
 993SM - Laboratory of Computational Physics lecture II March 9, 2022

Maria Peressi
Università degli Studi di Trieste - Dipartimento di Fisica Sede di Miramare (Strada Costiera 11, Trieste)
e-mail: peressi@units.it
tel.: +39 0402240242

Random numbers and Monte Carlo() Techniques

${ }^{*}$) any procedure making use of random numbers
M. Peressi - UniTS - Laurea Magistrale in Physics Laboratory of Computational Physics - Unit II

Random numbers: use

- in numerical analysis (to calculate integrals)

- to simulate and model complex or intrinsically random phenomena
- to generate data encryption keys

Random numbers:

Characteristics and Generation

Random numbers

A sequence of random numbers is a set of numbers that have nothing to do with the other numbers in the sequence.
... but with a well defined statistical properties, e.g.:

In a uniform distribution of random numbers in the range $[0,1]$, every number has the same chance of turning up.

Note that 0.00001 is just as likely as 0.50000

True random numbers generation

O Use some chaotic systems, like numbered balls in a barrel (Lotto game)
(Use a process that is inherently random, such as:

- radioactive decay
- thermal noise
- cosmic ray arrival

O Tables of a few million truly random numbers do exist, but this is not enough for most scientific applications

Pseudo random numbers generation

 with a computer"pseudo" because they are necessarily generated with deterministic procedures (the computer is a deterministic system!)

A sequence of computer generated random numbers is not truly random, since each number is completely determined from the previous one.

But it may "appear" to be random.

(pseudo)Random numbers generation

These are sequences of numbers generated by computer algorithms, usally in a uniform distribution in the range $[0,1]$.

To be precise, the alogrithms generat integers In between 0 and M, and return a real value.

$$
\mathrm{x}_{\mathrm{n}}=\mathrm{I}_{\mathrm{n}} / \mathrm{M}
$$

the sequence may "appear" to be random
[Attention: in a code, write: $\mathrm{x}_{\mathrm{n}}=$ float $\left(\mathrm{I}_{\mathrm{n}}\right) / \mathrm{M}$!!!]

INTEGER

 (pseudo)Random numbers generation

 (pseudo)Random numbers generation}
many different algorithms...
Two among the simplest (and oldest) algorithms:

- von Neumann
- Linear Congruential Method

(pseudo)random numbers generation:

 example I - "Middle square" algorithm(Von Neumann, I946)
To generate a 10 -digit integer sequence:

- take a first one
loop $\uparrow_{\leftarrow} \rightarrow$ - square it

$$
\begin{aligned}
& \text { eg. } 5772156649^{2}=33317792380594909291 \\
& \text { so the next number is given by } \boldsymbol{f}
\end{aligned}
$$

Also this sequence may "appear" to be random. Limits of the algorithm: depending on the initial choice, you can be trapped into short loops:

$$
\begin{aligned}
& 6100^{2}=37210000 \\
& 2100^{2}=4410000 \\
& 4100^{2}=16810000 \\
& 8100^{2}=65610000
\end{aligned}
$$

(pseudo)random numbers generation:

 example II - "Linear congruential method (LCM)"(Lehemer, 1948)

$\mathrm{I}_{\mathrm{n}+1}=\left(\mathrm{a} \mathrm{I}_{\mathrm{n}}+\mathrm{c}\right) \bmod \mathrm{m}$

Starting value (seed) $=I_{0}$
a, c, and m are specially chosen
$\mathrm{a}, \mathrm{c} \geq 0$ and $\mathrm{m}>\mathrm{I}_{0}, \mathrm{a}, \mathrm{c}$
Limits of the algorithm:
 A by m

A poor choice for the constants can lead to very poor sequences.
example: $\mathrm{a}=\mathrm{c}=\mathrm{I}_{\mathrm{o}}=7, \mathrm{~m}=10$
results in the sequence:

$$
7,6,9,0,7,6,9,0, \ldots
$$

QUESTIONS:

- in which interval are the pseudorandom numbers generated?
- Can we obtain all the numbers in such interval?
- Is the sequence periodic?
-Which is the period?
-Which is the maximum period?
m should be as large as possible since the period can never be longer than m.

