Astrofisica Nucleare e Subnucleare Neutrino Astrophysics

Astrofisica Nucleare e Subnucleare **Supernovae Neutrinos**

nts

Schematical Evolution

Hydrostatic Burning Phases 000000000000000

Core-collapse supernova Nucleosynthesis heavy elements

Collapse phase

Important processes:

• Neutrino transport (Boltzmann equation): $v + A \rightleftarrows v + A$ (trapping) $v + e^- \rightleftarrows v + e^-$ (thermalization)

cross sections $\sim E_v^2$

- electron capture on protons: $e^{-} + p \rightleftarrows n + v_e$
- · electron capture on nuclei: $e^- + A(Z, N) \rightleftarrows A(Z-1, N+1) + v_e$

Astrophysical reaction rates Introduction 0000000000 000000000000

Hydrostatic Burning Phases 00000000000000

Core-collapse supernova Nucleosynthesis heavy elements

Bounce and v_e burst

- Collapse continues until central density becomes around twice nuclear matter density.
- Sudden increase in nuclear pressure stops the collapse and a shock wave is launched at the sonic point. The energy of the shock depends on the Equation of State.
- The passage of the shock dissociates nuclei into free nucleons which costs \sim 8 MeV/nucleon. Additional energy is lost by neutrino emission produced by electron capture (v_e burst).
- Shock stalls at a distance of around 100 km.

Neutrino burst

- Burst is produced when shock wave reaches regions with densities low enough to be transparent to neutrinos
- Burst structure does not depend on the progenitor star.
- Future observation by a supernova neutrino detector. Standard neutrino candles.

Delayed explosion mechanism: neutrino heating

Main processes:

$$
\begin{aligned} \nu_e + n &\rightleftarrows p + e^-\\ \bar{\nu}_e + p &\rightleftarrows n + e^+ \end{aligned}
$$

Concept of gain radius due to Bethe. Corresponds to the region where cooling (electron positron capture) and heating (neutrino antineutrino absorption) are equal.

$$
\text{Cooling: } 143 \left(\frac{kT}{2 \text{ MeV}}\right)^6 \text{ MeV/s}
$$

Heating:
$$
110\left(\frac{L_{\nu_e,52}\epsilon_{\nu_e}^2}{r_7^2}Y_n + \frac{L_{\bar{\nu}_e,52}\epsilon_{\bar{\nu}_e}^2}{r_7^2}Y_p\right)
$$
 MeV/s

Gravitational energy of a nucleon at 100 km: 14 MeV Energy transfer induces convection and requires multidimensional simulations.

Neutrinos to the Rescue

Mu- and tau-neutrino fluxes and spectra not crucial for explosion

Astrofisica Nucleare e Subnucleare Nuclear Astrophysics - 1

Introduction Astrophysical reaction rates 0000000000 00000000000

Hydrostatic Burning Phases 0000000000000000

Core-collapse supernova Nucleosynthesis heavy ele

Stellar Evolution

Hydrostatic Burning Phases 000000000000000

Core-collapse supernova Nucleosynthesis heavy elements

Stellar life

Nuclear burning stages
(e.g., 20 solar mass star)

Introduction Astrophysical reaction rates 0000000000 000000000000

Hydrostatic Burning Phases \bullet 000000000000000

Core-collapse supernova Nucleosynthesis heavy elements

Hertzspung-Russell diagram

Hydrostatic Burning Phases 000000000000000

Core-collapse supernova Nucleosynthesis heavy elements

Hoyle State and tripple α reaction

Red giant structure

pp chains

Once ⁴He is produced can act as catalyst initializing the ppII and ppIII chains.

Hydrostatic Burning Phases 000000000000000

Core-collapse supernova Nucleosynthesis heavy elements

The other hydrogen burning: CNO cycle

requires presence of ${}^{12}C$ as catalyst.

