensibilità alla specie del RC che origina la cascata (p o nuclei pesanti), e la possibilità di effettuare calibrazioni energetiche incrociate

Pierre-Auger Observatory

AUGER

Principio della rivelazione ibrida

MC Simulation of 10¹⁹ eV Proton Shower

AUGER: Un rivelatore ibrido

- **Rivelatore di sciami**: 1600 taniche cilindriche (ciascuna di 10 m² ed alte 1.5 m) riempite di acqua, per rivelare gli sciami al suolo tramite la luce Cerenkov emessa dagli elettroni nell'acqua
- Il rivelatore di sciami misura la distribuzione laterale e temporale dello sciame
- Distanza tra taniche: 1.5 km
- Area di forma esagonale, di 60×60 km²
- Rivelatori di fluorescenza: 6 telescopi con ciascuno 4 "occhi" per determinare il profilo longitudinale dello sciame e l'altezza del suo massimo.

https://www.auger.org

Pierre Auger Observatory in Argentina

Karl-Heinz Kampert

Uno dei rivelatori Čerenkov di AUGER

Rivelatori a Fluorescenza

Rivelatori di fluorescenza: il profilo longitudinale dello sciame

Hybrid Event (FD view)

A hybrid event – 1021302 Zenith angle ~ 30°, Energy ~ 10 EeV

http://www.auger.org/

A stereo-hybrid event

- L'energia del RC viene misurata con entrambe le tecniche sperimentali
- Vi è correlazione tra le due misure

ICRC 2011

Auger Highlights, ICRC 2011; Beijing

AUGER Energy spectrum

SD+Hybrid Combined Spectrum

Exposure = 20905 km² sr yr (60% increase over PLB 685 (2010) 239) Inclined showers add another 5300 km² sr yr (→ #724)

Karl-Heinz Kampert

Comparison of Energy Spectra between the largest experiments

Flux of UHECRs multiplied by E³ as measured by Akeno-AGASA, HiRes, Telescope Array and PAO. The values as published by the Collaborations using the nominal calibration of the detectors are reported.

The end of the arrow on the first point of AGASA indicates the position of the point with a 25% shift in the energy scale

Possible source models

- The same data, after rescaling the energy of the experiments to obtain a common position of the "dip" at 5x10¹⁸ eV.
- The nominal energy scales multiplied by 1.2 (Auger), 1.0 (HiRes), 0.75 (AGASA), 0.95 (TA) and 0.625 (Yakutsk)

Predictions

- Red line: dip model due to extragalactic protons.
- Blue line: superposition model. A galactic (dashed line) + extragalactic component (full line)

UHE CR chemical composition

The two largest experiments (AUGER, TA) show discrepancies about the composition at $>10^{19}$ eV

Correlation of the Highest-Energy Cosmic Rays with Nearby Extragalactic Objects

www.sciencemag.org on November 9, 2007

The Pierre Auger Collaboration*

Sky map (2) showing cosmic rays detected by the Pierre Auger Observatory. Low-energy cosmic rays appear to originate from evenly distributed sources (blue dots), but the origins of the highest-energy events (crosses) correlate with the distribution of local matter as represented by nearby active galactic nuclei (red stars). Thus, active galactic nuclei are a likely source of these rare high-energy cosmic rays.

BREAKING NEWS 2009: AUGER trova una correlazione molto meno accentuata tra provenienza dei UHERC AGN

- 2007. I primi dati di Auger sono in accordo con il cut-off GZK: la diminuzione del flusso di RC sopra 6×10¹⁹ eV è dovuta all'interazione dei p con la radiazione cosmica di fondo
- La distribuzione di arrivo dei RC più energetici sembra correlata con la distribuzione degli AGN sino a 100 Mpc.
- **2009-2011.** All'aumentare della statistica, la significatività dell'osservazione tende a diminuire

