Statistica per l'impresa

7. L'analisi delle serie storiche

Serie storiche univariate

I c.d. *metodi per serie storiche* affrontano la modellazione, generalmente a fini previsivi, dell'evoluzione di una variabile di interesse nel tempo.

Mentre nel caso della regressione lineare la variazione nella variabile obiettivo, Y, veniva "spiegata" sulla base della variazione di una o più variabili esplicative X_1, \ldots, X_k , qui Y viene "spiegata dal suo andamento passato".

Ci occuperemo di serie storiche relative a una sola variabile (univariate). L'analisi delle serie storiche multivariate è un parente stretto della regressione lineare, in cui la serie Y_t dipende da un'altra serie X_t e dal proprio passato Y_{t-1}, \ldots, Y_{t-h} .

Scopo dell'analisi di serie storiche

Compredere l'andamento di una serie storica può essere importante ai fini interpretativi, ma spesso è essenziale ai fini della *previsione*. In azienda sono regolarmente oggetto di previsione (*budgeting*):

- la domanda di prodotti finiti
- il fabbisogno di risorse umane
- il fabbisogno di materie prime
- le scorte
- ...

La pianificazione e il controllo delle attività produttive che consentono di bilanciare i cicli secondo cui si svolge la vita dell'azienda necessitano continuamente di previsioni dei valori futuri di queste grandezze.

Cos'è una serie storica

Una successione di dati osservati su una variabile Y nel tempo:

$$y_t$$
, $t = 1, \dots T$

I dati possono essere misurati

- in un istante (serie di stato)
- su un intervallo (serie di flusso)

In una serie storica, è comune la presenza di *dipendenza*, che prende il nome di *correlazione seriale*.

Può ben darsi, tuttavia (al contrario di quel che dice il libro) che le manifestazioni successive del fenomeno siano tra loro indipendenti!

- estrazioni successive del lotto, o roulette
- errori del modello di regressione lineare sub ipotesi OLS
- rendimenti finanziari

(Possibili) componenti di una serie storica

Le serie storiche presentano (possono presentare!) tipicamente le seguenti componenti:

- Trend: movimento tendenziale di fondo dovuto all'evoluzione di lungo periodo del fenomeno
- Ciclo: oscillazione congiunturale di carattere ricorrente, spesso dovuto all'oscillare di un sistema economico attorno alle condizioni di equilibrio
- Stagionalità: regolarità empirica legata ai periodi dell'anno e dovuta a fattori climatici (alternanza delle stagioni) oppure organizzativi (ferie, festività)
- Accidentalità: componente residuale rispetto alle cause strutturali 1)-3), in genere relativa a molte influenze di piccola entità o comunque non chiaramente identificabili né suscettibili di modellazione esplicita (v. errori del modello OLS)

Le prime tre, se presenti, costituiscono la c.d. parte sistematica.

I possibili approcci e le fasi dell'analisi

Si distinguono due approcci all'analisi delle serie storiche a fini previsivi:

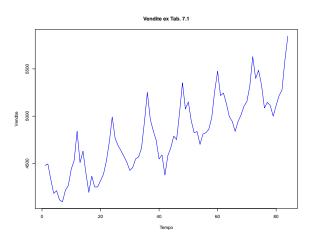
- Classico: scomposizione della serie nelle componenti sopra descritte (sola parte sistematica) e proiezione di ciascuna separatamente
- ullet Moderno: considera il processo Y_t come un tutt'uno di carattere stocastico da modellare con tecniche probabilistiche

Le fasi di un'analisi volta alla previsione saranno:

- analisi del problema
- raccolta dei dati
- analisi preliminare della struttura della serie storica
- scelta e stima del modello
- valutazione della bontà del modello a fini previsivi
- (utilizzo in pratica!)