One usually chooses m to be near the largest integer that can be represented. On a 32 bit machine, that is $2^{31} \approx 2 \times 10^{9}$.

Choice of multiplier, a

It was proven by M. Greenberger in 1961 that the sequence will have period m , if and only if:
i) c is relatively prime to m;
ii) a-1 is a multiple of p, for every prime p dividing m ;
iii) a- 1 is a multiple of 4 , if m is a multiple of 4

More subtle limits, even of some smart algorithms...

A popular random number generator was
Results from Randu: 1D distribution

$$
\mathbf{x}_{\mathbf{i}}, \mathbf{p}\left(\mathbf{x}_{\mathbf{i}}\right)
$$

2D distribution Still looks okay \longrightarrow plot pairs: $\left(\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{i}+\mathbf{1}}\right)$

$$
I_{n+1}=\left(65539 \times I_{n}\right) \bmod 2^{31}
$$

$65539=2^{16}+3$; initial seed I_{0} : odd number
1D distribution Looks okay
 distributed by IBM in the 1960's with the algorithm:

Results from Randu: 3D distribution

plot triplets:

$\left(\mathbf{X}_{\mathbf{i}}, \mathbf{X}_{\mathbf{i + 1}}, \mathbf{x}_{\mathbf{i}+\mathbf{2}}\right)$

Problem seen when observed at the right angle!
Random numbers fall mainly in the planes Why? Hint: show that: $\mathrm{x}_{\mathrm{k}+2}=6 \mathrm{x}_{\mathrm{k}+1}-9 \mathrm{x}_{\mathrm{k}}$

Problems also with other smart algorithms ...

The authors of Numerical Recipies have admitted that the random number generators, RAN1 and RAN2 given in the first edition, are at best mediocre".

In their second edition, these are replaced by ran0, ran1, and ran2, which have much better properties.
(many editions, see web site: numerical.recipes;
free old edition (1996) in fortran:
http://s3.amazonaws.com/nrbook.com/book_F210.html
=>B7 Random Numbers p. 1141

$$
\begin{aligned}
& \text { or http://nrbook.com/a/bookf90pdf.php } \\
& =>\text { Random number in Ch. 7) }
\end{aligned}
$$

Possible improvements

One way to improve the behaviour of random number generators and to increase their period is to modify the algorithm:

$$
I_{n}=\left(a \times I_{n-1}+b \times I_{n-2}\right) \bmod m
$$

Which in this case has two initial seeds and can have a period greater than m.

Tests the "quality" of a random sequence

- uniformity
(look at the histogram, but also check the moments of the distribution, i.e., <xk>, for $k=I, 2, \ldots$)
- correlation
- other more sophisticated
tests
(in particular for cryptographically secure use!)

Many other (pseudo)random numbers generators

-"Mersenne twister" (Matsumoto and Nishimura , 1997)

The commonly used variant, MT 19937, produces a sequence of 32-bit integers with the following desirable properties:
I. It has a very long period of 2^{19937} - I (which is necessary but not sufficient to guarantee of good quality in a random number generator)
2. It passes numerous tests for statistical randomness

true vs pseudo random number generators

	PSEUDO	TRUE
efficiency	excellent	poor
determinism	deterministic	non deterministic
periodicity	periodic	aperiodic

Technicalities to create our own (pseudo)random number generator

mod ???

Intrinsic procedures in FORTRAN
 (see reference to Chapman book on the moodle page on this Course)

Table B-1: Specific and Generic Names for All Fortran 90/95 Intrinsic Procedures

Generic name, keyword(s), and calling sequence	Specific name	Function type	Section	Notes
ABS (A)	ABS (r) CABS (c) DABS (d) IABS(i)	Argument type Default real Default real Double Prec. Default integer	B. 3	2
ACHAR(I)		Character(1)	B. 7	
$\mathrm{ACOS}(\mathrm{X})$	$\begin{aligned} & \operatorname{ACOS}(\mathrm{r}) \\ & \mathrm{DACOS}(\mathrm{~d}) \\ & \hline \end{aligned}$	Argument type Default Real Double Prec.	B. 3	
ADJUSTL(STRING)		Character	B. 7	
ADJUSTR(STRING)		Character	B. 7	
AIMAG (Z)	AIMAG(c)	Real	B. 3	
AINT (A, KIND)	$\begin{aligned} & \text { AINT (r) } \\ & \text { DINT (d) } \end{aligned}$	Argument type Default Real Double Prec.	B. 3	