NB: Studiate bene la statistica per l'interpretazione dei dati sperimentali

Possibili macchine acceleratrici

AGNs

- Galassie attive:
 - Buco nero al centro (?)
 - Disco di
 accrescimento del
 buco nero
 - Getti ultrarelativistici

Possible Zevatrons (Bottom-up Models)

- Neutron Stars
 - From the Galaxy inconsistent with isotropic distribution
- AGN- Central Regions
 - Cosmological Distance GZK cutoff
 - No correlation with Super-GZK events
- AGN- Radio Lobes
 - Cosmological Distance GZK cutoff
 - M87 + Strong B-Field
- Gamma Ray Bursts
 - Isotropic distribution
 - Energy emission compatible with UHECR
 - Cosmological Distance GZK cutoff

Top-down Models (inspired by AGASA spectrum)

- Topological Defects
 - Cosmic Strings, Domain Walls, Magnetic Monopoles...
 - Produce UHE Gamma, Neutrinos
- Super-heavy Relics
 - Trapped in Galactic Halo (like Cold Dark Matter)

Composition and Arrival Direction are the key to distinguish!

Ultimate Goals

- Energy Frontier of Particle Physics, Cosmology and Astronomy
 - Earliest Universe: GUT, Planck Scale ...
 - Extreme Universe: AGN, GRB ...
- Charged-Particle Astronomy
- Need for Multi-Messenger Approach
 - Gamma ray Veritas, Fermi ...
 - Charged Particle <u>Auger</u>, <u>EUSO</u>, OWL...
 - Neutrino Icecube, <u>Auger</u> ...
 - Gravitational Wave LIGO, LISA ...

Astrofisica Nucleare e Subnucleare Rivelatori futuri per UHECR

Detectors for UHECR

JEM-EUSO Program

Extreme Universe Space Observatory

HOME THE PROGRAM

SCIENCE CASE

OBSERVATIONAL PRINCIPLE

MISSIONS » PUBLICATIONS

JEM-EUSO COLLABORATION »

ATION » TECHNICAL PAGE

The origin and nature of Ultra-High Energy Cosmic Rays (UHECRs) remain unsolved in contemporary astroparticle physics. A cutoff in the cosmic ray energy spectrum clearly appears at ~ 10^{20} eV in the data of HIRES, Telescope Array and Auger on ground experiments. It is well known that the detection of events with energy $\geq 10^{20}$ eV is challenged by the GZK effect, which limits the highest detectable energy at ~ 10^{20} eV due to photopion production in the interaction of UHECR on the microwave fossil radiation of the Big Bang, as suggested also by the HIRES and Telescope Array data, or by nuclei photodisintegration as indicated by the Auger

results. However, the possibility that the cutoff at ~ 10^{20} eV can be intrinsic to the acceleration power of the astrophysics cosmic ray sources remains alive. Moreover, indications of sources or excesses in the arrival direction distribution of UHECRs have been claimed by Telescope Array, in the North Emisphere, and by Auger, in the South Emisphere. To give an answer to these questions is rather challenging because of the extremely low flux of a few per km² per century at extreme energies such as E > 5 × 10¹⁹eV.

The objective of the **JEM-EUSO program**, **E**xtreme **U**niverse **S**pace **O**bservatory, is the realization of a space mission devoted to scientific research of cosmic rays of highest energies. Its super-wide-field telescope will look down from space onto the night sky to detect UV photons emitted from air showers generated by UHECRs in the atmosphere.

http://jem-euso.roma2.infn.it

PHOTO GALLERY

NEWS

New Publication

Special Issue on the JEM-EUSO Mission, The Experimental Astronomy, vol. 40, 2015.

EUSO-SPB

NASA Program Initiation Conference (PIC) carried out on March 11, 2016. Flight confirmed for April 2017.

Mini-EUSO

Approved by Roscosmos and ASI. Meeting ASI-Roscosmos on March 22, 2016.

K-EUSO Conceptual design stage.