Rappresentazione grafica delle serie storiche

Iniziamo dalla rappresentazione grafica fornendo alcune intuizioni; nella prossima sezione preciseremo meglio i concetti. (Vedi Cap7_Tab7.1.R)



Stazionarietà

Una serie storica riesce "stazionaria" se nel processo stocastico Y_t che la genera ricorrono le seguenti tre condizioni:

ullet il valore atteso di Y_t è costante (stazionarietà in media)

$$E(Y_t) = \mu \ \forall t$$

• la varianza di Y_t è costante

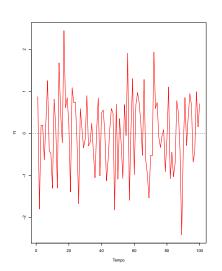
$$Var(Y_t) = \sigma^2 \ \forall t$$

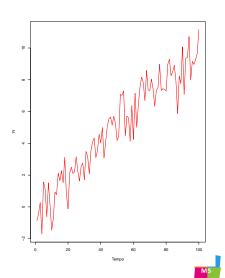
ullet la covarianza tra due elementi Y_t e Y_s dipende soltanto dalla distanza

$$Cov(Y_t, Y_s) = Cov(Y_{t+m}, Y_{s+m}) = f(t-s) \ \forall t, s, m$$

Un simile processo si dice *stazionario in covarianza*. Una serie osservata y_t sarà "stazionaria" se generata da un processo stazionario.

Serie stazionarie (in media) vs. evolutive



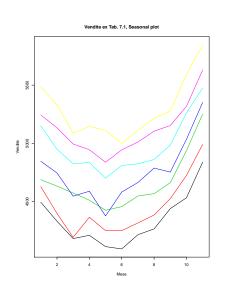


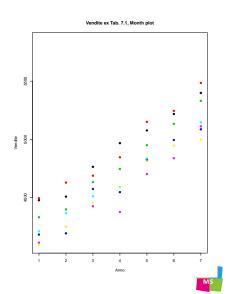
Stagionalità

Se una serie ha frequenza infra-annuale, possono presentarsi regolarità legate alle stagioni.

- Per evidenziare a livello descrittivo la stagionalità può essere utile visualizzare l'andamento della serie attraverso i periodi dell'anno, p. es. i mesi, anno per anno, con grafici sovrapposti: questo è il c.d. seasonal plot
- oppure si possono visualizzare i mesi di ogni anno, mese per mese (monthplot)

Seasonal plot e Month plot





Correlazione

L'indice di autocorrelazione è definito come la covarianza standardizzata (=il coeff. di correlazione) tra la stessa variabile in due istanti diversi:

$$\rho(h) = Cov(Y_t, Y_{t+h}) / Var(Y_t)$$

- Al variare di h tra 0 e T-h si ottiene la funzione di autocorrelazione
- Il correlogramma è il diagramma degli indici di autocorrelazione in funzione di h

Coefficiente di autocorrelazione

Per valutare l'autocorrelazione di Y_t è utile il concetto di *ritardo* (lag): in ogni istante t il ritardo h-esimo di Y_t è Y_{t-h} .

L'operatore ritardo, per esempio di ordine h=2, applicato al processo

$$Y = Y_1, Y_2, Y_3, Y_4, \dots, Y_{T-2}, Y_{T-1}, Y_T$$

dà luogo a un'altro processo stocastico

$$Y_{-2} = NA, NA, Y_1, Y_2, \dots, Y_{T-2}$$

Lo stesso vale per la serie osservata:

$$y = y_1, y_2, \ldots, y_T$$

$$y_{-2} = NA, NA, y_1, y_2, \dots, y_{T-2}$$

Stima della funzione di autocorrelazione

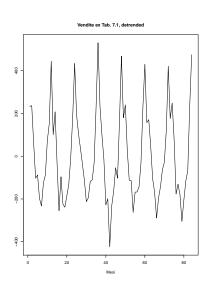
Il coefficiente di autocorrelazione di Y_t a ogni "ritardo" h viene stimato come la correlazione campionaria di Y_t e Y_{t-h} :

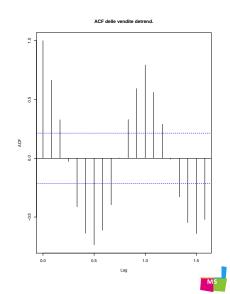
$$\rho_h = \frac{\sum_{t=h+1}^{T} (y_t - \bar{y})(y_{t-h} - \bar{y})}{\sum_{t=1}^{T} (y_t - \bar{y})^2}$$

La stima dei vari $\rho_h, h = 1, \dots, T - h$ dà luogo alla funzione di autocorrelazione (ACF) empirica.

