Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste
II Semestre 2021

Lecture 3: Concurrent Modeling

Difference Equation

Difference Equation

Functional Components

1. Classical model of computation: Functional or Transformational Programs

- Start from a given input,
- Produce a certain output and then terminate
- Desired functionality can be described by a mathematical function
- Emphasis is on data computation

Reactive Components

2. Reactive Programs:

- It maintains and internal state
- Continuously interact with the environment at a rate decided by the environment
- Emphasis is on system-environment interaction; e.g. airline autopilot, mail-servers, etc.

Synchronous Models

All components execute in a sequence of rounds in lock-step

Example:

- Components in a digital hardware circuit with a central global clock
- Fixed-step Simulation Models of Discrete Components in Simulink

Synchronous languages

- Benefit: system design is simpler if we use a simple round-based computation
- Challenge: How do we ensure synchronous execution when components may execute on different hardware?

Simple Representation of a Synchronous Component

Simplest synchronous component: delay

(Boolean $=\{0,1\}$)

- Input variable: in of type Boolean
- Output variable: out of type Boolean
- State variable: x of type Boolean, initialized to 0
- In each round, component updates output from the state and state from
 input

Execution of "Delay"

- Initialize state to 0
- Repeatedly execute rounds
- In each round:
- Choose value for input (provided from environment, e.g. by user)
- Execute update code

$$
0 \xrightarrow{1 / 0} 1 \xrightarrow{1 / 1} 1 \xrightarrow{0 / 1} 0 \xrightarrow{0 / 0} 0 \xrightarrow{1 / 0} 1
$$

Synchrony hypothesis

- Time needed to execute update is negligible compared to arrival times between consecutive inputs
- Synchronous execution is a logical abstraction
- Execution time of update code is 0
- Production of outputs, updates to state and arrival of inputs happen instantaneously
- With multiple components, assume all execute synchronously and simultaneously

Let's Formalize an SRC

- SRC is defined as a tuple: $\left(Q_{I}, Q_{x}, Q_{o}, \llbracket\right.$ init \rrbracket, \llbracket react $\left.\rrbracket\right)$, where:

Symbol	Designation	Examples	
Q_{I}	Set of Inputs	\{bool in $\}$	
Q_{X}	Set of State Variables	\{bool $x\}$	
Q_{o}	Set of Outputs	$\{$ bool out $\}$	
\llbracket init \rrbracket	Set of initial States	$x:=0$	
$\llbracket r e a c t \rrbracket$	Set of Updates	out $:=x$ $x:=$ in	

Semantics of updates \& initialization

- Let the set of input, output, and state values be Q_{I}, Q_{O}, Q_{X}
- Semantics of the initialization function:
- At time/round 0, maps the state variables to some specified value (or values) in Q_{X}
- Semantics of the update function (some sequence of conditionals and assignments):
- A set R of transitions where each transition is of the form: $q \xrightarrow{i / o} q^{\prime}$, where q is the old value of the state variables, q^{\prime} is the new value of the state variables, i is the value of the input in that round, and o is the value of the output
$-R$ is a subset of $Q_{X} \times Q_{I} \times Q_{O} \times Q_{X}$

What are the Q_{I}, Q_{O}, Q_{X} for these SRCs?

Transitions for Delay

Composition of Synchronous Components

Composition of Synchronous Components

\rightarrow Delay 1
\rightarrow Delay 2
bool out ${ }_{2}$

Observe:

1) in_{2} is the same as out $_{1}$ in every round
2) Ignoring first 2 rounds, outputs of $d 2$ are the inputs to d1 delayed by 2 rounds

What does this model achieve?

If number of ' 0 ' inputs seen by the first component exceeds the number of ' 1 ' inputs it has seen by 2 , at any point in its execution, then the warn output becomes 1
d := 0;
end

Deterministic Component

- An SRC is deterministic if:
- It has a single initial state
- Updates ensure that for every state q and input i, there is a unique state q^{\prime} and output o such that $\left(q, i, o, q^{\prime}\right)$ is a transition
- Determinism means for same input sequence, you get same state/output sequence every single time
- Note:
- Nondeterminism is useful for modeling uncertainty/unknown and compactness

- It is not the same as probabilistic/random choice!