EUSO-Balloon

Soluzione: <u>EUSO</u>

(Extreme Universe Space Observatory)

Da installare sul modulo europeo Columbus <u>dell'International Space Station</u> (ISS), orbitante a 500 Km di altitudine

TECNICHE DI RIVELAZIONE PER EUSO

Luce di fluorescenza

Extreme Universe Space Observatory

- *`Space-telescope using entire Earth atmosphere as CR & v detector.'*
- CR detector ~ 200.000 km² sr.
- Neutrino detector ~ 10¹² tons air.
- N₂ fluorescence & Cherenkov

International Space Station L.E.O

Astrofisica Nucleare e Subnucleare Astrophysical Neutrinos

Cosmic rays

- The primary cosmic ray differential energy spectrum shows:
 - A cut-off at energies < few GeV
 - A power-law: $N(E)dE = K \cdot E^{-\gamma}dE$
- Spectral indices:
 - γ = 2.7 E < 10¹⁵ eV
 - $\gamma = 3$ 10¹⁵ < E< 10¹⁸ eV
 - somewhat flatter $E > 10^{18} eV$

Propagation of cosmic rays in the Galaxy

 The typical galactic magnetic field is 3 μG (energy density of 0.2 eV/ cm³)
 E(E = V)

$$ze|\vec{B} \times \vec{v}| = \frac{mv^2}{R} \quad r(kpc) \cong \frac{E(EeV)}{ZB(\mu G)}$$

- E.g. protons with energy 10¹⁴ eV have a curvature radius of ~ 10¹⁶ m
- I pc = 3 10¹⁶ m, distance to the Crab Nebula
- The directionality of Cosmic Rays is smeared out by the magnetic field!
- The higher the energy, the more preserved in the directionality
- Can we find the sources of Cosmic Rays?
- For a proton at E~10¹⁹ eV
 - r ~3.3 kpc (~10 \cdot thickness of galactic disk)
- Fe could be confined at 10¹⁹ eV

 $r=10(EeV)/26.3(\mu G) \approx 100 \text{ pc}$

Identification of cosmic sources

Charged particle tracks do not point to their source: Larmor radius « diameter of galaxy

γ-rays and neutrinos provide new observational windows: might reveal unknown truths!

Identification of cosmic sources

 Source identification by detection of neutral secondaries from inelastic scattering of cosmic rays with photons and matter close to their source

Astrophysical beam dump

AGNs and extragalactic background light Absorption in (infrared) extragalactic background light (EBL): $\gamma(\text{TeV}) + \gamma(\text{EBL}) \rightarrow e^+e^$ γ Only the jet emission is seen

3P/NP

- Only the jet emission is seen when the viewing angle is small
- The luminosity of the jet depends on the Lorentz factors of the plasma in the jets

Summary of neutrino production modes

From Physics Today

4

IceCube

francis halzen

- IceCube: a cubic kilometer detector
- the discovery (and confirmation) of cosmic neutrinos
- from discovery to astronomy
- and there is more

IceCube.wisc.edu

v production

Bottom-up (beam-dump model): cosmic accelerator + interaction on matter or photons:

Top-down: decays of particles produced by topological defects or relic particles Z decays due to UHE v interaction on relic v's (Weiler, 1982) GZK vs: UHECR photopion production on CMB (Berezinsky & Zatsepin, 1970, Yoshida & Teshima, 1993 Engel,Sekel,Stanev,2001)

Neglecting γ absorption (uncertain) $\Phi_{\nu} \sim \Phi_{\gamma}$ 1st order Fermi acceleration mechanism: harder spectra than atm ν 's (~E⁻²-E^{-2.5})

- Extra-galactic: jets of AGNs, GRB fireballs accretion shocks in galaxy clusters, galaxy mergers
- Galactic: young SNR (p or heavy ion accelaration), pulsars, magnetars, microquasars (binaries with jets in radio)

