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Cyber-Physical System (CPS)
Combination of physical (environment / plant / process / system) with a
cyber (computation / software / code) components potentially networked and
tightly interconnected
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Model-based Design Approach

Validation : "Are you building the right thing?"         Verification : "Are you building it right?”



Model-based Design Approach
MBD languages are often visual and block-diagram based, e.g. Simulink



Most convenient model of computation for an (Autonomous) CPS is a
reactive and concurrent model of computation.

Reactive  Component

Inputs Outputs
Internal

state

An autonomous CPS can be viewed as a network of components that communicate
either synchronously or asynchronously.



Examples of type of modeling for CPS components:

Ø Modeling physical phenomena (dynamical systems) – differential equation

Ø Feedback control systems – time-domain modeling

Ø Modeling modal behavior – FSMs, hybrid automata, … 

Ø Modeling sensors and actuators – models that help with calibration, noise elimination, 

Ø Modeling hardware and software – capture concurrency, timing, … 

Ø Modeling networks – latencies, error rates, packet loss,

Models: abstractions of CPS



Dynamical Systems

• Most natural model for describing most physical systems

• Systems that continuously evolve over time

• It is represented by equations that  involve the rates of change of quantities that describe
the state of the phenomena

• Quantities describe the state of the phenomena, modeled as state variables
• Pressure, Temperature, Velocity, Acceleration, Current, Voltage, etc.

• Could include algebraic relations between state variables
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Input u(t) Output y(t)

�̇� = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Dynamical Systems

𝑥, 𝑢 ∈ 𝐶!



Order Differential Equation 

Position 𝑥
Velocity 𝑣

Force 𝐹

Friction 𝑘𝑣

Newton’s law of motion: 𝐹 = 𝑚 !!"
!#!

+ 𝑘𝑣 ; 𝑣 = !"
!#



State-Space representation
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�̇� = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

Example:
Convert

Ø It is numerically efficient to solve
Ø It can handle complex systems
Ø It  allows for a more geometric understanding of dynamic systems
Ø It  forms the basis for much of modern control theory

�̇� = 𝑣 𝑡

�̇� =
𝐹 𝑡 − 𝑘𝑣 𝑡

𝑚



Order Differential Equation 
All derivatives are with respect to single independent variable, often representing time.

Order of ODE is determined by highest-order derivative of state variable function appearing 
in ODE

ODE with higher-order derivatives can be transformed into equivalent first-order system.

𝑥(") = 𝑓(𝑥,… , 𝑥 "$% )

𝑧& = 𝑥, 𝑧' = �̇�, … , 𝑧(= 𝑥((*&)
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u Let 𝕋 represent a set representing time instants, i.e. 𝕋 ⊆ ℝ!"

u Input Signal: Function 𝐹 from 𝕋 → ℝ
� Input signal is assumed to be continuous or piecewise-continuous

u Given an initial state (𝑥", 𝑣") and an input signal 𝐹(𝑡), the execution of the system 
is defined by state-trajectories 𝑥 𝑡 and 𝑣 𝑡 (from 𝕋 to ℝ) that satisfy the initial-
value problem:

� 𝑥 0 = 𝑥!; 𝑣 0 = 𝑣!
� �̇� = 𝑣 𝑡 ; �̇� = " # $%& #

'

Executions of Car
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Suppose ∀𝑡: 𝐹 𝑡 = 0, 𝑥, = 5m, 𝑣, = 20 m/s, 𝑚 = 1000kg, 𝑘 = 50𝑁𝑠/𝑚
u Then, we need to solve:

� 𝑥 0 = 5; 𝑣 0 = 20
� �̇� = 𝑣; �̇� = − ")

*

u Solution to above differential equation (solve for 𝑣 first, then 𝑥):

u 𝑣 𝑡 = 𝑣,𝑒
*!"#; 𝑥 𝑡 = -.$

(
1 − 𝑒*

!"
#

u Note, as 𝑡 → ∞, 𝑣 𝑡 → 0, and 𝑥 𝑡 → -.$
(

Sample Execution of Car
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Differential Equation 