EXPANDED DESCRIPTION OF FORTRAN 90 / 95 INTRINSIC PROCEDURES

Intrinsic procedures in FORTRAN

(see the page from Fortran90/95 for Scientists and Engineers, by S.J. Chapman)

MOD (A, P)	$\begin{aligned} & \operatorname{AMOD}(\mathrm{r} 1, \mathrm{r} 2) \\ & \operatorname{MOD}(\mathrm{i}, \mathrm{j}) \\ & \operatorname{DMOD}(\mathrm{d} 1, \mathrm{~d} 2) \end{aligned}$	Argument type Real Integer Double Prec.	B. 3	
MODULO (A, P)		Argument type	B. 3	

Intrinsic procedures in FORTRAN

MOD (A1, P)

- Elemental function of same kind as its arguments
- Returns the value $\operatorname{MOD}(A, P)=A-P * I N T(A / P)$ if $P \neq 0$. Results are processor dependent if $\mathrm{P}=0$.
- Arguments may be Real or Integer; they must be of the same type
- Examples:

Function	Result
$\operatorname{MOD}(5,3)$	2
$\operatorname{MOD}(-5,3)$	-2
$\operatorname{MOD}(5,-3)$	2
$\operatorname{MOD}(-5,-3)$	-2

MODULO (A1, P)

- Elemental function of same kind as its arguments
- Returns the modulo of A with respect to P if $P \neq 0$. Results are processor dependent if $\mathrm{P}=0$.
- Arguments may be Real or Integer; they must be of the same type
- If $P>0$, then the function determines the positive difference between A and then next lowest multiple of P. If $P<0$, then the function determines the negative difference between A and then next highest multiple of P.
- Results agree with the MOD function for two positive or two negative arguments; results disagree for arguments of mixed signs.
- Examples:

Function	Result	Explanation
MODULO $(5,3)$	2	5 is 2 up from 3
MODULO $(-5,3)$	1	-5 is 1 up from -6
MODULO $(5,-3)$	-1	5 is 1 down from 6
MODULO $(-5,-3)$	-2	-5 is 2 down from -3

mod or modulo give the same result if acting on positive integers

Modulus operator in C++

the language provides a built-in mechanism, the modulus operator ('\%'). Example:

```
01 #include <iostream>
02 using namespace std;
03
04 intmain()
05 {
06 intM = 8;
07 inta = 5;
08 intc = 3;
09 int X = 1;
10 inti;
11 for(i=0; i<8; i++)
12 {
13 X = (a* X + C) % M;
14 cout << X << " ";
15 }
16 return 0;
17}
```


Intrinsic pseudorandom numbers generators

We could create our own random number generator using "mod" intrinsic function, but it is much better to use directly the (smart) intrinsic procedures provided by the compilers to generate random numbers, in general: real, with uniform distribution in [0; I [

Intrinsic pseudorandom numbers generator in FORTRAN

Here (Chapman's book): ARGUMENTS in Italic are optional (in other books, optional arguments are in square brackets [])

- Returns pseudo-random number(s) from a uniform distribution in the range $0 \leq$ HARVEST <1. HARVEST may be either a scalar or an array. If it is an array, then a separate random number will be returned in each element of the array.
- Arguments:

$\frac{\text { Keyword }}{\text { HARVEST }}$	Type	Real $\quad \underline{\text { Intent }} \quad$Description Holds random numbers. May be scalar or array.