Rationale for neutrino astrophysics

- While protons and photons interact, neutrinos survive
- Guaranteed neutrino source from interaction of cosmic rays of highest energies (GKZ) with microwave background

8

Candidate cosmic accelerators

Source classes show clear evidence of non-thermal emission

Galactic Sources:

- Supernova Remnants, Pulsars, Supernova Wind Nebulae, binary systems, small mass black holes (e.g. Microquasars) ...
- Lower luminosities are enough to give detectable fluxes

HESS J1825-137

9

Candidate cosmic accelerators

Source classes show clear evidence of non-thermal emission

Extragalactic Sources:

- Active Galactic Nuclei (AGN), Gamma Ray Burst (GRB) ...
- Higher luminosities required but are massive objects with highly variable engines

Astrophysical neutrinos: production

- Production:
 - Nucleon interactions:

 $pp \rightarrow pp(np,nn) + n_1\pi^{\pm} + n_2\pi^0 + n_3K^{\pm} + n_4K^0 + \dots$

- Photonuclear interaction of very high energy protons: $p\gamma \rightarrow p(n) + n_1\pi^{\pm} + n_2\pi^0 + ...$
- Power law of cosmic rays at the source \Rightarrow the energy spectrum of neutrinos is also a power law
- Relation neutrinos/photons:
 - Assuming hadronic origin of photons
 - No absorpion

$$\frac{\Phi_{\gamma}}{\Phi_{\nu}} \simeq 1$$
GRBs as sources of high-energy neutrinos Fireball model for long GRBs:

Producing the UHE ν 's, CRs, γ rays – a first look

Joint production of UHECRs, ν 's, and γ 's:

(Δ^+ : ~50% of all $p\gamma$ interactions)

After propagation, with flavor mixing:

 $u_{e}:
u_{\mu}:
u_{\tau}:
otage = 1:1:1:1$ $("one <math>
u_{\mu}$ per cosmic ray")

This neutron model of CR emission is now strongly disfavoured

ICECUBE, *Nature* **484**, 351 (2012) M. AHLERS *et al. Astropart. Phys.* **35**, 87 (2011)

15 / 45

The "grand unified" neutrino energy flux spectrum

where do they come from (3 year data)?

hottest spot 7.2%: consistent with diffuse flux with fllavor 1:1:1

correlation with Galactic plane: TS of 2.8% for a width of 7.5 deg

hadronic gamma rays ? $\pi^+ = \pi^- = \pi^0$

hadronic gamma rays

number of neutrino events from gamma ray sources in 5 years

High-Fluence Blazars as Possible Counterparts to PeV Neutrinos

Matthias Kadler F. Krauß, K. Mannheim, R. Ojha

Perspectives on the Extragalactic Frontier, Trieste, May 6, 2016

Ansatz: p-y in blazar jets

Most individual blazars have very low neutrino expectation values!

Look at the very brightest blazars during major outbursts

Astrofisica Nucleare e Subnucleare Rivelatori per Neutrini Astrofisici

NEUTRINO ASTRONOMY: Detecting High Energy Neutrinos

Principles

Antares Site

Susan Cartwright

IDM2000

Antares Site

Detector design

Susan Cartwright IDM2000

IceCube

- 4800 Digital Optical modules on 80 strings
- 160 Ice-Cherenkov tank surface array (IceTop)
- Instrumenting 1 km³ of Antarctic Ice
- Surrounding exisiting
 AMANDA detector
 - 677 Optical Modules
- Just completed 3rd construction season

IceCube at the South Pole

THE ICECUBE NEUTRINO OBSERVATORY

11

Deployed in the deep glacial ice at the South Pole

The Digital Optical Module (DOM)

