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| part:
Random motion and

diffusion
-history and analytic treatment-



Random motion

Brownian motion is by now a well-understood problem, and the concepts,
techniques and models have proven fruitful in many different fields, from
statistical mechanics to econophysics. A brief history:

* Robert Brown 1828

» J.C. Maxwell 1867

* Albert Einstein 1905

* Maryan Smoluchowski 1906
» Jean Perrin 1912

 J. Bardeen , C. Herring 1950
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Observations of "active molecules" by scientist Robert Brown in 1827

A

BRIEF ACCOUNT

OF

MICROSCOPICAL OBSERVATIONS

Made in the Mouths of June, July, and August, 1827,

ON THE PARTICLES CONTAINED IN THE
POLLEN OF PLANTS;

AND

ON THE GENERAL EXISTENCE OF ACTIVE

MOLECULES

IN ORGANIC AND INORGANIC BODIES

BY

ROBERT BROWN,
F.R.S., Hox. M.RS.E. a¥p R.I Acap., V.P.LS,,

MEMEBER OF THE ROYAL ACADEMY OF BCIENCES OF SWEDEN, OF THE ROYAL
SOCIETY OF DENMARK, AND OF THE IMPERIAL ACADEMY RATURE
CURIOSORUM ; CORRESPONDING MEMBER OF THE ROYAL
INSTITUTES OF FRANCE AND OF THE NETHERLANDS,

OF THE IMPERIAL ACADEMY OF SCIENCES AT
ST. PETERSBURG, AND OF THE ROYAL
ACADEMIES OF PRUSSIA ANXD
BAVARIA, ETC.



Random motion

® random motion of tiny particles had been
reported early in scientific literature

® before 1827, random motion was attributed
to living particles.

® random motion = “brownian motion”, after
1827, when the British botanist Robert
Brown claimed that even dead particles
could exhibit a random motion




%dg/m motion

“Brownian’

® random motion = “brownian motion”, after
1827, when the British botanist Robert
Brown claimed that even dead particles
could exhibit a random motion

® What is the origin of the brownian motion!?
In 1870, Loschmidt suggested that it is caused
by thermal agitation,




Brownian motion
-open questions-

Observations of "active molecules” made by Brown in
1827 led the physics community to search for the

proof that molecules indeed exist.

At the turn of 20th century, the atomic nature of
matter was fairly widely accepted among scientists,
but not universally (there was NO direct evidence?!)

Another argument under discussion: the kinetic
theory of gases



Maxwell-Boltzmann distribution of velocity
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Kinetic theory of gases

Under discussion in ~1900: %mv_Q _ ;

Can we prove its validity from the observation of the
Brownian motion!?

kgT 117

Could 1 be obtained from that relationship!? In

principle yes, provided one can measure ¢: But ¢~

cannot be measured from the erratic trajectory of
particles observed at the microscope!

so... What can we really measure?



Brownian motion
-Einstein’s 1905 paper-

In essence, the Einstein’s paper provides:

- evidence for_existence of atoms/molecules
- estimation of the size of atoms/molecules
- estimation of the Avogadro’s humber

Einstein predicted that microscopic particles
dispersed in water undergo random motion as
a result of collisions (stochastic forces) with
water molecules much smaller and light (not
visible on the chosen observation scale).



Brownian motion

1111

fat droplets (0.5-3 pm) in milk
http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

credit to David Walker, Micscape

larger particles (blue = fat droplets) jiggle more slowly
than smaller (red = water) particles;
only the larger particles are visible
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http://www.microscopy-uk.org.uk/dww/home/hombrown.htm

A. Einstein:

"On the Movement of Small Particles Suspended in Stationary
Liquids Required by the Molecular-Kinetic Theory of Heat"
Annalen der Physik 19, p. 549 (1905)

In this paper it will be shown that, according to the molecular-kinetic theory
of heat, bodies of a microscopically visible size suspended in liquids
must, as a result of thermal molecular motions, perform motions of such
magnitude that they can be easily observed with a microscope. It is
possible that the motions to be discussed here are identical with so-called
Brownian molecular motion; however, the data available to me on the latter
are so imprecise that | could not form a judgment on the question.