NB II le autocorrelazioni a ogni distanza h si possono stimare solo se il DGP è stazionario in covarianza. Altrimenti per un dato h le covarianze $Cov(Y_1, Y_{1+h})$, $Cov(Y_5, Y_{5+h})$, $Cov(Y_t, Y_{t+h})$ sarebbero tutte diverse e per stimare ciascuna avrei a disposizione una sola coppia di osservazioni.

ACF plot





La valutazione della capacità previsiva

Supponendo di aver stimato un modello univariato

$$Y_t = f(Y_1, \ldots, Y_{t-1})$$

l'analisi di bontà di adattamento del modello confronta i valori stimati (previsti) \hat{y}_t con quelli effettivamente osservati y_t .

Due aspetti distinti della bontà di adattamento:

- goodness of fit: la capacità del modello di riprodurre i dati storici
- goodness of forecast: la capacità del modello di prevedere i dati futuri

Sia $y_1, y_2, \ldots, y_t, y_{t+1}, \ldots, y_T$ la serie in questione. Poniamo di stimare il modello sulla base del sottoinsieme y_1, \ldots, y_s con s < T.

- Per valutare la goodness of fit si confronteranno le stime $\hat{y}_1, \ldots, \hat{y}_s$ con i dati osservati y_1, \ldots, y_s .
- Per valutare invece la capacità previsiva si confronteranno i valori previsti $\hat{y}_{s+1}, \dots, \hat{y}_T$ con i dati osservati y_{s+1}, \dots, y_T .

Indici sintetici di bontà di adattamento

Per valutare l'adattamento in-sample:

- Mean Error (ME): $ME = \frac{1}{s} \sum_{t=1}^{s} y_t \hat{y_t}$
- Mean Square Error (MSE): $MSE = \frac{1}{s} \sum_{t=1}^{s} (y_t \hat{y_t})^2$
- Mean Absolute Error (MAE): $MAE = \frac{1}{s} \sum_{t=1}^{s} |y_t \hat{y_t}|$
- Mean Absolute Percentage Error (MAPE): $ME = rac{1}{s} \sum_{t=1}^{s} rac{|y_t \hat{y}_t|}{y_t}$

Per valutare la bontà di previsione out-of-sample:

- Mean Error (ME): $ME = \frac{1}{T-s} \sum_{t=s+1}^{T} y_t \hat{y_t}$
- Mean Square Error (MSE): $MSE = \frac{1}{T-s} \sum_{t=s+1}^{T} (y_t \hat{y_t})^2$
- ullet Mean Absolute Error (MAE): $MAE = rac{1}{T-s} \sum_{t=s+1}^{T} |y_t \hat{y_t}|$
- Mean Absolute Percentage Error (MAPE): $ME = \frac{1}{T-s} \sum_{t=s+1}^{T} \frac{|y_t \hat{y_t}|}{y_t}$

Modelli di (s)composizione delle serie storiche

L'approccio classico ipotizza che la serie storica sia generata come

$$Y_t = f(T_t, C_t, S_t, e_t)$$

dove la parte deterministica può consistere di trend (T), ciclo (C) e stagionalità (S) ed e è un disturbo aleatorio.

Stimare la componente ciclica in modo separato è fuori moda. Ci si accontenta in genere di considerarla assieme al trend, al che questa componente (T) viene detta *trend-ciclo*.