AMANDA Skymap

lceCube
Search for neutrinos from interesting spots

event selection optimized for both $dN/dE \sim E^{-2}$ and E^{-3} spectra

source	nr. of v events (5 years)	expected background (5 years)	flux upper limit Φ _{90%} (E _v >10 GeV) [10 ⁻⁸ cm ⁻² s ⁻¹]	No sign
Markarian 421	6	7.37	0.43	
M87	6	6.08	0.50	ant
1ES1959+650	5	4.77	0.78	e X
SS433	4	6.14	0.27	ces
Cygnus X-3	7	6.48	0.67	S O
Cygnus X-1	8	7.01	0.76	DSe
Crab Nebula	10	6.74	1.01	ĨVe
3C273	8(1yr)	4.72(1yr)	0.99	ä

Neutrino Privsics with icecube L. Diauluss

"HISTORY" Appearance of "I PeV cascades as an at-threshold background

Two very interesting events in IceCube (between May 2010 and May 2012)

2.8σ excess over expected background in GZK analysis (PRL 111, 021103 (2013))

There should be more

ν

GZK analysis is only sensitive to very specific event topologies at these energies

WHAT DID ICECUBE FIND? (4 YEARS)

53(+1) events observed!

ν

Estimated background:

9.0^{+8.0}-2.2 atm. neutrinos

12.6±5.1 atm. muons

One of them is an obvious (but expected) background

coincident muons from two CR air showers

full likelihood fit of all components: 6.5σ for 53(+1) events

presented at ICRC2015 / PoS(ICRC2015)1081

Astrophysical Neutrinos

ENERGY SPECTRUM (4 YEARS)

energy deposited in the detector (lower limit on neutrino energy)

Somewhat compatible with benchmark E⁻² astrophysical model or single power-law model, but looks like things are more complicated

Best fit assuming E⁻² (not a very good fit anymore):

 $0.84 \pm 0.3 \ 10^{-8} \ E^{-2} \ GeV \ cm^{-2} \ s^{-1} \ sr^{-1}$

Best fit spectral index: E^{-2.58}

"The" neutrino ...

TXS 0506+056

Astrofisica Nucleare e Subnucleare Future Detectors

THE KM3NET NEUTRINO TELESCOPE

Multi-site installation in the Mediterranean Sea (France, Italy), instrumented in "building blocks", started construction

ν

KM3NeT "building block"

Multi-PMT digital optical module ("DOM")

THE KM3NET NEUTRINO TELESCOPE

Multi-site installation in the Mediterranean Sea (France, Italy), instrumented in "building blocks", started construction

31 x 3" PMTs

ν

Hamamatsu, ETL, HZC Light collection ring

20-40% gain in PC for free

Low power

< 10 W / DOM

FPGA readout

sub-ns time stamping time over threshold

Calibration

LED & acoustic piezo Optical fibre data transmission

DWDM with 80 wavelengths Gb/s readout

ICECUBE-GEN2: HIGH-ENERGY

IceCube has provided an amazing sample of events, but is still limited by the small number of events

ν

few 10's of astrophysical neutrinos per year

The IceCube-Gen2 High-Energy Array will instrument a significantly larger volume (~10km³)

Recent Results from IceCube

ICECUBE-GEN2: PINGU

measuring the mass hierarchy using atmospheric neutrinos

cover energies down to a **few GeV**

add **40** strings to IceCube/DeepCore

22m string spacing

ν

2m DOM spacing

use the difference in MSW effect for $\boldsymbol{\nu}$ and anti- $\boldsymbol{\nu}$

combine with difference in $\boldsymbol{\nu}$ and anti- $\boldsymbol{\nu}$ cross-section

MORE DETECTORS / METHODS non-water detectors and radio detectors

Altitude (km) 2 Mauna Loa Mauna Kea 0 -2 10 20 60 -20 -10 0 30 40 50 70 Horizontal Distance (km)

ν

earth skimming tau Cherenkov shower detection (arXiv:1202.5656) - can be deployed on land!

radio detectors for energy range above ~10 PeV (Askaryan effect)