Simple Example: Temperature equations

𝑑𝑇
𝑑𝑡

= −𝑎𝑇 + 𝑇/01 + 𝐾2𝑢

The state of the system is characterized by state variables, which describe the system. The rate of change is 
(usually) expressed with respect to time



u Set 𝐼 of real-valued input variables 

u Set 𝑂 or real-valued output variables

u Set 𝑋 of real-valued (continuous) state variables

u Initialization 𝐼𝑛𝑖𝑡 specifying a set 𝑋+of initial values for states

u Dynamics: for each state variable, 𝑥, a real valued expression 𝑓 over 𝐼 and 𝑋

u Output Function: for each output variable, 𝑦, a real valued expression ℎ over 𝐼 and 𝑋.

Continuous-Time Component Definition
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u Convention: 𝐱 = 𝑥&, 𝑥', … 𝑥3 , 𝐲 = (𝑦&, 𝑦', … , 𝑦-)
u Given an input signal 𝑢: 𝕋 → ℝ, an execution consists of a differentiable 

state signal 𝐱 t , and an output signal 𝐲 𝑡 , such that:
1. 𝐱 0 ∈ 𝑋+
2. For each output variable 𝑦 and time t, 𝑦 𝑡 = ℎ 𝑢 𝑡 , 𝑥 𝑡
3. For each state variable 𝑥, ../ 𝑥 𝑡 = 𝑓(𝑢 𝑡 , 𝑥 𝑡 )

Execution Definition
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Input u(t) Output y(t)x(0) = x0
<latexit sha1_base64="nHmN0XbWEwdjn5MZpRCp/KKoy9U=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyqoBeh6MVjBfsB26Vk02wbmk2WZFZalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6387K6tr6xmZhq7i9s7u3Xzo4bBqVasoaVAml2yExTHDJGsBBsHaiGYlDwVrh8G7qt56YNlzJRxgnLIhJX/KIUwJW8ke44p7hGzzqut1S2a26M+Bl4uWkjHLUu6WvTk/RNGYSqCDG+J6bQJARDZwKNil2UsMSQoekz3xLJYmZCbLZyRN8apUejpS2JQHP1N8TGYmNGceh7YwJDMyiNxX/8/wUousg4zJJgUk6XxSlAoPC0/9xj2tGQYwtIVRzeyumA6IJBZtS0YbgLb68TJrnVe+i6j1clmu3eRwFdIxOUAV56ArV0D2qowaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fpW+PiA==</latexit>

�̇� = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



Order Differential Equation 

𝑢

real 𝑥456 ≤ 𝑥 ≤ 𝑥7897

𝑦

�̇� = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)

x(0) = x0
<latexit sha1_base64="nHmN0XbWEwdjn5MZpRCp/KKoy9U=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyqoBeh6MVjBfsB26Vk02wbmk2WZFZalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6387K6tr6xmZhq7i9s7u3Xzo4bBqVasoaVAml2yExTHDJGsBBsHaiGYlDwVrh8G7qt56YNlzJRxgnLIhJX/KIUwJW8ke44p7hGzzqut1S2a26M+Bl4uWkjHLUu6WvTk/RNGYSqCDG+J6bQJARDZwKNil2UsMSQoekz3xLJYmZCbLZyRN8apUejpS2JQHP1N8TGYmNGceh7YwJDMyiNxX/8/wUousg4zJJgUk6XxSlAoPC0/9xj2tGQYwtIVRzeyumA6IJBZtS0YbgLb68TJrnVe+i6j1clmu3eRwFdIxOUAV56ArV0D2qowaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fpW+PiA==</latexit>



u Given an input signal 𝑢(𝑡), when are we guaranteed that the system has at least 
one execution? Is there nondeterminism in continuous-time components?