La componente deterministica f può assumere diverse forme funzionali:

- additiva: $Y_t = T_t + S_t + e_t$
- moltiplicativa: $Y_t = T_t \cdot S_t \cdot e_t$
- mista

Metodi di stima delle componenti

Un modello moltiplicativo può essere *linearizzato* con una trasformazione logaritmica:

$$ln(Y_t) = ln(T_t) + ln(S_t) + v_t$$

Le componenti T ed S possono essere stimate con metodi

- empirici (perequativi): consistono in un lisciamento che si adatta ai dati del campione permettendo di isolare una componente in-sample ma non permette di estrapolarla/prevederla
- analitici (interpolativi): consistono nella scelta di una funzione analitica di cui stimare i parametri, la quale si può poi usare per prevedere le singole componenti

Nell'approccio moderno tali procedure vengono sostituite dalla stima di un vero e proprio modello statistico parametrico.

Medie mobili

Le *medie mobili* sono un attrezzo (device) statistico utile per "lisciare" le oscillazioni casuali e mettere in evidenza le componenti sistematiche. La media mobile di *k* termini è definita, *per k dispari*, come:

$$MM_k(y_t) = \frac{\sum_{s=t-(k-1)/2}^{t+(k-1)/2}}{k}$$

è insomma una media di k termini centrati su y_t . Per esempio, se k=5,

$$MM_5(y_t) = \frac{y_{t-2} + y_{t-1} + y_t + y_{t+1} + y_{t+2}}{5}$$

Se k è pari, per esempio k=4, si fa una media di k+1 termini assegnando agli estremi un peso di 0.5:

$$MM_4(y_t) = \frac{0.5 \cdot y_{t-2} + y_{t-1} + y_t + y_{t+1} + 0.5 \cdot y_{t+2}}{4}$$

Destagionalizzazione usando le MM

Le medie mobili (MM) eliminano o riducono le oscillazioni di periodo pari all'ampiezza della media mobile. Es. una MM_{12} su dati mensili "filtra" le oscillazioni stagionali. Per ottenere una stima *in-sample* di T ed S si può procedere come segue (modello additivo):

- calcolo di $MM_{12}(y_t) = T_t^{(1)}$ come prima approssimazione a T_t (si perdono 6+6 termini all'inizio e alla fine)
- la serie detrendizzata $y_t T_t^{(1)}$ è una stima di $S_t + e_t$ (stagionalità grezza)
- ipotizzando stagionalità costante (es. $S_t = S_{t-12} = S_{t+12} \dots$),
 - a) si calcola la media delle stagionalità grezze dei vari anni per ogni mese ottenendo 12 coefficienti stagionali $\hat{S}_j, j=1,\ldots,12$
 - b) si verifica che la media \hat{S} degli \hat{S}_j sia zero (principio di conservazione delle aree) altrimenti li si centrano $\hat{\hat{S}}_t = \hat{S}_j \bar{\hat{S}}$

ottenendo così i coefficienti netti di stagionalità

(continua:) Stima del trend

Per ottenere la stima "definitiva" del $trend{-}ciclo~\hat{T}_t$

- ullet si deriva la serie destagionalizzata $D_t = y_t \hat{\hat{S}}_t$
- si stima il trend eliminando le oscillazioni casuali con un'ulteriore media mobile di ampiezza "opportuna"

Destagionalizzazione usando le MM

Le medie mobili

- sono una procedura di adattamento in-sample
- fanno perdere k/2 periodi all'inizio e alla fine, dove k è la frequenza annua dei dati osservati

pertanto questi metodi sono inadatti alla previsione *out-of-sample*. Essi sono invece utili ai fini interpretativi.

Una procedura alternativa è la stima di un trend \hat{T}_t con metodi analitici, da cui ottenere $\hat{S}_t = y_t - \hat{T}_t$. Quindi si possono calcolare i coefficienti di stagionalità come visto sopra.