RANDOM_SEED (SIZE, PUT,GET)
Intrinsic subroutine

- Performs three functions: (1) restarts the pseudo-random number generator used by subroutine RANDOM_NUMBER, (2) gets information about the generator, and (3) puts a new seed into the generator.
- Arguments:

Keyword	Type	Intent	Description
SIZE	Integer	OUT	Number of integers used to hold the seed (n)
PUT	Integer (m)	IN	Set the seed to the value in PUT. Note that $m \geq n$.
GET	Integer (m)	OUT	Get the current value of the seed. Note that $m \geq n$.

- SIZE is an Integer, and PUT and GET are Integer arrays. All arguments are optional, and at most one can be specified in any given call.
- Functions:

1. If no argument is specified, the call to RANDOM_SEED restarts the pseudorandom number generator.
2. If $S I Z E$ is specified, then the subroutine returns the number of integers used by the generator to hold the seed.
3. If GET is specified, then the current random generator seed is returned to the user. The integer array associated with keyword GET must be at least as

warning:

processordependent:
sometimes it starts always
from the same seed !!! long as SIZE.
4. If PUT is specified, then the value in the integer array associated with keyword PUT is set into the generator as a new seed. The integer array associated with keyword PUT must be at least as long as SIZE.

Intrinsic pseudorandom numbers generator in FORTRAN

subroutine random_number(x) :

- the argument x can be either a scalar or a N dimensional array
- the result is one or N real pseudorandom numbers uniformly distributed between 0 and 1
subroutine random_seed([size][put] [get])
- algorithm is deterministic: the sequence can be controlled by initialization: array of "size" (*) integers (seed): different seeds $->$ different sequences
- syntax:
call random_seed(put=seed) to put seed, call random_seed(get=seed) to get its value
(*) * : it depends on the compiler (gfortran, g95, ifort, ...) and on the machine architecture

Intrinsic pseudorandom numbers generator in FORTRAN

Further notes:
subroutine random_number(x) :

- you can call it directly, without a previous call to random_seed
subroutine random_seed([size][put][get])
- all the arguments are optional; i.e., you may also call it as: call random_seed()
The call without arguments corresponds to different actions, according to the compiler implementation and is processor dependent!!! check on your computer!
In some cases it starts always from the same seed, chosen by the computer

Intrinsic pseudorandom numbers generator in C++

real pseudorandom numbers uniformly distributed between 0 and 1:
temp = rand();
A number between 0 and 50:
int rnd = int((double(rand())/RAND_MAX)*50); where RAND_MAX is an implementation defined constant.

Also in c++ the sequence can be controlled by initialization:
srand (time(NULL));

Some programs:

on moodle2.units.it
random_lc.f90
rantest_intrinsic.f90
rantest_intrinsic_with_seed.f90
rantestbis_intrinsic. 990
INIT_RANDOM_SEED.f90
nrdemo_ran.f90

Exercise I:
 Linear Congruent Method: periodicity

How to determine the period "automatically"?
Is it enough to check when a generated number is equal to the initial seed? NO. In same cases you will NEVER go back to the seed...

A possible algorithm:

- create a sequence of $m+1$ numbers
(you don't need more! why?)
- don't start from the first one, that could be in a transient part of the sequence, but from the last one, which is for sure in the periodic part
- compare all the numbers with the last one, starting from the second to the last and going back by I ...
- you get the period!

Exercise 2:
 test of uniformity of the pseudorandom sequence

$\mathrm{r}(\mathrm{n}), \mathrm{n}=\mathrm{I}$, data is our random number sequence between 0 and I
(b) Do a histogram with the sequence generated above and plot it using for instance gnuplot with the command w[ith] boxes. Is the distribution uniform?
Hint: to do the histogram, divide the range into a given number of channels of width Δr, then calculate how many points fall in each channel, $r / \Delta r$:
integer, dimension(20) :: histog :
histog $=0$
do $\mathrm{n}=1$, ndata
i $=$ int(r(n)/delta_r) +1
histog(i) $=$ histog(i) +1 end do

<= counts the number of points falling between i^{*} delta_r and (i+I)*delta_r and assign them to the " $i+1$ " channel

what is int() ? similar intrinsic functions? how to choose?