If the motion to be discussed here can actually be observed, together
with the laws it is expected to obey, then [...] an exact determination
of actual atomic sizes becomes possible. On the other hand, if the
prediction of the motion were to be proved wrong, this fact would provide a
far-reaching argument against the molecular-kinetic conception of heat....

Later Einstein wrote: "My major aim in this was to find facts which would
guarantee as much as possible the existence of atoms of definite finite size."
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Brownian motion
-Einstein’s 1905 paper-
Einstein suggests that mean square displacements

<Ar2> of suspended particles undergoing brownian
motion rather then their velocities are suitable

observable and measurable quantities, and
directly related to their diffusion coefficient D:

<Ar2>=2dDt with D = pkeT = kgT/(6TTNP)

(t time, d dimensionality of the system, U mobility,
P radius of brownian particles ; NN solvent viscosity; ke =R/N)

<Ar?> (and therefore D), N, T measurable => obtain P !

14



Brownian motion
-Einstein’s 1905 paper-
Einstein suggests that mean square displacements
<Ar2> of suspended particles undergoing brownian
motion rather then their velocities are suitable
observable and measurable quantities, and
directly related to their diffusion coefficient D:

) ()
<Ar2>=12dDt with D ="pyksT = kgT/(6TTNP)

(t time, d dimensionality of the system, U mobility,
P radius of brownian particles (???); n solvent viscosity; ke =R/N)

<Ar2> measurable => from (**) we get D;
Once D is known, since N, T are measurable => from (*) we obtain P

I5



Diffusion

Derivation of the diffusion coefficient: D — //lk BT

Part 1 — Sedimentation Equilibrium

First Fick’s law
(particle
diffusion eq.)

states that the flux
(LWWc) goes from _D @ —0

. . flux = pyWe
regions of high _I"lv?‘ dx
. migration —— —2
Cogcentratlon to in gravity  diffusion
regions of low

concentration, with a
magnitude that is
proportional to the
concentration gradient H= mobility =

From Mass Transfer Theory:

W =net weight of one particle
¢ = concentration of particles

velocity 1

force 6mn P
1 = viscosity of fluid
P = particle radius

¢(x)= o exp(—gWxJ

Compare Two Independent Analyses of Final State

From Thermodynamics:

cﬁ) +Rlenc:

0 ) ..
dx dx If there is a variation
g4, . )
gravitational  chemical in the potential
potential potential energy of a system,

an energy flow will
occur.

¢ = WNx = PE per mole
N,= Avogadro's number } .
R = universal gas constant
T = absolute temperature

RT[=]energy/mole

c(x)=cgexp (—£WxJ

Compare: exponentials must be equal! & D = ukT (¥)


http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Potential_energy
http://en.wikipedia.org/wiki/Energy

Brownian motion and diffusion

Fick’s law of diffusion (1855):a continuum model

Part II — Statistical Analysis of B.M.
Here: 1D (d=1)
p=concentration

2
Fick's 2nd law: o = Dé—p
ot ox? (x,1) 1 X2
X,t)= exp| ———
Initial Condition:  p(x,0)=3(x) P VanDt Pl 4D
B.Cl's: p(Fo0,1)=0 ) gaussian with o = 2Dt
1 1 2 2
_ -~ —z*/(20%)
3 . p(.ZB) _ O'\/% €
Time = 0 o0
> 1= I p(x,t)dx foralls
R %
Z:; 7 o0
= x(1) = .[ xp(x,t)dx =0
£ 1 o
= . o
X (t) = j xzp(x,t)dx= 2Dt
0 0 1 > ~ (*%)

- -2

_——

Time >0

i =0, 0 = i)

The mean square displacements <Ar2> of suspended particles are

suitable observable quantities and give D
17




Random motion in nature

® in gases or diluted matter: random motion
(after how many collisions on average a
particle covers a distance Ar? or which
is the distance from the starting point
covered on average by a particle after N
collisions?)

® in solids: diffusion of impurities (molten
metals) or vacancies..., electronic transport
in metals...