Stima analitica del trend

Per estrapolare (prevedere) i valori futuri di una serie storica è necessario innanzitutto stimare analiticamente e proiettare nel futuro la componente di trend (se la componente stagionale è stata assunta costante, la si può aggiungere successivamente). Possibili forme per la componente di trend in funzione *del tempo*):

- Trend lineare (o linearizzabile) nei parametri:
 - ▶ costante: $f(t) = \beta_0$
 - ▶ lineare: $f(t) = \beta_0 + \beta_1 t$
 - ▶ polinomiale (es.: quadratica): $f(t) = \beta_0 + \beta_1 t + \beta_2 t^2$
 - esponenziale: $f(t) = \beta_0 \beta_1^t$ quest'ultima può essere linearizzata usando i logaritmi: $ln(f(t)) = ln(\beta_0) + ln(\beta_1)t$
- Trend non lineare né linearizzabile:
 - esponenziale modificata: $f(t) = K + \beta_0 \beta_1^t$
 - funzione di Gompertz: $f(t) = K\beta_0^{\beta_1^t}$

Metodi di stima dei parametri del trend

Destagionalizzazione mediante medie mobili (o aggregazione) e metodi di lisciamento in generale possono essere combinati con metodi analitici basati su un modello statistico per la stima e previsione del trend:

- I trend lineari o linearizzabili possono essere stimati (ed estrapolati) facilmente mediante un modello di regressione OLS.
- (La linearizzazione mediante logaritmi provoca distorsioni in previsione)
- Al modello OLS del trend vanno applicate tutte le considerazioni del Cap. 6 sulla "bontà" della stima:
 - proprietà degli errori
 - appropriata forma funzionale
 - stabilità strutturale
 - efficacia previsiva

Livellamento esponenziale

Il *livellamento esponenziale* nasce nel 1957 come metodo pragmatico per la previsione delle serie storiche basato sulle medie mobili. In seguito esso è stato giustificato teoricamente anche nel quadro della teoria "moderna" delle serie storiche come caso particolare dei modelli ARMA/ARIMA.

ullet Si supponga di disporre, al tempo t, di una serie di osservazioni

$$y_{t-n}, y_{t-n+1}, \dots, y_{t-3}, y_{t-2}, y_{t-1}, y_t$$

e di voler prevedere y_{t+1}

- Si potrebbe pensare di ricorrere a una media mobile "all'indietro" di alcuni termini
- L'idea alla base del livellamento esponenziale è di modificare l'approccio delle medie mobili attribuendo più importanza alle osservazioni più recenti e in particolare all'ultima y_t

Livellamento esponenziale semplice

Il *livellamento esponenziale costante* o *semplice* parte dall'ipotesi che la serie sia stazionaria in media

• In prima approssimazione, dato che la serie è stazionaria in media, si potrebbe prendere come previsore in t+1 la media aritmetica delle osservazioni:

$$\hat{y}_{t+1} = \frac{\sum_{j=n}^{0} y_{t-j}}{n}$$

ma così si darebbe lo stesso peso a ogni osservazione.

• Il livellamento esponenziale semplice generalizza quanto sopra assegnando a ogni osservazione un peso:

$$\hat{y}_{t+1} = \frac{\sum_{j=n}^{0} \omega_j y_{t-j}}{\sum_{j} \omega_j}$$

(nella media aritmetica è $\omega_j = \frac{1}{n} \forall j$)

Determinazione dei pesi

Nel modello di livellamento esponenziale costante si stabilisce che i pesi ω_j decrescono esponenzialmente fino a 0 al crescere della distanza da t.

• Si impone:

$$\omega_j = \alpha (1 - \alpha)^j$$

con
$$0<\alpha<1$$
 e $\sum^{\infty}\omega_j=1$

• Sostituendo ricorsivamente ad ogni termine y_h la previsione fatta in h-1: \hat{y}_h , si ottiene il seguente modello:

$$\hat{y}_{t+1} = \alpha y_t + (1 - \alpha)\hat{y}_t$$

dove α è chiamato parametro di livellamento (smoothing).

