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Introduction

Risk Measurement

Risk measures associates a financial position with a real number, a
statistical quantity, describing the conditional or unconditional loss
distribution of the portfolio over some predetermined horizon

in the unconditional approach we denote the df of the loss L = Lt+1

simply by FL

Risk measures attempt to quantify the amount of assets that an
insurer needs to retain to meet obligations

it is natural to base a measure of risk on the right tail of the loss
distribution (e.g. VaR, ES)
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Introduction

Purposes

Computation of risk measures is crucial for many insurance applications:

to determine a measure of riskiness of insured claims

to compute the amount of capital needed as a buffer against
(unexpected) future losses to satisfy a regulator (risk capital)

as a tool in financial risk management
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Introduction

Pros and cons

(Pros) The quantification of risk associated with a given loss distribution
has some advantages:

the concept of a loss distribution allows for aggregation at different
levels

if estimated properly, the loss distribution may provide an accurate
picture of the risk in a portfolio

loss distributions can be compared across portfolios

(Cons) Two major issues arise when working with loss distributions

estimates of the loss distribution are based on past data

the assumption of normality is unrealistic in many situations, hence
alternative statistical models are often needed

risk measures based on the loss distribution should be complemented
by information from hypothetical scenarios
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Value-at-Risk

Preliminaries

We want to define a statistic based on FL which measures the severity of
the risk of holding our portfolio over a fixed time horizon ∆t

A reasonable option is to consider the maximum possible loss, given by
inf{` ∈ R : FL(`) = 1}

::::

Value-at-Risk (VaR) can be viewed as an extension of maximum loss,
which takes into account the probability information in FL, by means of a
given confidence level [Jorion (2007)]

::::

It was introduced by JPMorgan in the first version of its RiskMetrics
system

::::

Computation of VaR involves quantiles of the loss distribution, hence we
recall definitions of the generalized inverse and quantile function
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Value-at-Risk

Generalized inverses and quantiles

Let F be a df on R.

(i.) The generalized inverse of F

F←(y) := inf{x ∈ R : F (x) ≥ y}

is called the quantile function of F

(ii.) For α ∈ (0, 1), the α-quantile of F is given by

qα(F ) := F←(α) := inf{x ∈ R : F (x) ≥ α}

Remarks
if X is a rv with df F we set xα := qα(F )
if F is continuous and strictly increasing xα = qα(F ) = F−1(α),
where F−1 is the ordinary inverse of F
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Value-at-Risk

Definition of VaR

Definition (VaR). Given some confidence level α ∈ (0, 1), Value-at-Risk
(VaR) of a portfolio with loss L at level α is defined as

VaRα = VaRα(L) = F←L (α) := inf{` ∈ R : FL(`) ≥ α} (1)

that is, VaR is the smallest number ` such that P(L > `) ≤ 1− α.

VaR is simply the α-quantile of the loss distribution (typically, we compute
VaR0.95, VaR0.99)

Market-risk: ∆t = 10 days; Credit/operational: ∆t=1 year

VaR gives no information about the severity of losses occurring with a
probability less than 1− α

VaR needs to be estimated from data
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Value-at-Risk

Mean-VaR

Let µ be the mean of the loss distribution. The statistic

VaRm
α := VaRα − µ

denotes the mean-VaR and is used for capital-adequacy purposes instead
of ordinary VaR.

if ∆t = 1 day, then VaRm
α is referred to as daily earnings at risk

Example: in loan pricing one uses VaRm
α to determine the economic

capital needed as a buffer against unexpected losses in a loan
portfolio
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VaR: Examples

VaR for exponential distributions

Consider an insurance loss random variable L with an exponential
distribution having mean θ > 0:

f (`) =
1

θ
exp(−`/θ); FL(`) = 1− e−`/θ, for ` > 0.

Given α ∈ (0, 1), VaRα(L) must be the value `α satisfying

α = FL(`α) = P(L ≤ `α) = 1− exp{−`α/θ}

Hence
VaRα(L) = F−1

L (α) = −θ log(1− α).

Remark: the VaR of any continuous random variables is simply the
inverse of the corresponding cdf.
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VaR: Examples

VaR for normal and lognormal distributions

Suppose L ∼ N(µ, σ2). Then, for a fixed α ∈ (0, 1)

VaRα(L) = µ+ Φ−1(α) σ,

where Φ denotes the standard normal df and Φ−1(α) is the α-quantile of
Φ. Clearly, P(L ≤ VaRα(L)) = α.