Hydrostatic Burning Phases 000000000000000

Nucleosynthesis heavy elements Core-collapse supernova

Neutrino spectrum (Sun)

This is the predicted neutrino spectrum

Astrofisica Nucleare e Subnucleare Solar Neutrinos

The Standard Solar Model

http://www.sns.ias.edu/~jnb/

- J. Bahcall: The main author of the SSM
- The standard solar model is derived from the conservation laws and energy transport equations of physics, applied to a spherically symmetric gas (plasma) sphere
- Constrained by the luminosity, radius, age and composition of the Sun
- •Inputs for the Standard Solar Model
	- –Mass
	- –Age
	- –Luminosity
	- –Radius
- •No free parameters
- •Tested by helioseismology
- •Fusion ⇒ neutrinos

Nota: Leggere l'articolo (tradotto anche in italiano) http://www.sns.ias.edu/~jnb/Papers/Popular/Nobelmuseum/italianmystery.pdf

ν **from the Sun: the proton cycle**

Experimental Techniques

Solar Neutrino Detectors

- Neutrino Absorption Experiments
	- 37Cl
	- 71Ga
- Neutrino Scattering Experiments
	- SuperKamiokande
- Direct Counting experiments

– SNO

•The Clorine or 'Davis' experiment

$$
37 \text{Cl} + \text{v}_e \rightarrow 37 \text{Ar} + \text{e}
$$

•Pioneering experiment by Ray Davis at Homestake mine began in 1967

•Consisted of a 600 ton chlorine tank

•Experiment was carried out over a 20 year period, in an attempt to measure the flux of neutrinos from the Sun

•**Measured flux was only one third the predicted value !!**

37Cl experiment

•The Clorine or 'Davis' experiment

 $37Cl + v_e \rightarrow 37Ar + e$

§ Pioneering experiment by Ray Davis at Homestake mine began in 1967

§ Consisted of a 600 ton chlorine tank

 \blacksquare Threshold $E = 0.814$ MeV

§ Experiment was carried out over a 20 year period, in an attempt to measure the flux of neutrinos from the Sun

§ Chemical extraction of Argon and direct counting of Argon decays (15 atoms over 130 tons of Cl every month!)

• Measured flux was only one third the predicted value

³⁷Cl experiment

³⁷Cl experiment

Radiochemical experiments: GALLEX/GNO and SAGE

• The main solar neutrino source is from the p-p reaction:

$$
p + p \rightarrow d + e^+ + v_e + 0.42 MeV
$$

•Solar neutrino experiment based on the reaction:

$$
{}^{71}\text{Ga} + \text{v}_e \rightarrow {}^{71}\text{Ge} + \text{e}^-
$$

•Ability to detect the low-energy neutrinos from p-p fusion

•**SAGE:** Located at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia (1990-2000)

• **GALLEX/GNO:** Located at the Gran Sasso

• Energy threshold: 233.2 ± 0.5 keV, below that of the p-p V_e (420 keV)

•GALLEX/GNO
• 30.3 tons of gallium in form of a concentrated

 $GaCl₃$ -HCl solution exposed to solar v 's

- Neutrino induced ⁷¹Ge forms the volatile compound $GeCl₄$
- \cdot Nitrogen gas stream sweeps GeCl₄ out of solution
- GeCl₄ is absorbed in water GeCl₄ \rightarrow $GeH₄$ and introduced into a proportional counter

•Number of 71Ge atoms evaluated by their radioactive decay

SAGE – Russian American Gallium Experiment

- **radiochemical Ga experiment at Baksan Neutrino Observatory with 50 tons of metallic gallium**
	- **running since 1990-present**

 $66.2^{+3.3}_{-3.2}~^{+3.5}_{-3.2}~\rm SNU$ 3.3 3.2 + − + −

measures *pp* **solar flux in agreement with SSM when oscillations are included – the predicted signal is**

 $67.3^{+3.9}_{-3.5}$ SNU + −

• latest result from 157 runs (1990-2006)

Figure 12.17. The SAGE experiment in the Baksan underground laboratory in the Caucasus. The 10 so-called reactors can be seen, 8 of which contain a total of 57 tons of metallic gallium (with kind permission of the SAGE collaboration).

Solar Neutrino Problem

The Solar Neutrino Problem

How can this deficit be explained?