Il part:
Random walks

A very simplified model
for many phenomena,
including brownian motion



e traditional RVY » brownian motion

¢ modified (interacting) RW » the
motion of the walker depends on his
previous trajectory

20



Scaling properties of RW

Dependence of (R*(t)) on t :

¢ normal behavior: (R*(t)) ~ t
for the brownian motion

e superdiffusive behavior:(R*(t)) ~ t** with v > 1/2
in models where autointersections are unfavoured

e subdiffusive behavior  (R?(t)) ~ t*¥ withv < 1/2
in models where autointersections are favoured

21



One- dlmen5|onal RW

A I‘PHHM{HHH—&

A walker at each step can go either left or right:

N :number of steps

¢ :length of the random displacement (random direction)
(s, = +¢ relative displacement of the ¢ step)

x  : displacement from the starting point after NV steps

(zxy =30, si, an € [-NL,+N/])
p_,» p_ :probability of left or right displacement

What can we calculate? Averaging over walkers:
(xny) :average net displacement after N steps

<;1:?V> : average square displacement after N steps

P (g;) : probability for  to be the final net displacement

from the starting point after N steps
22



RW ID

Exact analytic expressions can be easily derived for pP— = p—

Z (if p=p)...=0

(Z > Z +<ZS¢Sj>I...(ifp<_:p_>)...:]\7€2

i=1 i#j

More general,if p_ # p_,
(xy) =n_(=¢)+n_(+¢) with n_=Np_and n_ = Np_,
(xn) = N(p— —p ) (z%) = [N(p— —p))° +4p_p_N{

therefore: (Ax]%,) _ (x]%,) _ <xN>2 = 4p_p. N2

We expect this behavior for averages over many walkers
23



RW ID

In general, average quantities can be calculated from Py (m)

Let’s make an example

of analytical calculation of Pn(x)
(N=3 is enough!)

(how many
different walks of length N?)

24



RW ID

In general, average quantities can be calculated from Py (m)

Let’s make an example

of analytical calculation of Pn(x)
(N=3 is enough!)

(There are 2N different possible walks
of N steps...)

25



RW ID

N =3 => 8 possible different walks

||




RW ID

Generalizing the expression for P ():
Pi(1) =p-; Pi(-1) =p—

From:
Pnii1(z) = Py(z — 1)p— + Pn(z + 1)p—
we have:
N' ﬂ_|_£ N _ =z
p— 2 2 2 2
PN(x)_(ﬁ+£)v(ﬂ_£)|p_> P=
2 2/ \ 2 2/
n\z|-5|-4|3[=2]-1]0]1|2|3]4]5
a | VY 1 PN(I)
3 1 Llo ]! fc_>r
(IL) 3 1 0 3 0 3 0 1
_g 4 1 8 4 8 6 8 4 8 T (Pascal
= o o o ~ ~ triangle)
c 5 Lol 2ol 0 | 4L
32 32 32 39 39 39

N
~N



Can be generalized to large N (put N =t/At ,then At — 0,
continuum limit):

P(z, NAt) = \/iNe—f”Q/(?N) (*)
v

which looks like a Gaussian (a part from the normalization).
Why?
Let’s describe the RWV problem with a space/time differential

equation...
28



RW |D: Diffusion - continuum limit

(case P— =p-)
P(i,N)=zP(i+1,N—-1)+sP(i—1,N — 1)
Defining: ¢t = N7, x = 1/ we have:

P(z,t)=sP(x+lL,t—7)+iP(zx —1,t — 1)

We rewrite this by subtracting P(x,t — 7) and dividing by 7

P(xz,t) — P(x,t—7)  Plx+lLt—7)+Plx—-1lLt—71)—2P(z,t—1T)

T 2T
-we get

OP(x,t) I 0°P(x,t)
Ot T 2r 92 2 )

2t

In the limit 7 — 0,1 — 0 but where the ratio I /7 is finite, this becomes an exact relation.
29



RW |D: Diffusion - continuum limit

The fundamental solution of the continuum diffusion equation of the previous slide, defining
62

D= — is:
2T

1 x2
Pt =\ 5z *P\~1p7 )

The discretized solution of the RW problem:

2 2

considering £ = N7 and the definition of D, can be rewritten as:

[ 1 2
P(x,t) = a exp (_4—_Dt>

a part from the normalization which is a factor of 2 larger in this form because of the spatial
discretization that excludes alternatively odd or even values of .