Remark: the VaR of a linear transformation is equivalent to the linear
transformation of the VaR:
If Z ∼ N(0, 1) → VaRα(Z ) = Φ−1(α)
If X = µ+ Zσ → VaRα(X ) = µ+ VaRα(Z )σ

This is in general true as long as the transformation is strictly increasing

Risk Measures based on loss distribution March 26, 2022 15



VaR: Examples

VaR for normal and lognormal distributions

Suppose L ∼ N(µ, σ2). Then, for a fixed α ∈ (0, 1)

VaRα(L) = µ+ Φ−1(α) σ,

where Φ denotes the standard normal df and Φ−1(α) is the α-quantile of
Φ. Clearly, P(L ≤ VaRα(L)) = α.

Remark: the VaR of a linear transformation is equivalent to the linear
transformation of the VaR:
If Z ∼ N(0, 1) → VaRα(Z ) = Φ−1(α)
If X = µ+ Zσ → VaRα(X ) = µ+ VaRα(Z )σ

This is in general true as long as the transformation is strictly increasing

Risk Measures based on loss distribution March 26, 2022 15



VaR: Examples

VaR for normal and lognormal distributions (cont)

Suppose L ∼ N(µ, σ2). Let
g(L) = Y = exp(L). Then

Y ∼ LogNormal(µ, σ2)

i.e. Y has a lognormal distribution
with parameters µ ∈ R and σ2

(σ > 0).

For α ∈ (0, 1), the VaR of Y = eL is

VaRα(Y ) = eVaRα(L) = exp(Φ−1(α) σ+µ).
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VaR: Examples

VaR for Student’s t-distributions

Suppose L∗ = (L− µ)/σ ∼ tν , that is L∗ has a “standard” Student’s
t−distribution with ν degrees of freedom (benchmark model in finance,
usually ν = 3, 5):

f (x) =
Γ((ν + 1)/2)√
πν Γ(ν/2)

(1 + x2/ν)−(ν+1)/2, −∞ < x <∞, ν > 0,

where Γ(u) =
∫∞

0 tu−1e−tdt. For L ∼ t(µ, µ, σ2) we have E (L) = µ and
V (L) = νσ2/(ν − 2) when ν > 2 (σ is not the standard deviation of the
distribution. We get

VaRα = µ+ σt−1
ν (α),

where tν denotes the df of standard t with ν dof, and t−1
ν is its inverse.
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VaR: Examples

Illustration: VaR for Skew t-distributions
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Figure: VaR (α = 0.95) for a skew t4-distribution
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Expected Shortfall

Definition of Expected Shortfall (ES)

VaR does not reflect the extremal losses occurring beyond the
(1− α)× 100% chance worst scenario. Expected shortfall was introduced
by Artzner et al. (1997) (see also, Artzner et al. (1999))

Definition (ES). For a loss L with E (|L|) <∞ and df FL, the ES at
confidence level α ∈ (0, 1) is defined as

ESα =
1

1− α

∫ 1

α
qu(FL)du =

1

1− α

∫ 1

α
VaRu(L)du (2)

where qu(FL) = F←L (u) is the quantile function of FL.

ES is also known as conditional value at risk (CVaR)
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Expected Shortfall

Remarks on the ES measure

ES is obtained by averaging VaR, for all u ≥ α (average loss when VaR is
exceeded), hence ES depends on FL and

ESα(L) ≥ VaRα(L)

If FL is continuous, then VaR can be viewed as the expected loss
that is incurred in the event that VaR is exceeded

ESα(L) = E(L|L > VaRα(L)) =
1

1− α

∫ ∞
qα(L)

`f (`)d`

ESα gives information about frequency and size of large losses (that
occur when the VaR “bad times” threshold has been exceeded)
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ES: Examples
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ES: Examples

ES for exponential distributions

Assume L ∼ Exp(1/θ), so that E (L) = θ.