Extended State Machines

- Commonly used to describe behavior of MBD models

Extended State Machines

D Does this ESM remind you of something?

Component Switch: What does this do?

ESM corresponding to Switch SRC

$$
\operatorname{int} \mathrm{x}:=0
$$

$$
\begin{aligned}
q & =0: \text { off } \\
& =1: \text { on }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (press==1) |(} x \geq 10) \\
& \rightarrow x:=0
\end{aligned}
$$

ESM notation

- Implicit variable called "mode" that is a discrete state variable over some finite enumeration. Here: \{on, off\}
- SRC transition may correspond to mode-switch
- Each mode-switch has guard/update. Example:
- Guard: (press==0) \& $(x<10)$ and
- Update: $\mathrm{x}:=\mathrm{x}+1$

ESM execution

$$
\text { (press }==1 \text {) or }(x \geq 10)
$$

$$
\rightarrow \mathrm{x}:=0
$$

- Start in mode off; initial state $=$ (off,0)
- Sample executions:

$(o f f, 0)$	$(o f f, 0)$
$\downarrow 0$	$\downarrow 0$
$(o f f, 0)$	$(o f f, 0)$
$\downarrow 1$	$\downarrow 1$
$(o n, 0)$	$(o n, 0)$
$\downarrow 0$	$\downarrow 0$
$(o n, 1)$	$(o n, 1)$
\vdots	\vdots
$\downarrow 0$	$\downarrow 0$
$(o n, 10)$	$(o n, 5)$
$\downarrow 0$	$\downarrow 1$
$(o f f, 0)$	$(o f f, 0)$

ESM transitions could be nondeterministic!

Event-triggered Components

- What to do if we want some components to not participate in some rounds?
- Event is a special input/output variable, which can be absent or present
- Event variable has value only if it is present
- Syntax:

$\mathbf{e} \boldsymbol{?}$	True if e is present
$\mathbf{e}!\mathbf{a}$	e gets the value of the assignment a

Event-triggered Copy

Event-triggered Components

- No need to execute in a round where triggering events are absent

Finite-state Components

Component is finite state if all variables are over finite types

$\xrightarrow{\text { bool in }}$| out $:=y ;$
 if $(z==0)$
 bool $z:=0$ |
| :--- |
| int $y:=y+1$ |
| $z:=$ in $y:=y-1$ |\quad int out

Cruise Controller Example

Sensors

- Rotation Sensor: Wheel speed sensor or vehicle speed sensor
- Type of a tachometer
- Counts number of rotations per second and as the wheel radius is known, can compute the linear speed of the car

(From Porter and Chester Institute slides on Google Image Search)

Actuator

- ThrottleController is an actuator that gets a force/torque required to adjust the throttle plate which leads to tracking the desired speed

Decomposing CruiseController further

MeasureSpeed SRC

Asynchronous Components

Asynchrony

- Synchrony: All components execute in a sequence of rounds in lock-step
- Asynchrony: No lock-step computation!
- Natural model for networked, distributed communicating components executing independently and at possibly different speeds
- As there is no central, global clock, explicit coordination is required between components
- Examples:
- Processes in distributed computation, multiple threads in any modern OS
- Interrupt-driven processing

Asynchronous Reactive Component Example

Asynchronous Reactive Component

- Input channel in of type bool
- Output channel out of type bool
- State variable x of type bool $+\varnothing$. The value \emptyset indicates empty or null.
- x initialized to \emptyset
- Input task $\mathrm{T}_{\text {in }}$ reads input value into x
- Output task $\mathrm{T}_{\text {out }}$ produces output if x is not empty