The solution is therefore a Gaussian distribution with o2 = 2Dt which describes a pulse
gradually decreasing in height and broadening in width in such a manner that its area is
conserved.

30



RWV |D:simulation

The basic algorithm:

ix = position of the walker

x_N,x2 N = cumulative quantities
rnd(N) = sequence of N random numbers

(I run= 1 particle= | walker)

ix = 0 ! initial position of each walker
call random number(rnd) ! get a sequence of random numbers
do istep = 1, N
if (rnd(istep) < 0.5) then ! random move
ix = ix - 1 ! left
else
ix = ix + 1 ! right
end if ! now ix is the updated position of the individual walker
end do

Now ix is the final position of the walker

31



RWV |D:simulation

The basic algorithm:

ix = position of the walker

x_N,x2 N = cumulative quantities
rnd(N) = sequence of N random numbers

(I run= 1 particle= | walker)

do irun = 1, nruns
ix = 0 ! initial position of each walker
call random number(rnd) ! get a sequence of random numbers
do istep = 1, N
if (rnd(istep) < 0.5) then ! random move
ix = ix - 1 ! left
else
ix = ix + 1 ! right
end if ! now ix is the updated position of the individual walker
end do

. Let’s sum over many walkers
X N = xXxX N + 1Xx Y

«2 N = %2 N + ix*+2 (note that x_N and x2_N must not be not reset to zero!)

- - This accounts for the final positions only after N steps

end do
32



RWV |D:simulation

The basic algorithm:

ix = position of the we.llker o (I run= 1| particle= | walker)
x_N,x2 N = cumulative quantities
rnd(N) = sequence of N random numbers

do irun = 1, nruns

ix = 0 ! initial position of each run

call random_number(rnd) ! get a sequence of random numbers
do istep =1, N

if (rnd(istep) < 0.5) then ! random move

ix = ix - 1 ! left
else

ix = ix + 1 ! right But we can monitor what happens
end if for each intermediate step by using
x_N (istep) = x_N (istep) + ix arrays X_N() and x2_N() and
x2_N(istep) = x2_N(istep) + ix**2 including the calculation inside the

end do loop on the steps

P_N(ix) = P_N(ix) + 1 ! accumulate (only for istep = N)
end do
33
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RWV |D:simulation

P_N (x)
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RWV |D:simulation

0.12 T T T T T T T
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RWV |D:simulation

0'12 I I I I T T T

‘prob_N64_ntrial1000’ ———
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RWV |D:simulation

P_N (x)

0.12

0.1

0.08

0.06

0.04

0.02

‘prob_N64_exact’

‘prob_N64_ntrial9999’ ——
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Random Walks
j#..hf; =  stan

In the continuum space, or discretised on a lattice...

39



Random Walks 2D

(AR%,) :<(A;U1 4+ ...+ AxN)2 + (Ay; + ... + AyN)2>: . = N(Ax? + Ayf} — N/?

(ARy) x N

also in 2D! (and in general in each dimension)
40



Random WValks

40.0

-'*.".'-' ;-‘

200 F

0.0

-200

-40.0 : ' - - ' -
~40.0 -20.0 0.0 20.0 40 .0

Theory predicts that (AR]%,) o [V, but this holds only for averages
on many walkers!
41



Random Walks 2D

Generating 2-D random unit steps

1.

Choose # a random number in the range [0 27] and then set # = coafd,y = &iné

Choose a random value for & in the range [—1,1]anq &% = £V1— Ar® (choose the sign

randomly too).

Choose separate random values for AT, AY in the range [-1,1] (but not Ar =0, Ay = ).
Normalize &% &% go that the step size is 1.
Choose a direction (N, E, S, W) randomly as the step direction (no trigonometric functions are

then needed). Note, choosing one of four directions is equivalent to choosing a random
integer on [0,3].