1. The Sun's reaction mechanisms are not fully understood

NO! new measurements (~1998) of the sun resonant cavity frequencies

- 2. The experiment is wrong *NO! All the fourthcoming new experiments confirmed the deficit!*
- 3. Something happens to the neutrino as it travels from the Sun to the Earth *YES! Oscillations of electron neutrinos!*
Solar Neutrino Problem

- Astrophysical solutions?:
	- Low metallicity
	- Burnt out core
	- Rapid Rotation
	- High mass loss rate
	- Pure CNO cycle
	- WIMP
	- Central BH

The SK way- The elastic scattering of neutrinos on electrons

Neutrino Scattering Experiments

Cherenkov threshold energies of various particles.

$$
\cos \theta = \frac{1}{n\beta^2}
$$

Cherenkov light is emitted in a cone of half angle θ from the direction of the particle track

Neutrino Scattering Experiments

Neutrino Scattering Experiments

• SK measured a flux of solar neutrinos with energy > 5 MeV (from B⁸) about 40% of that predicted by the SSM

• The reduction is almost constant up to 18 MeV

Ratio of observed electron energy spectrum and expectation from SSM

The decisive results: SNO (α:

1999 –Ω:**2006)** • 18m sphere, situated underground at about 2.5km underground, in Ontario

- 10,000 photomultiplier tubes (PMT)
- Each PMT collect Cherenkov light photons
- Heavy water (D_2O) inside a transparent acrylic sphere (12m diameter)
- Pure salt is added to increase sensitivity of NC reactions (2002)
- It can measure the flux of all neutrinos 'Φ**(**ν**x)**' and electron neutrinos 'Φ**(**ν**e)**'
- The flux of non-electron neutrinos

 $\Phi(\nu_{\mu}, \nu_{\tau}) = \Phi(\nu_{\times}) - \Phi(\nu_{e})$

■These fluxes can be measured via the 3 different ways in which neutrinos interact with heavy water

ν **Reactions in SNO**

-Gives v_{e} energy spectrum well

- -Weak direction sensitivity \propto 1-1/3cos(θ)
- $-v_{\rm e}$ only.
- -SSM: 30 CC events day-1

$$
vc v_x + d \Rightarrow p + n + v_x
$$

- Measure total ${}^{8}B$ v flux from the sun.
- Equal cross section for all v types
- SSM: 30/day

$$
\begin{array}{c}\n\text{(ES)} \\
V_x + \text{e} \implies V_x + \text{e}\n\end{array}
$$

-Low Statistics (3/day) -Mainly sensitive to v_{e} , some -sensitivity to v_{μ} and v_{τ} -Strong direction sensitivity

<u>L</u>The 2001 results

a The v_e 's flux from ⁸B decay is measured by the CC (1) reaction: $\phi^{CC}(v_e)$ $= (1.75 \pm 0.24) \times 10^6$ cm⁻²s⁻¹

 \Box Assuming no oscillations, the total v flux inferred from the ES (3) reaction rate is:

$$
\Box \phi^{ES}(v_x) = (2.39 \pm 0.50) \times 10^6 \text{ cm}^{-2} \text{s}^{-1} \quad \text{(SNO)}
$$

 $\Box \phi^{ES}_{SK}(v_x) = (2.32 \pm 0.08) \times 10^6$ cm⁻²s⁻¹ (SK)

The difference between the ⁸B flux deduced from the FS and the CC rate at SNO and SK is:

$\Box \Phi(v_\mu, v_\tau) = (0.57 \pm 0.17) \times 10^6 \text{ cm}^{-2}\text{s}^{-1}$ (3.3 σ)

qThis difference first shows that **there is a non-electron** flavour active neutrino component in the solar flux !

$$
\boxed{\text{UNITS:} \begin{cases}\n\phi_{\text{CC}}^{\text{SNO}} = 1.59_{-0.07}^{+0.08} \text{(stat)}_{-0.08}^{+0.06} \text{(syst)} \\
\phi_{\text{ES}}^{\text{SNO}} = 2.21_{-0.26}^{+0.31} \text{(stat)} \pm 0.10 \text{ (syst)} \\
\phi_{\text{NC}}^{\text{SNO}} = 5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)}\n\end{cases}\n\text{ATTESO: \text{Bahcall et al.} - \text{SSM= 5.05±0.8}}
$$

2003 SNO Energy spectra (Salt data)

Figure 8: Evidence for neutrino flavor change seen by SNO. The open (filled) circles represent the 2003 SNO flux results, relative to the SSM, under the assumption of an undistorted (unconstrained) ⁸B neutrino energy spectrum.