Asynchronous Reactive Component Execution

- Execution Model: In each step only one task is executed
- Task can be executed only if it is enabled (i.e. if its guard condition is true)
- If multiple guard conditions are true, one task is nondeterministically executed
- Sample execution:

$$
\emptyset \underset{\mathrm{T}_{\text {in }}}{\text { in?0 }} 0 \underset{\mathrm{~T}_{\mathrm{out}}}{\text { out!0 }} \emptyset \underset{\mathrm{T}_{\text {in }}}{\text { in?1 }} 1 \underset{\mathrm{~T}_{\text {in }}}{\text { in?0 }} 0 \underset{\mathrm{~T}_{\text {out }}}{\text { out!0 }} \emptyset
$$

Buffer

Example: Asynchrony + Nondeterminism

 ARC may have no inputs or outputs, just internal tasks - Update may have no guards
\Rightarrow In each step, execute T_{x} or T_{y} Sample execution:

$$
(0,0) \underset{\mathrm{T}_{\mathrm{y}}}{\overrightarrow{2}}(0,1) \underset{\mathrm{T}_{\mathrm{y}}}{\overrightarrow{\mathrm{t}}}(0,2) \underset{\mathrm{T}_{\mathrm{x}}}{(1,2) \underset{\mathrm{T}_{\mathrm{y}}}{\overrightarrow{2}}(1,3)}
$$

- Interleaved model of concurrency

Asynchronous Process/Reactive Component

$\operatorname{bool}_{\emptyset} \mathrm{x}:=\varnothing$
$\begin{aligned} & \mathrm{T}_{\text {in }}: \mathrm{x}:=\text { in } \\ & \mathrm{T}_{\text {out }}: \\ & \mathrm{x} \neq \emptyset \rightarrow\{\text { out }:=\mathrm{x} ; \\ & \\ & \quad \mathrm{x}:=\emptyset\} \end{aligned}$

- Set of input channels: I
- ESM representation: in?v, where v is the value to be received
- Set of output channels: O
- ESM representation: out!v, where v is the value to be written
- Set of state variables X
- Initialization Init which maps state variables to initial values

Updates are different from SRCs!

Input Task defines updates of the form: $\mathbf{G} \rightarrow \mathbf{x : = E (X , i n)}$

- Guard condition G : some expression over only state variables X; input task can be executed only if G is true
- For each in in I, we associate a read-set (X $\cup\{$ in\}): variables that can appear in E for input task associated with in (rationale: can read value on in only if that task is enabled)
- Defines a set of input actions of the form: $q \xrightarrow{i n ? \mathrm{v}} q^{\prime}$
- where q is value of state variables before update, and q satisfies G
- value of state variables after update is $q^{\prime}=E(X \mapsto q$, in $\mapsto v)$

Updates are different from SRCs!

Output Task: defines updates of the form: $\mathbf{G} \rightarrow$ out $:=\mathbf{E}(\mathbf{X})$

- Guard condition G: some expression over only variables in X; output task can be executed only if G is true
- Any expression containing only state variables can appear in E
- Defines an output action of the form $\mathrm{q} \xrightarrow{\text { out!v }} \mathrm{q}^{\prime}$
- where q is value of state variables before update, and q satisfies G
- value of state variables after update is q^{\prime}
- value v is output on channel out

Updates are different from SRCs!

Internal Task: defines updates of the form: $\mathbf{G} \rightarrow \mathbf{x}:=\mathbf{E}(\mathbf{X})$

- Guard condition G: some expression over only variables in X; internal task can be executed only if G is true
- Any expression containing only state variables can appear in E, only state variables appear on LHS
- Defines an internal action of the form $\mathrm{q} \xrightarrow{\varepsilon} \mathrm{q}^{\prime}$
- where q is value of state variables before update, and q satisfies G
- value of state variables after update is q^{\prime}
- No input is read or output is produced!