Choose separate random values AT, AY in the range [—\/ 3/2, \/ 3/ 2]

TEST DIFFERENT ALGORITHMS!

WHAT IS THE BEST? THE ONE WHICH GIVES THE BEST BEHAVIOR?
WHAT IS THE MOST EFFICIENT?

42



Generating 2D random unit steps
Comment on the algorithm n. 5

Indicating with = and y the individual displacements,

px) = for |x| <4/3/2 or O otherwise; the same for p(y)

24/3/2

the average step size is:

V32 (/32
(x> +y%) = J \/_[ \/_(x2+y2) pp(y) dxdy=...=1
—\/3/2 J—/3/2

Therefore, with & and y generated in this way, the behaviour of the simulated
(AR%) should be N (since (AR%) = N/?).

(the code rw2d-with-averages-3methods.f90 checks this)

43



Random Walks 2D

TEST DIFFERENT ALGORITHMS!

R . .
I theoretical ——___}f

A00.0

¥, ¥ random f
F -‘_'__“——a- r
Iy
B ”
&
r .

2000 o

100.0

Dn L | L | 1 1 1
0.0 100.0 2000 3000 H.."'I"T

Theory predicts that (ARZ) o N , but this holds only for averages
on many walkers! ConS|der this before extracting your conclusions..
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Random Walks 2D

<AR/2> vs
Nsteps

Test algorithm
n. 1 (fort.10)
n. 3 (fort.11)
n. 5 (fort.12)

with
Nsteps = 1000

averaged over
A different
number of
Nwalks
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Random Walks 2D

0.0000000

0.2242774
-1.7333623
-1.4481916
-2.2553353
-3.8911035
-3.6508965

1

0.0000000
3.7794106
1.3218992
-3.1119978
-3.5246484
-6.6665235
-8.0110636

if (mod(i,|0)==0) then

end if

WARITE (...) i,x,y

WARITE (...) i,x,y

WoONOCTL DA~AWDNDN—O

0.0000000
0.6946244
0.9359566
1.8891419
0.9642899
0.1308700
0.2071800
0.9160752
0.2856980
1.0143363
0.2242774
-0.7752404
-1.7280728
-2.0930278
-3.0587580
-2.0729706
-1.8304152
-2.2890768
-1.7717266
-1.1920205
-1.7333623
-1.5798329

0.0000000
0.7193726
1.6898152
1.9922019
2.3725290
2.9251692
3.9222534
4.6275673
3.8512783
3.1663797
3.7794106
3.8104627
3.5069659
4437991 |
4.1784425
4.0104446
3.0403070
2.1516960
1.2959222
0.4810965
1.3218992
0.3337551



Random Walks 2D

self-similarity!

plot every |0 steps
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Brownian motion
and

|

¢

Si on faisait des pointés a
des intervalles de temps
100 fois plus rapprochés,
chaque segment serait
remplacé par un contour
polygonal relativement
aussi compliqué que le
dessin entier, et ainsi de
suite. On voit comment
s’évanoulit ... la notion de
trajectoire.

Jean Perrin ( 191 2)

48



Random Walks 2D
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Other Random Walks
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Examples of the random path of a raindrop to the ground

The probability of a step down is larger than the probability of a step up;
furthermore, this is a restricced RW, i.e. limited by boundaries
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Self-avoiding Random WValks

(@)

(b)

a) Schematic illustration of a linear
polymer in a good solvent :
head-tail mean square distance is (in 3D):

(AR%;) ~ N*¥ v = 0.592

b) Simulation with a SAW on a square lattice:
2D model gives v = 3/4

(independent on details such as monomers
and solvent structures)

51



Other Random Walks

® RW with traps

® persistent RW (a correlated random walk in
which the walker has probability a of

continuing in the same direction as the
previous step) => superdiffusive behaviour