u Input signal should be piecewise-continuous, and additional conditions need to be 
imposed on the RHS of dynamics (𝑓) and output functions (ℎ)

u Related to solutions for the initial value problem in the classical theory of ODEs

Existence and Uniqueness of Solutions

18 �̇� = 𝑓 𝐱, 𝐮
𝐲 = ℎ(𝐱, 𝐮)



u There exists at least one solution 𝐱(𝑡) if the function 𝑓 is continuous

u Definition of continuity uses notion of distance between points
� Euclidean distance: 𝑑 𝐱, 𝐲 = 𝐱 − 𝐲 ( = 𝑥) − 𝑦) ( +⋯+ 𝑥* − 𝑦* (

u 𝑓 is continuous if for all 𝐱 ∈ ℝ!, for all 𝜖 > 0, there exists a 𝛿 > 0, such that for all 
𝐲 ∈ ℝ!, if 𝐱 − 𝐲 " < 𝛿, then 𝑓 𝐱 − 𝑓 𝐲 " < 𝜖.

u Example when solution does not globally exist:
�

+,
+#
= 1/𝑡

Existence
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u Solution to initial value problem is unique if 𝑓 is Lipschitz continuous
u Lipschitz-continuity is a stronger version of continuity: upper bounds how fast a function 

can change
u Function 𝑓 is Lipschitz-continuous if there exists a constant 𝐿 (called the Lipschitz 

constant) such that: 
∀𝐱, 𝐲 ∈ ℝ0: 𝑓 𝐱 − 𝑓 𝐲 ≤ 𝐿 𝐱 − 𝐲

u Examples: 
� Linear functions (e.g. 𝑥% − 3𝑥&) are Lipschitz continuous
� Functions: 𝑥&, 𝑥 are not Lipschitz continuous over ℝ0

u Can restrict 𝕋 and 𝑋 to some bounded and closed set such that 𝑓 is piecewise-continuous 
and Lipschitz to get unique solutions over such compact domains

Uniqueness
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u Allow modeling arbitrarily complex functions: even functions with unbounded 
discontinuities 

u May not be even possible to check for Lipschitz conditions for what’s implemented 
in a Matlab function/Simulink model

u Rely on numerical integration schemes/solvers to obtain solutions
� ode45, ode23, ode15, etc.

u We assume that any continuous component model we will use can be numerically 
simulated by Matlab/Simulink

We simulate
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Model with disturbance

Position 𝑥

Velocity 𝑣Force 𝐹

Friction 𝑘𝑣

Newton’s law of motion: 𝐹 = 𝑚 !!"
!#!

+ 𝑘𝑣 +𝑚𝑔 sin(𝜃)

𝜃



Time Invariant System 
The system is time invariant because the output does not depend on the particular 
time the input is applied.

The underlying physical laws themselves do not typically depend on time.



u Equation of simple car dynamics can be written compactly as:
�̇�
�̇� = 0 1

0 −𝑘/𝑚
𝑥
𝑣 + 0

1 [𝐹]

u Letting 𝐴 = 0 1
0 −𝑘/𝑚 , 𝐵 = 0

1 , we can re-write above equation in the 
form:

u �̇� = 𝐴𝐱 + B𝐮, where 𝐱 = 𝑥 𝑣 , and 𝐮 = 𝐹

Linear Systems
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u Linear components model linear systems
� 𝑓 is of the form 𝑎%𝑥% + 𝑎&𝑥& +⋯+ 𝑎0𝑥0 or compactly, 𝑓 = 𝐴𝐱
� ℎ is of the form 𝑏%𝑢% + 𝑏&𝑢& +⋯+ 𝑏*𝑢* or compactly, ℎ = 𝐵𝐮

u Linear systems have many nice properties: 
� Many analysis methods in the frequency domain (using Fourier/Laplace transform 

methods)