AINT(A[,KIND])

- Real elemental function
- Returns A truncated to a whole number. $\operatorname{AINT}(\mathrm{A})$ is the largest integer which is smaller than $|\mathrm{A}|$, with the sign of A. For example, $\operatorname{AINT}(3.7)$ is 3.0 , and $\operatorname{AINT}(-3.7)$ is -3.0 .
- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function
- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is -4.0.
- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function
- Returns the largest integer \leq A. For example, $\operatorname{FLOOR}(3.7)$ is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function
- This function truncates A and converts it into an integer. If A is complex, only the real part is converted. If A is integer, this function changes the kind only.
- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

- Integer elemental function
- Returns the nearest integer to the real value A.
- A is Real

what is int() ? similar intrinsic functions? how to choose?

AINT(A[,KIND])

- Real elemental function
- Returns A truncated to a whole number. $\operatorname{AINT}(\mathrm{A})$ is the largest integer which is smaller than $|\mathrm{A}|$, with the sign of A. For example, $\operatorname{AINT}(3.7)$ is 3.0 , and $\operatorname{AINT}(-3.7)$ is -3.0 .
- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function
- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and $\operatorname{AINT}(-3.7)$ is -4.0.
- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function
- Returns the largest integer \leq A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4 .
- Argument A is Real of any kind; optional argument KIND is Integer
- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function
- This function truncates A and converts it into an integer. If A is complex, only the real part is converted. If A is integer, this function changes the kind only.
- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

- Integer elemental function
- Returns the nearest integer to the real value A.
- A is Real

Exercise 2: intrinsic random number generator - test correlations

$$
\left(x_{i}, y_{i}\right)=\left(r_{2 i-1}, r_{2 i}\right) \quad i=1,2,3 \ldots
$$

Testing a Rardom Number Generator

(obsolete: fortran 77)

How many numbers? How many pairs?

but...

correlations with the LCM generator with M=256

$$
\left(x_{i}, y_{i}\right)=\left(r_{2 i-1}, r_{2 i}\right) \quad i=1,2,3 \ldots
$$

> Tes int a Rarldum \umber Germalu
> 1he simple one given in 1he nctes

How many numbers? How many pairs?

Exercise 3:

intrinsic random number generator - test uniformity

Quantitative tests the "quality" of a random sequence

two distributions are the same if all the moments <x>> are the same, and not just the first one <x'> (average)

e.g.:
uniform and gaussian distribution centred around zero have the same average, but different higher order momenta

Exercise 3: intrinsic random number generator - test uniformity

(a) For a uniformity quantitative test, calculate the moment of order k :

$$
\left\langle x^{k}\right\rangle^{\text {calc }}=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{k},
$$

that should correspond to

$$
\left\langle x^{k}\right\rangle^{t h}=\int_{0}^{1} d x x^{k} p_{u}(x)=\frac{1}{k+1}
$$

where $p_{u}(x)$ is the uniform distribution in $[0,1[$. For a given k (fix for instance $k=1,3,7$), consider the deviation of the calculated momentum from the expected one: $\Delta_{N}(k)=\left|\left\langle x^{k}\right\rangle^{\text {calc }}-\left\langle x^{k}\right\rangle^{t h}\right|$, and study its behaviour with N (N up to ~ 100.000). It should be $\sim 1 / \sqrt{N}$. (a log-log plot could be useful)

$$
\text { If } f(x) \sim 1 / \sqrt{N} \Longrightarrow \log (f(x)) \sim-\frac{1}{2} \log (N)
$$

end do

```
how to calculate the sum of the series for increasing N
no need of recalculating again the sum from scratch;
print out partial sums:
```

print out the result as a function of " i "


```
implicit none
```

implicit none
integer :: N, i, k
integer :: N, i, k
real :: sum
real :: sum
real, dimension (:), allocatable :: rnd
real, dimension (:), allocatable :: rnd
print*,' Insert how many random numbers >'
print*,' Insert how many random numbers >'
read(*,*)N
read(*,*)N
allocate (rnd(N))
allocate (rnd(N))
call random_number(rnd)
call random_number(rnd)
print*,' Insert the order of momentum >'
print*,' Insert the order of momentum >'
read(*,*)k
read(*,*)k
sum = 0.
sum = 0.
open (unit=1,file='momentumk.dat')
open (unit=1,file='momentumk.dat')
do i=1,N
do i=1,N
sum = sum + rnd(i)**k
sum = sum + rnd(i)**k
write(1,*)i,sum/i, abs(sum/i - 1./(k+1))
write(1,*)i,sum/i, abs(sum/i - 1./(k+1))
! sum/i is the PARTIAL sum of the sequence for the momentum k
! sum/i is the PARTIAL sum of the sequence for the momentum k
end do

```
end do
```