Il livellamento esponenziale come correzione sequenziale degli errori di previsione

Si vede come il modello si fondi su una logica di *aggiornamento* sequenziale:

- la previsione a un passo \hat{y}_{t+1} è una media dell'ultimo termine e di tutti i precedenti, sintetizzati nella previsione precedente \hat{y}_t .
- Inoltre, riscrivendo la formula come

$$\hat{y}_{t+1} = \alpha y_t + \hat{y}_t - \alpha \hat{y}_t = \hat{y}_t + \alpha (y_t - \hat{y}_t)$$

si nota come la previsione corrente \hat{y}_{t+1} sia uguale alla precedente \hat{y}_t modificata per l'errore di previsione $(y_t - \hat{y}_t)$ commesso al passo precedente, moltiplicato per il parametro di smussamento α .

Si adotta pertanto una logica di correzione sequenziale degli errori di previsione.

Come scegliere il parametro α ?

A questo punto, rimane libero il parametro α :

- il criterio di *ottimalità* per la sua stima dovrà essere basato sull'impiego pratico del modello
- pertanto è naturale cercare $\hat{\alpha}$ tale da "minimizzare gli errori di previsione", per esempio sotto forma di somma dei quadrati:

$$min_{\hat{lpha}}SS(\hat{lpha}) = \sum_{t=1}^{n} (y_t - \hat{y}_t)^2$$

la stima viene ottenuta con metodi numerici (p. es. grid search)

• un altro problema (minore) è come *inizializzare* la serie dei valori previsti, ovvero cosa sostituire per \hat{y}_1 : si può usare y_1 o una media dei primi valori.

Il metodo di Holt e Winters

Consideriamo una serie storica non stazionaria in media, che ammette

- un trend
- una componente stagionale

Se la serie storica ammette una tendenza di fondo *localmente rettilinea*, un modo di adattare il livellamento esponenziale al caso è di scomporre il valore y_{t+1} in

- ullet un livello medio in t, m_t , e
- un trend T_t tra il tempo $t \in t+1$

In generale, su un intervallo di lunghezza Θ , il valore previsto della serie al tempo $t+\Theta$ sarà esprimibile come

$$\hat{y}_{t+\Theta} = \hat{m}_t + \hat{T}_t \Theta$$

Il metodo di Holt e Winters: stima - 1

Anziché stimare congiuntamente le due componenti, si scompone il procedimento utilizzando due modelli di livellamento esponenziale:

• uno per il livello medio

$$\hat{m}_t = \delta_1 y_t + (1 - \delta_1)(\hat{m}_{t-1} + \hat{T}_{t-1})$$

• e uno per il trend

$$\hat{T}_t = \delta_2(\hat{m}_t - \hat{m}_{t-1}) + (1 - \delta_2)\hat{T}_{t-1}$$

dove il primo modello ricostruisce, secondo il solito processo ricorsivo/di correzione dell'errore, il livello medio, il secondo il trend (il cui valore osservato T_t è definito come differenza tra i livelli medi).

Il metodo di Holt e Winters: stima - 2

Nel caso vi fosse una componente stagionale, ovvero

$$\hat{y}_{t+\Theta} = \hat{m}_t + \hat{T}_t \Theta + \hat{S}_{t+\Theta-s}$$

si aggiungerebbe una terza equazione:

• livello medio:

$$\hat{m}_t = \delta_1(\bar{y}_t - \hat{S}_{t-s}) + (1 - \delta_1)(\hat{m}_{t-1} + \hat{T}_{t-1})$$

trend:

$$\hat{T}_t = \delta_2(\hat{m}_t - \hat{m}_{t-1}) + (1 - \delta_2)\hat{T}_{t-1}$$

stagionalità:

$$\hat{S}_t = \delta_3(\tilde{y}_t - \hat{m}_t) + (1 - \delta_3)\hat{s}_{t-s}$$

dove nell'equazione del livello medio \bar{y}_t è il valore destagionalizzato di y_t , e nell'equazione della stagionalità \tilde{y} è il valore detrendizzato di y_t .