Solar Neutrino Problem

Solar Neutrino Problem

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Borexino @LNGS

Borexino @LNGS

BOREXINO Recent Solar And Terrestrial Neutrino Results

Werner Maneschg on behalf of the Borexino Collaboration

W. Maneschg (MPIK Heidelberg)

Borexino: Solar And Geo neutrinos

HEP 2015, July 24, 2015 $1/31$

 $2Q$

◆ロト→個ト→重ト→重ト→重

Borexino: detector properties & design, and physics goals

Main properties:

- **•** Large volume organic liquid scintillator detector:
	- at LNGS (1.4 km overburden)
	- operational since May 2007
- **O** Ultra low background (radiopurest environment ever measured)
- Real-time detection (time stamp and pulse shape for every event)
- Spectroscopy at low energies, typically between 0.1-15 MeV
- 3D position reconstruction

Main physics goals:

- **Neutrinos from Sun** \bullet
- Antineutrinos from Earth & reactors
- \bullet Sterile neutrinos (TH 23-07-15:13.5)
- SN-(anti)neutrinos & other exotic particles and processes

Nut shell profile:

- **O** Water tank (2100 m^3) :
	- Absorption of environmental
		- γ rays and neutrons
	- μ Cherenkov detector (208 PMTs)
- 2 Stainless Steel Sphere:
	- 2212 PMTs, 1350 m³, R=6.85 m
- 3 2 buffer layers: PC+DMP
	- Outer $R_2 = 5.50$ m, Inner $R_1 = 4.25$ m
	- Shielding from external γ rays
- Scintillator: 270 tons of PC+PPO

Borexino: Solar And Geo neutrinos

Solar neutrino fluxes (according to Standard Solar Model predictions)

Neutrino fluxes at 1 AU:

from simulations by A. Serenelli et al., Astrophys. J. 743, 24 (2011)

Units: \lceil cm⁻²s⁻¹MeV⁻¹] for continuum neutrino sources, \lceil cm $^{-2}$ s $^{-1}$] for mono-energetic neutrino sources.

Factors: 10^{10} (pp), 10^9 (⁷Be),
 10^8 (pep, ¹³N, ¹⁵O), 10^6 (⁸B, ¹⁷F); Units: $cm^{-2}s^{-1}$.

Solar neutrino measurements: different obstacles: diff. background, detector response, energy threshold sensitivity for different phenomena: neutrino osc. (incl. matter effects (MSW)), SSM metallicity scenarios

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ ○ 결

 990

Solar ⁷Be neutrino rate measurement

Averaged $7Be$ - ν rate fitted with MC (ROI: 0.2-0.7 MeV)

Results and remarks:

- Averaged rate: $R=(46\pm1.5(stat)^{+1.5}_{-1.6}(sys))c/d/100$ ton (uncertainty $\pm 5\%$) Comparison to SSM predictions:
	- Without osc.: (74 ± 5) c/d/100 ton $(5\sigma$ exclusion)
	- With osc.: 44 (High-met.) and 48 (Low-met.) $c/d/100$ ton
- Day-Night asymmetry: $(N-D)/((N+D)/2) = 0.001 \pm 0.012 \text{(stat)} \pm 0.007 \text{(sys)}$ $(8.5 \sigma$ exclusion of LOW osc. solution)
- 7% Annual modulation: according to rate-vs-time analysis: $T=(1.01\pm0.07)$ yr; ϵ =0.0398±0.0102 \rightarrow expected value within 2 σ

つへへ $5/31$

Solar ⁸B neutrino rate measurement

Data vs. MC of ⁸B recoil energy spectrum (ROI: 3-15 MeV)

Results and remarks:

- Challenging: low neutrino rate, many small background components \bullet
- Rate above 3 MeV : 0.217 \pm 0.038(stat) \pm 0.008(syst) c/d/100ton \bullet
- Flux at 1 AU: $(2.7 \pm 0.4 \pm 0.1) \times 10^6$ cm⁻² s⁻¹ \bullet
	- \rightarrow good agreement with SuperKamiokaNDE and SNO
	- \rightarrow confirmation of MSW-LMA solution for oscillation in vacuum/matter
- Data set: used 488 d; new analysis with multiple statistics ongoing

Towards the detection of solar pp neutrinos

pp recoil energy spectrum (ROI: 0.05-0.27 MeV)

- - Above \sim 240 keV: decays of 85 Kr, 210 Bi (210 Pb daughter)
	- Below \sim 240 keV: decays of ¹⁴C, ¹⁴C pile-ups