Asynchronous Example

Asynchronous Processes can also be represented with extended state machines

Asynchronous Merge: Sequence of Actions

Asynchronous Processes can also be represented with extended state machines

Composing Asynchronous Processes

- Parallel composition: Inputs, Outputs, States and Initialization similar to the synchronous case
- Input consumption needs to be synchronized with output production for the 'temp' variable

Composed DoubleBuffer

Buffer

	bool $_{\emptyset} \mathrm{x}_{1}:=\emptyset$	bool $_{\varnothing} \mathrm{x}_{2}:=\varnothing$
in	$\begin{aligned} & \mathrm{T}_{\text {in } 1}: \mathrm{x}_{1}:=\text { in } \\ & \mathrm{T}_{\text {out } 1}: \\ & \mathrm{x}_{1} \neq \emptyset \rightarrow\left\{\text { temp }:=\mathrm{x}_{1} ;\right. \\ & \left.\quad \mathrm{x}_{1}:=\emptyset\right\} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\text {in } 2}: \mathrm{x}_{2}:=\text { temp } \\ & \mathrm{T}_{\text {out } 2}: \\ & \mathrm{x}_{2} \neq \emptyset \rightarrow\left\{\text { out }:=\mathrm{x}_{2} ;\right. \\ & \\ & \left.\mathrm{x}_{2}:=\emptyset\right\} \end{aligned}$

Defining $P_{1} \mid P_{2}$
In each step only 1 task executes

- If y is an output channel of P_{1} and input channel of P_{2} :
- Output task for $\mathrm{P}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{U}_{1}$
- Input task for $\mathrm{P}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{U}_{2}$
- Composition has output task for y with code: $\mathrm{G}_{1} \wedge \mathrm{G}_{2} \rightarrow \mathrm{U}_{1} ; \mathrm{U}_{2}$

Output Hiding

Hiding ouput y : achieved by removing y from the set of output channels and turning each output task associated with the channel y into an internal task by declaring y to be a local variable

Blocking vs. Non-blocking Synchronization

P2

- Task $\mathrm{T}_{\text {out }}$ of P1 can produce a value on the output only if P2 has an input task that is enabled to consume the value with some input task
- In this example, once x becomes odd, P2 cannot consume (no enabled input task) and it blocks communication
- Process is non-blocking if for \forall channel in and \forall state s, at least one guarded update corresponding to input task for in is enabled
- Process is non-blocking if it is non-blocking on all channel in

Blocking vs. Non-blocking Synchronization in Buffer

Blocking vs. Non-blocking Synchronization in Merge

	queue(bool) $\mathrm{x}_{1}:=\emptyset, \mathrm{x}_{2}:=\emptyset$
bool $\overrightarrow{\mathrm{in}_{2}}$	$\begin{aligned} & \mathrm{T}_{\text {in } 1}: \neg \text { Full }\left(\mathrm{x}_{1}\right) \rightarrow \operatorname{Enqueue}\left(\mathrm{x}_{1}, \mathrm{in}_{1}\right) \\ & \mathrm{T}_{\text {in } 2}: \neg \operatorname{Full}\left(\mathrm{x}_{2}\right) \rightarrow \operatorname{Enqueue}\left(\mathrm{x}_{2}, \mathrm{in}_{2}\right) \\ & \mathrm{T}_{\text {out } 1}: \neg \operatorname{Empty}\left(\mathrm{x}_{1}\right) \rightarrow \text { out }:=\operatorname{Dequeue}\left(\mathrm{x}_{1}\right) \\ & \mathrm{T}_{\text {out } 2}: \neg \operatorname{Empty}\left(\mathrm{x}_{2}\right) \rightarrow \text { out }:=\operatorname{Dequeue}\left(\mathrm{x}_{2}\right) \end{aligned}$

An input on the channel in_{1} cannot be processed if the queue x_{1} is full, and thus the producer of outputs on the channel in_{1} has to wait until this queue becomes non-full

Deadlocks

- Common error in asynchronous designs
- Caused by each process waiting for another process to execute a task, but no task is enabled