Test on one sequence, several momenta

rantest_es3_simple.f90

```
allocate (rnd(N))
call random_number(rnd)
allocate(sum(kmax))
sum = 0.
do k = 1, kmax ! Loop for the different momenta
```

also here print the results as a function of "i"

```
do i=1,N
sum(k) = sum(k) + rnd(i)**k
\longrightarrow \mp@code { f u n c t i o n ~ o f ~ " i " }
write(klabel,*)i, sum(k)/i, abs(sum(k)/i - 1./(k+1))
! sum(k)/i is the PARTIAL sum of the sequence for the momentum k
end do ! I
close(klabel)
end do ! k
```


Test on one sequence, several momenta

Test on different sequences for a given momentum

Test of unifornity for intrinsic randon number generator using 〈s>, different seeds

A general suggestion:
do you want to check a power law?

$$
\begin{aligned}
& \text { deviation of }\langle\mathbf{x}\rangle \mathrm{k}=\left\lvert\, \frac{1}{N} \sum_{i=1}^{N} x_{i}^{k}-\left(\left.\frac{1}{k+1} \right\rvert\, \sim 1 / \sqrt{N}+\right.\text { cost. }\right. \\
& \begin{array}{l}
\sim 1 / 2 \\
\text { numerically calculated } \\
\text { expected if the sequence }
\end{array} \\
& \text { was sequence }
\end{aligned}
$$

linear regression: much better

$$
\begin{aligned}
& \log (\text { deviation of }\langle\mathrm{x}>\mathrm{k})-(-1 / 2) \log (\mathrm{N})+\text { cost.' } \\
& \text { check the slope of the log-log !!! }
\end{aligned}
$$

do you want to fit with gnuplot?

Suppose you have the data in two columns, x and y, and you suspect a power low $y=x^{a}+$ const

Consider that: $\quad \log (y)=a * \log (x)+b$
gnuplot> $f(x)=a * x+b$
gnuplot> fit $f(x)$ 'data.dat' u (log(\$1)):(log(\$2)) via a,b
gnuplot> plot f(x), 'data.dat'

Exercise 4: use of the seed

integer, dimension(:), allocatable :: seed integer :: sizer
call random_seed(sizer)
! the result depends of the machine architecture!
allocate(seed(sizer))

Check how random_seed() works with gfortran or other compilers (g95...) Do you want to force the seed initialization but not "by hands"?

Exercise 5 (optional): how to change the seed using the computer clock

SUBROUTINE init_random_seed
INTEGER :: i, nseed, clock
INTEGER, DIMENSION(:), ALLOCATABLE :: seed
CALL RANDOM_SEED(size = nseed)
ALLOCATE(seed(nseed))
CALL SYSTEM_CLOCK(clock)
seed $=$ clock $/ 2+37$ * $(/(i-1, i=1, n) /)$
CALL RANDOM_SEED(PUT = seed)
DEALLOCATE(seed)
END SUBROUTINE

Exercise 6 - optional

nrdemo_ran.f90

```
module ran_module
    implicit none
    public :: ran_func
        contains
    FUNCTION ran_func(idum) result(ran)
        ...
    END FUNCTION ran_func
end module ran_module
    program demo
        use ran_module
        implicit none
        integer :: i,idum
        real :: x
        print*, "idum (<0) = "
    read*,idum
    x =ran_func(idum)
end program demo
```


Data input / output

you can:

prepare an input datafile (say, in.dat)
then:
\$./a.out < in.dat

Also the output can be redirected:
\$./a.out > out.dat