For α ∈ (0, 1), we found VaRα(L) = −θ log(1− α). Hence, we obtain

ESα =
1

1− α

∫ 1

α
VaRu(L)du

= − θ

1− α

∫ 1

α
log(1− u)du

= − θ

1− α

∫ 1−α

0
log(y)dy

= −θ log(1− α) + θ = VaRα + θ
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ES: Examples

ES for normal loss distributions

Suppose L ∼ N(µ, σ2). Then, for a fixed α ∈ (0, 1)

ESα = µ+ σE

(
L− µ
σ

∣∣∣∣∣L− µσ ≥ qα

(
L− µ
σ

))
= µ+ σESα(L∗),

where L∗ :=
L− µ
σ

. We get

(1− α)ESα(L∗) =

∫ ∞
Φ−1(α)

`φ(`)d` =

∫ ∞
Φ−1(α)

`
1√
2π

e−`
2/2d`

=
1√
2π

∫ ∞
ω(α)

e−xdx , ω(α) = (Φ−1(α))2/2

=
1√
2π

e−ω(α) = φ(Φ−1(α)).

Hence, ESα = µ+ σ φ(Φ−1(α))
1−α
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ES: Examples

ES for Student’s t-distributions

Suppose L∗ = (L− µ)/σ ∼ tν , that is L∗ has a “standard” Student’s
t−distribution with ν degrees of freedom (ν > 1)

tν , fν are the cdf and the density of standard t, respectively

t−1 := t−1
ν (α)

ESα(L) = µ+ σESα(L∗)

ESα(L∗) =
fν(t−1)

1− α

(
ν + (t−1)2

ν − 1

)
Therefore

ESα(L) = µ+ σ
fν(t−1)

1− α

(
ν + (t−1)2

ν − 1

)
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ES: Examples

Exercise

ES of a lognormal distribution

Consider an insurance loss random variable L ∼ logN (µ, σ2). Show that

ESα(L) =
eµ+σ2/2

1− α
Φ(Φ−1(α)− σ)

where Φ(·) is the cdf of a standard normal rv.
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ES vs VaR

Shortfall-to-quantile ratio

The difference between VaR and ES matters for a heavy-tailed
distribution:

Normal limα→1
ESα

VaRα
= 1

Student-t limα→1
ESα

VaRα
= ν

ν−1 > 1

(with ν = 3, ES is 50% larger than VaR in the limit for
large α).

→ ESα is sensitive to the severity of losses exceeding VaRα.
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ES vs VaR

VaR and ES for stock returns

Suppose the current value of a position on a particular stock is
Vt = 10000.
Assume Xt+1 represents daily log-returns on the stock. The (linearized)
loss for this portfolio is

L∆
t+1 = −VtXt+1

We assume that

Xt+1 has zero mean

Xt+1 standard deviation σX = 0.2/
√

250 (annualized volatility of
20%)

We compare VaR and ES under

1. a normal distribution µ = 0, σ = VtσX

2. a t-distribution with ν = 5 dof scaled to have standard deviation σX
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ES vs VaR

VaR and ES for stock returns

VaR and ES for α = 0.9, 0.99, under the normal model (risk measures
computed via the R package qrmtools [Hofert et al. (2021)])
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ES vs VaR

VaR and ES for stock returns

VaR and ES for α = 0.9, 0.99 under the normal model (risk measures
computed via the R package qrmtools [Hofert et al. (2021)])
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ES vs VaR

VaR and ES for stock returns

The t distribution is a symmetric distribution with heavy tails
→ large absolute values are much more probable than in the normal
model.

Is the t model riskier than the normal model?

α 0.9 0.95 0.99 0.995

VaR (normal) 162.10 208.10 294.30 325.80
VaR (t) 144.60 197.40 329.70 395.10

ES (normal) 222.00 260.90 337.10 365.80
ES (t) 225.60 283.20 436.20 514.40
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ES vs VaR

VaR and ES for stock returns: remarks

The normal distribution appears to be at least as risky as the t model
using VaR at the 95% or 97.5% confidence level

::::

Only for higher levels (e.g. 99%) the higher risk in the tails of the t
model become apparent

::::

Expected shortfall better reflects the risk in the tails of the t model for
lower values of α
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ES vs VaR

VaR and ES for stock returns

Comparison between ES/VaR under the normal and t model (the smaller
the degrees of freedom the heavier the tails...)
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Non-subadditivity

VaR pros and cons

Some advantages of utilizing VaR include

possessing a clear interpretation and a relatively simple computation
for many distributions with closed-form df

obtaining VaR of strictly increasing functions by means of the same
transformation on the VaR of the original rv

no additional assumption required

Major limitations of VaR are

we can lose (much) more than VaR, depending on the heaviness of
the tail of the loss distribution

VaR is not a coherent risk measure implying that diversification
benefits may not be fully reflected
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Non-subadditivity