4 店 $2Q$ a \sim 重 重

Solar pp neutrino rate measurement (August 2014)

Astrofisica Nucleare e Subnucleare Neutrino Oscillations

Scoperta graduale

1964. Homestake + Modello Solare di J. Bahcall

flusso di v_e **dal sole** \approx **1/3 dell'aspettato ha colpa il sole, la fisica nucleare, il neutrino?**

1997. GALLEX + LUNA

il colpevole è il neutrino

1998. SuperKAMIOKANDE scoperta oscillazioni: scomparsa nei ^νµ **da atmosfera**

2002. SNO

osservazione di comparsa di $ν_{\mu}$ **e** $ν_{\tau}$ **dal sole, tanti quanti sono i** ^ν*e* **scomparsi**

2002. KamLAND

osservazione dell'oscillazione ''solare'' su≠ ν_e nel vuoto

Oscillazioni dei Neutrini

•Idea della massa dei neutrini suggerita per la prima volta da Bruno Pontecorvo

> **I Neutrini Interagiscono (Produzione o Rivelazione) come Autostati dell'Interazione Debole**

|ν**e**> **, |**νµ> **, |**ντ> ⁼Autostati dell'Interazione Debole

 $|v_1\rangle$, $|v_2\rangle$, $|v_3\rangle$ = Autostati di Massa (H \rightarrow Evoluzione t)

•I Neutrini si propagano (evolvono) come sovrapposizione di autostati di **massa: MESCOLAMENTO**

 $|v_e\rangle = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$ $\theta =$ mixing angle $|v_{\mu}\rangle = -\sin\theta |v_1\rangle + \cos\theta |v_2\rangle$ Angolo di mescolamento **Mescolamento tra neutrini: p.es. due famiglie** $\overline{}$ ⎥ \perp ⎤ $\|$ $\mathsf I$ \lfloor $= 1 - \sin^2 2\theta \cdot \sin^2 \left[1.27 \frac{\Delta m^2}{R} \right]$ ν $P_{V,V} = 1 - \sin^2 2\theta$ $\mu^V \mu$ **E** $m^2 \cdot L$ *P* 2 $1-\sin^2 2\theta \cdot \sin^2 |1.27$

- **Distanza percorsa L=ct (Km)**
- **- Differenza di massa quadra** $\Delta m^2 = m_2^2 m_1^2$ (eV²)
- **Energia del neutrino E**ν **(GeV)**

Distance from ν source (L)

Vacuum flavor oscillations: mass and weak eigenstates

flavor states	$ \nu_e>$	\leftrightarrow	$ \nu_L>$	m_L
states	$ \nu_\mu>$	μ_H	m_H	states

Noncoincident bases \Rightarrow oscillations down stream:

 $|v_e\rangle$ = $\cos \theta |\nu_L\rangle + \sin \theta |\nu_H\rangle$ vacuum mixing $|v_{\mu}\rangle$ = $-\sin\theta|\nu_L\rangle + \cos\theta|\nu_H\rangle$ angle

$$
|\nu_e^k\rangle = |\nu^k(x=0,t=0)\rangle \qquad E^2 = k^2 + m_i^2
$$

$$
|\nu^k(x \sim ct,t)\rangle = e^{ikx} \left[e^{-iE_L t} \cos \theta | \nu_L \rangle + e^{-iE_H t} \sin \theta | \nu_H \rangle\right]
$$

$$
|\langle \nu_\mu | \nu^k(t)\rangle|^2 = \sin^2 2\theta \sin^2 \left(\frac{\delta m^2}{4E}t\right), \qquad \delta m^2 = m_H^2 - m_L^2
$$

V_{U} appearance downstream \Leftrightarrow vacuum oscillations

Wick Haxton INT Summer School on Lattice QCD for Nuclear Physics Aug 2012

Can slightly generalize this

 $|\nu(0)\rangle \rightarrow a_e(0)|\nu_e\rangle + a_\mu(0)|\nu_\mu\rangle$

with the subsequent evolution downstream governed by

$$
i\frac{d}{dx}\left(\begin{array}{c} a_e(x) \\ a_\mu(x) \end{array}\right) = \frac{1}{4E}\left(\begin{array}{cc} -\delta m^2 \cos 2\theta & \delta m^2 \sin 2\theta \\ \delta m^2 \sin 2\theta & \delta m^2 \cos 2\theta \end{array}\right) \left(\begin{array}{c} a_e(x) \\ a_\mu(x) \end{array}\right)
$$

vacuum m_v^2 matrix

This problem familiar from hadronic physics: the Cabibbo angle and **CKM** matrix.