52



Some programes:

on https://moodle2.units.it

rw 1 d.f90
rw2d.f90

rw2-with-averages- | method.f90
rw2-with-averages-3methods.f90
rw2zoom.f90

contour, pl

53


https://moodle2.units.it

‘pI’: macro for gnuplot for plotting trajectories
(suppose column | is‘time’, 2 is x, 3 is y)
and check self-similarity:

set term postscript color

set size square

set out '|.ps’

p [-20:5][-10:15] 'l.dat" u 2:3 w |

set out '|0.ps’

p [-40:20][-10:50] '10.dat' u 2:3 w |, 'contour’ u 1:2 w |

Use:
gnuplot$ load ‘pl’

54



Il part:
algorithm for the
Brownian motion

(Langevin treatment)

(see code: brown.f90)



The numerical approach:
the ingredients

Here: NOT Einstein’s, but Langevin’s (1906) approach
arriving at a Newtonian equation of motion including a

random force due to the solvent
See: De Grooth BG, Am. J. Phy. 67, 1248 (1999)

Ingredients:

* large Brownian particles - solvent interactions described
by: elastic collisions between large particle (mass M,
velocity V) and small (solvent) particles (m, v);
* momentum and energy conservation at each collision
MV+mv = MV +mv’
MV2/2+mv2/2 = MV’2/2+mv’2/2

56



The numerical approach:

the equation of motion

After reasonable assumptions (many collisions (i) in a time
interval At, where V; are the same..., m<M..., ... ) =>

arrive at a simple expression for MAV/At=M(V’-V)/At :

Ma = F, - yV(t)
F. : stochastic force, i.e. the cumulative effect, in the time
interval, of many collisions with smaller particles
-yV(t) : drag force, opposite to V(t) (y>0); y can be
expressed (using Stokes’ formula for a sphere of radius P)
as:

v = 6P

(both forces have the same origin, in the collisions with the smaller particles)
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The numerical approach:

discretization of the equation of motion

Ma = F, - yV(1)
Rewritten as: MAV/At = AV, /At - y V(1)
=> Ve = Vg +AV, - YAT/M)V,
with:

AV, = 2mv/M = (...) = 1/M v/Ivl V(2ykgT/n);

At each collision v/|v] is -1 or +1 => after N collisions 2??

the result is a gaussian random variable

Wq centered in O, s.d. -\/(N/Z) => (see also next lectures)

58



The numerical approach:

discretized equations for positions and velocities

Vi =Vq - (1/M)V AL +wq(\/(2kaTA’r))/M

q+
X =Xq+V At

q+l q+l

- the hearth of our numerical approach
- can be easily implemented for iterative execution

NOTE : we are NOT imposing any specific time

dependence behavior: it will come out as an
“experimental” result of the simulation
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The numerical approach:

Input parameters - I

Vau = Vg [1 - (y/M)AL] + w (V(27ksTAT))/M

- physical parameters of the system: T and vy
(through n and P:  y=6mnP)
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The numerical approach:

Input parameters - 11

Vou =Vq [1 - (1/M)AL] + w,(V(2yksTAT))/M

- time step At : cannot be fixed a priori!

Some suggestions from physical and rough numerical considerations
[(y/M)At < 1 to reproduce the situation of T=0 (damped motion)

At too small: oo long numerical simulations necessary...

At too large: serious numerical uncertainties...]

Our numerical work:

choice of At is analogous of an instrument calibration !!!

suggestion: start from small At s.t yAt/M << 1, increase At until important
changes in the diffusion coefficient are observed.
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Running the code...

e KgT=41021), M=1.4-1070kg,
y=8-10Ns/m

Avvia Velocita': Auto zoom

scala 11587083055:1
iterazione n. 34406

Snapshot of a numerical simulation

of the Brownian motion in 2D

of many large patrticles.

The trajectories of four of them are shown

Azzera le velocita' Inverti le velocita' Avvia una nuova simulazione
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Discovering the results

We can prove by numerical experiments:

(i) the linear behavior of the mean square displacement
<R?> with time:
<R%> = 2dD t

(i) the validity of the Einstein relation between the slope of
this line and the solvent parameters (temperature and
drag coefficient):

<R?> = (2d k;T / y) t
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