Non-subadditivity of VaR

Consider two loss distributions FL1 and FL2 for two portfolios; the overall
loss distribution of the merged portfolio L = L1 + L2 is FL. It is not
guaranteed that

qα(FL) ≤ qα(FL1) + qα(FL2)

Hence the VaR of the merged portfolio is not necessarily bounded above
by the sum of the VaRs of the individual portfolios.
This implies that

a diversification benefit associated with merging the portfolios is not
reflected by VaR

we cannot be sure that by aggregating VaR numbers for different
portfolios we will obtain a bound for the overall risk of the enterprise.
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Non-subadditivity

Non-subadditivity: example

Let L1, L2 ∼ Exp(1) and L1, L2 independent
(P(L1 > x) = P(L2 > x) = exp(−x)). Then, it can be shown that VaR
is superadditive, that is,

VaRα(L1 + L2) > VaRα(L1) + VaRα(L2)

for α < 0.71, and subadditive

VaRα(L1 + L2) ≤ VaRα(L1) + VaRα(L2)

otherwise.
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Non-subadditivity

Illustration: non-subadditivity of VaR
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Non-subadditivity

More on Non-subadditivity of VaR

Formally, consider a risk measure

ψ : L→ ψ(L)

for loss L ∈M, a linear space of random variables, which include
constants.

Subadditivity ∀ L1, L2 ∈M : ψ(L1 + L2) ≤ ψ(L1) + ψ(L2)

::::

Does it matter if a risk measures is subadditive or not?
Subadditivity reflects the idea that risk can be reduced by diversification,
and makes decentralization of risk-management systems possible
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Non-subadditivity

More on Non-subadditivity of VaR (cont)

Example Consider two trading desks with positions leading to losses L1

and L2.
Suppose a risk manager wants to ensure that the risk of the overall loss

L = L1 + L2

is smaller than some number q: if the chosen ψ is subadditive, then find
q1, q2 such that

ψ(L1) ≤ q1, ψ(L2) ≤ q2

and q1 + q2 ≤ q. Hence

ψ(L) = ψ(L1 + L2) ≤ q1 + q2 ≤ q.
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Non-subadditivity

VaR for a portfolio of defaultable bonds

Example: Consider a portfolio of d = 100 defaultable corporate bonds:

assume that defaults of different bonds are independent and default
probability is p = 2%.

V0 = 100 current price of the bonds

If there is no default, a bond pays in t + 1 (one year) an amount of
105

Let Li be the loss of bond i , then

Li = 100Yi − 5(1− Yi ) = 105Yi − 5

where Yi = 1 if bond i defaults in [t, t + 1], and 0 otherwise.
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Non-subadditivity

VaR for a portfolio of defaultable bonds (cont)

The losses Li form a sequence of iid rvs

P(Li = −5) = P(Yi = 0) = 1− p = 0.98

P(Li = 100) = P(Yi = 1) = p = 0.02

We compare two portfolios, both with current value equal to 10000:

Portfolio A 100 units of bond one (fully concentrated)

LA = 100L1

Portfolio B one unit of each of the bonds (diversified)

LB =
100∑
i=1

Li
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Non-subadditivity

VaR for a portfolio of defaultable bonds (cont)

We want to compute VaR at a confidence level of 95% for both
portfolios:

VaR0.95(LA) = 100VaR0.95(L1); VaR0.95(LB) = VaR0.95

(
100∑
i=1

105Yi − 5

)

and VaR0.95(L1) = −5. Moreover,

VaR0.95(LB) = 105 q0.95(S)− 500

where S =
∑100

i=1 Yi ∼ Bin(100, 0.02). Since, P(S ≤ 5) ≈ 0.985 and
P(S ≤ 4) ≈ 0.949 < 0.95, q0.95(S) = 5. Hence we get

VaR0.95(LA) = 100(−5) = −500, VaR0.95(LB) = 525− 500 = 25
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Non-subadditivity

VaR for a portfolio of defaultable bonds (cont)

VaR is not subadditive

25 = VaR0.95

(
100∑
i=1

Li

)
>

100∑
i=1

VaR0.95(Li ) = −500

The risk capital required for portfolio B is higher than for portfolio A.
Moreover

even after a withdrawal of a risk capital of 500, portfolio A is still
acceptable to a risk controller working with VaR at the 95% level

an additional risk capital of 25 is required for portfolio B to satisfy a
regulator working with VaR at the 95% level