solar matter generates a flavor asymmetry

- modifies forward scattering amplitude: flavor-dependent index of refraction
- the affect is proportional to the (changing) solar electron density
- makes the electron neutrino heavier at high density

 $m_{\nu_e}^2 = 4E\sqrt{2}G_F \rho_e(x)$

from Art McDonald

Matter effects produce a characteristic energy-dependence in the V_e survival probability, in accord with experiments

Neutrino oscillations and the Sun

Neutrino parameters

Astrofisica Nucleare e Subnucleare The Sun in Gamma-rays
Solar y-Ray Physics Comes of Age

The High Energy Solar Spectroscopic Imager

High-Resolution Spectroscopic **Imaging of Solar Flares in X Rays** and Gamma Rays

RHESSI

THE REUVEN RAMATY HIGH ENERGY **SOLAR SPECTROSCOPIC IMAGER**

To explore the basic physics of particle acceleration and explosive energy release in solar flares

HESSI Science Objective

To explore the basic physics of particle acceleration and explosive energy release in solar flares

- **Impulsive Energy Release in the Corona**
- Acceleration of Electrons, Protons, and lons
- Plasma Heating to Tens of Millions of degrees \bullet
- **Energy and Particle Transport and Dissipation** \bullet

HESSI Primary Observations

- **Hard X-ray Images**
	- Angular resolution as fine as 2 arcseconds
	- Temporal resolution as fine as 10 ms
	- Energy resolution of <1 keV to \sim 3 keV (FWHM)
- **High Resolution X-ray and Gamma-ray Spectral**
	- $-$ ~keV energy resolution
	- $-$ To energies as high as 15 MeV

HESSI: The High Energy Solar Spectroscopic Imager

Web Site: http://hesperia.gsfc.nasa.gov/hessi/

Solar y-Ray Physics Comes of Age

HESSI IMAGING SYSTEM

THE RHESSI SPECTROMETER

RHESSI

9 segmented coaxial Ge detectors, **7cm x 8.5cm**

Layout

Other important subsystems:

Sunpower Stirling-cycle cryocooler, keeps detectors at 75K with 52W of power:

Attenuators: two sets of aluminum disks (thick and thin) that can be manually or automatically moved in front of the detectors to reduce the count rates from large flares.

Solar y-Ray Physics Comes of Age

HESSI Germanium Detector Array

Solar y-Ray Physics Comes of Age

Share 2001

Solar y-Ray Physics Comes of Age

 $10³$

 $10⁴$

 $\frac{1}{2}$ MeV⁻¹
Counts s⁻¹ 10³
10³

 10^{-1}

Solar y-Ray Physics Comes of Age

Shape of Bremsstrahlung Continuum >100 keV

Hardening found in spectra >100 keV by combined analysis of SMM GRS/HXRBS spectra.

Similar hardening observed in combined spectrum from Yohkoh HRS/GRS.

Important for measurements to be made with the same instrument.

Best instruments BATSE, OSSE, and **HESSI.**

OSSE continuum spectra exhibit: single power laws, broken power laws with hardening and softening between \sim 100 and 200 keV, and additional hardening above \sim 1 MeV.

Solar y-Ray Physics Comes of Age

Theoretical Nuclear Line Spectrum

Ramaty, Kozlovsky, Lingenfelter, and Murphy

Solar y-Ray Physics Comes of Age

Narrow y-Ray Lines Observed in Flare Spectra

Produced by p and α interactions with ambient material.

At least 30% of flares with emission >0.3 MeV exhibit y-ray line features. **HESSI** will make more definitive measurement.

At least 19 de-excitation lines have been identified in fits to flare spectra.

Widths of de-excitation lines measured to be \sim 2-4% in the summed spectrum. This exceeds theory in some cases suggesting presence of blended lines (e.g. ^{14}N near ^{20}Ne) or different Doppler shifts in the flares (see later discussion).

HESSI can resolve these lines and determine intrinsic widths.