� Superposition principle (net response to two or more stimuli is the sum of responses to 
each stimulus)

Linear Components
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u Autonomous linear system has no inputs: �̇� = 𝐴𝐱

u Solution of autonomous linear system can be fully characterized:
� 𝐱 𝑡 = 𝑒1/𝐱+
� Computing 𝑒1 is easy if 𝐴 is a diagonal matrix (non-zero elements are only on the 

diagonal)

u For a linear system with exogenous inputs?
� 𝑥 𝑡 = 𝑒1/𝑥+ + ∫+

/ 𝑒1 /$2 𝐵𝑢 𝜏 𝑑𝜏

u In practice, numerical integration methods outperform matrix exponential

Solutions to Linear Systems
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u Property capturing the ability of a system to return to a quiescent state after 
perturbation
� Stable systems recover after disturbances, unstable systems may not
� Almost always a desirable property for a system design

u Fundamental problem in control: design controllers to stabilize a system

Stability of Systems
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u Problem: Inverted Pendulum on a moving cart is inherently 
unstable, aim: keep it upright

u Solution Strategy: Move cart in direction in the same direction 
as the pendulum’s falling direction

u Design problem: Design a controller to stabilize the system by 
computing velocity and direction for cart travel



u System �̇� = 𝑓 𝐱 with f Lipschitz continuous
u Equilibrium point when 𝑓 𝐱 is zero (say 𝐱∗)
u Equilibrium point 𝐱∗ is Lyapunov-stable if:

� For every 𝜖 > 0, 
� There exists a 𝛿 > 0, such that

• if 𝐱 0 − 𝐱∗ < 𝛿, then, 
• for every 𝑡 ≥ 0, we have 𝐱 𝑡 − 𝐱∗ < 𝜖

Lyapunov stability
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𝐱∗

𝛿-ball

𝐱(0)

𝜖-ball

Solutions starting 𝛿close from equilibrium point 
must remain close (within 𝜖) forever



u System �̇� = 𝑓 𝐱
u Equilibrium point 𝐱∗ is asymptotically-stable if:

� 𝐱∗ is Lyapunov-stable +
� There exists 𝛿 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then lim

/→>
‖𝐱 𝑡 − 𝐱∗‖ = 0

Asymptotic Stability
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Solutions not only remain close, but also converge to the equilibrium



Solutions not only converge to the equilibrium, but in fact converge at least as 
fast as a known exponential rate

� All stable linear systems are exponentially stable
� This need not be true for nonlinear systems!

Exponential Stability

u System �̇� = 𝑓 𝐱
u Equilibrium point 𝐱∗ is exponentially-stable if:

� 𝐱∗is asymptotically stable +
� There exist 𝛼 > 0, 𝛽 > 0 s.t. if 𝐱 0 − 𝐱∗ < 𝛿, then for all 𝑡 ≥ 0:

𝐱 𝑡 − 𝐱∗ ≤ 𝛼 𝐱 0 − 𝐱∗ 𝑒#$%



Bounded-Input-Bounded-Output (BIBO) stability
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If the output signal is bounded for all input signals that are bounded. 

Example:

� 𝑥 0 = 𝑥!; 𝑣 0 = 𝑣!
� �̇� = 𝑣 𝑡 ; �̇� = " # $%& #

'



Feedback Linearization

33

u Equations of motion for inverted pendulum:
𝑚ℓ"�̈� + 𝑑�̇� + 𝑚ℓ𝑔 cos 𝜃 = 𝑢

u Control Input: Torque 𝑢

u Rewriting, with 𝑥# = 𝜃, 𝑥" = �̇�:

u ̇𝑥# = 𝑥"

u ̇𝑥" = − $
%ℓ-

𝑥" −
'
ℓ
cos 𝑥# + #

%(-
𝑢

𝜃 𝑚𝑔

𝑚𝑔 cos 𝜃

ℓ
𝑢