This contradicts the fact that portfolio B should have a lower VaR being
less risky than portfolio A.
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Non-subadditivity

VaR for a portfolio of defaultable bonds: Remarks

In the last example, the non-subbaditivity of VaR is caused by the fact
that the assets making up the portfolio have very skewed loss
distributions. Non-subadditivity of VaR also occurs

when the underlying rvs are independent but very heavy-tailed

for dependent losses, when their dependence structure is highly
asymmetric

However, it can be shown that VaR is subadditive in the situation where
all portfolios can be represented as linear combinations of the same set of
underlying elliptically distributed (e.g., normally distributed) risk factors
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Coherent risk measures
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Coherent risk measures

Coherent risk measure

Axioms for coherent risk measures

(A1) Monotonicity ∀ L1, L2 ∈M, L1 ≤ L2 almost surely: ψ(L1) ≤ ψ(L2)

(A2) Translation invariance ∀ L ∈M, ` ∈ R: ψ(L + `) = ψ(L) + `

(A3) Positive homogeneity ∀ L ∈M, λ > 0: ψ(λL) = λψ(L)

(A4) Subadditivity ∀ L1, L2 ∈M : ψ(L1 + L2) ≤ ψ(L1) + ψ(L2)

Remark
I VaR always satisfies (A1)–(A3), but not (A4), in general.
I Expected shortfall is a coherent risk measure (proof omitted)
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Coherent risk measures

VaR is coherent in the normal case

The computation of VaR(L1 + L2) requires assumptions on the marginals
and the dependence between the risks (joint distribution).
If (L1, L2) ∼ N2(µ,Σ), then Li ∼ N (µi , σ

2
i ), i = 1, 2, where

µ = (µ1, µ2), Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, ρ ∈ [−1, 1] (3)

and
L1 + L2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2 + 2ρσ1σ2)

Let α > 0.5, then

VaRα(L1 + L2) = µ1 + µ2 +
√
σ2

1 + σ2
2 + 2ρσ1σ2 Φ−1(α)

≤ µ1 + µ2 +
√

(σ1 + σ2)2 Φ−1(α)

= (µ1 + σ1Φ−1(α)) + (µ2 + σ2Φ−1(α))

= VaRα(L1) + VaRα(L2)
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Coherent risk measures

Further comments: Choice of VaR parameters

There are two important choices when working with VaR:

Choice of ∆t should reflect the time period over which a financial
institution is committed to hold its portfolio

usually one year for measuring the risk in the liability and
asset portfolios of an insurer
∆t should be relatively small to (i) use of the linearized loss
operator (ii) assume the composition of the portfolio
remains unchanged
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Further comments: Choice of VaR parameters

There are two important choices when working with VaR:

Choice of ∆t should reflect the time period over which a financial
institution is committed to hold its portfolio

usually one year for measuring the risk in the liability and
asset portfolios of an insurer
∆t should be relatively small to (i) use of the linearized loss
operator (ii) assume the composition of the portfolio
remains unchanged

Choice of α can be different according to the specific purpose: for
instance, the Basel Committee proposes the use of VaR at
the 99% level and ∆t = 10 days for market risk

in general, capital-adequacy purposes require a high
confidence level in order to have a sufficient safety margin
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Variance as a risk measure

The variance of the P&L distribution has been used as a risk measure in
finance:

is a well-understood concept which is easy to use analytically

in market risk, the volatility can be interpreted as a measure of
uncertainty

However,

we have to assume that the second moment of the loss distribution
exists

it makes no distinction between positive and negative deviations
from the mean

variance is a good measure of risk only for distributions which are
(approximately) symmetric around the mean, such as the normal
distribution or a (finite-variance) Student’s t-distribution
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Alternative risk measures

Some risk measures have been proposed that are simultaneously coherent
and may also consider losses beyond VaR.

In Acerbi and Tasche (2002) are listed five measures of risk that include
losses in excess of VaR

Conditional VaR (CVaR)

Expected shortfall (ES)

Tail conditional expectation (TCE)

Worst conditional expectation (WCE)

Spectral risk measures
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First R lab

We use R compute VaR and ES for the different methods:

Variance-covariance method (assume that the linearized loss provides
a sufficiently accurate approximation and multivariate normal)

Historical simulation method (using empirically estimated risk
measures)

Monte Carlo simulation method (simulate losses from fitted
multivariate t or normal risk-factor changes)
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