NIVERSITA . Dipartimento di
EGLI STUDI Ingegneria
ITRIESTE I a e Architettura

The processor

A. Carini — Digital System Architectures

Introduction

* We have seen that the performance of a computer is determined by three key factors:
* instruction count,
* clock cycle time, and
* clock cycles per instruction (CPI).
* The compiler and the instruction set architecture determine the instruction count required for a given
program.
* The implementation of the processor determines both the clock cycle time and the number of clock
cycles per instruction.
* We can have different organizations of the processor
* Harward or Von Neumann
* And different implementation strategies
* Single cycle; Multi cycle; Pipelined
* We will examine different LEGv8 implementations
* Asimplified version (Single cycle)
A multi cycle version, but for a different processor
* A more realistic pipelined version

S UNIVERSITA - o - |
@; BiRIESTe 1a < Aeniars A. Carini — Digital System Architectures

Von Neumann organization

| Addressbus

m lines

y . UNIVERSITA . Dipatimerio . .
{8} DEGLI STUDI a s A. Carini — Digital System Architectures

Harward organization

n lines

m lines

% UNIVERSITA
¢ B} pEGLISTUDI
./ DITRIESTE

e Architettura

5 Dipartimento di
II a) Ingegneria A. Carini — Digital System Architectures

A Basic LEGv8 Implementation

* We will be examining an implementation that includes a subset of the core LEGvS instruction set:
* The memory-reference instructions load register unscaled (LDUR) and store register unscaled
(STUR)
* The arithmetic-logical instructions ADD, SUB, AND, and ORR
* The instructions compare and branch on zero (CBZ) and branch (B)
* ltillustrates the key principles used in creating a datapath and designing the control.
* We will have the opportunity to see
* how the instruction set architecture determines many aspects of the implementation, and
* how the choice of various implementation strategies affects the clock rate and CPI.

UNIVERSITA P Dipertmento i
@ EEGLI e Ia R A. Carini — Digital System Architectures

S ITRIESTE e Architettura

Instruction Execution

* Much of what needs to be done to implement these instructions is the same, independent of the
exact class of instruction.
* For every instruction, the first two steps are identical:
1. Send the program counter (PC) to the memory that contains the code and fetch the instruction
from that memory.
2. Read one or two registers, using fields of the instruction to select the registers to read.
* After these, the actions required to complete the instruction depend on the instruction class.
* Depending on instruction class
* Use ALU to calculate
* Arithmetic result
* Memory address for load/store
* Comparison with zero in branch
* Access data memory for load/store
* PC <« target address or PC+4

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

CPU Overview

r—>
4 —»
Add _ Add
I—» Data
Register #
| PC &= Address Instruction Registers ALU Address
Instructi Register # Data 1
nefrLieton : ' memory
memory Reqister #
» Data

UNIVERSITA 5 Diperterto & L)
DEGLI STUDI Ingegneria A. Carini — Digital System Architectures
DITRIESTE Ia e Architettura

Multiplexer

\&_.L. = Can'tjust join wires together

= Use multiplexers

>

y (Add
/e

3
|-> Data /
Register #
| PC 1> Address Instruction Registers Address
_ Register # Data
Instruction memor -
memory Register # y
Data

vt | N -
Ingegneria) '
PITRIESTE 1A} crenie A. Carini — Digital System Architectures

Control

]

Branch

Add

T

Cx:g

ALU operation

f\\ UNIVERSITA - Dertrenio
(i 'w s DEGLI STUDI Ingegneria
Y= DITRIESTE 1A) <Acnietura

c

ALU

[Zero

Address

Data

MemWrite

Data

memory

MemRead

Data
Register #
= PC Address Instruction [Registers
Register #
Instruction
memory Register # RegWrite
— Control |

[

i

A. Carini — Digital System Architectures

Logic Design Conventions

* The datapath elements in the LEGv8 implementation consist of two different types of logic
elements:
* Combinational elements
* Operate on data
* OQutput is a function of input
* State (sequential) elements
e Store information
* E.g, registers and memories
* We call these elements state elements because, if we pulled the power plug on the
computer, we could restart it accurately by loading the state elements with the values
they contained before we pulled the plug.
* Astate element has at least two inputs and one output:
* Data input, clock.
* The output is the value that was written in an earlier clock cycle.
* The clock is used to determine when the state element should be written.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Clocking Methodology

A clocking methodology defines when signals can be read and when they can be written.
We will assume an edge-triggered clocking methodology.

* Any values stored in a sequential logic element are updated only on a clock edge.

State State
element —(Combinational logic element
1 2

Clock cycle —

All signals must propagate from state element 1, through the combinational logic, and to state
element 2 in the time of one clock cycle.
The time necessary for the signals to reach state element 2 defines the length of the clock cycle.
If a state element is not updated on every clock, then an explicit write control signal is required.

* The state element is changed only when the control signal is asserted and a clock edge occurs.
S [ja) .

A. Carini — Digital System Architectures

The Simple Datapath

PCSrc
M
pr—- u
ALU X
4 — Add o1t
—
Read ALU operation
Read } 4 P
— PC > ddress register 1 Read MemWrite
Read data 1 MemtoReg
Instruction 4 register 2
Wiite Registers poq Address R:jee;d
Instruction register data 2 atd
memory
Write
| data
Write ~ Data
RegWrite data ~memory
MemRead
§2 Sign- 64
extend

R o e
Ingegneria — .
PITRIESTE Fal et A. Carini — Digital System Architectures

The Simple Datapath with Control

e .
s UNIVERSITA
{@b‘ DEGLI STUDI
=i’ DITRIESTE

fia)

Dipartimento di
Ingegneria
e Architettura

Add

T

Read
address

Instruction |}
[31-0]

Instruction

memory

Instruction [31-21]
Control

Reg2lLoc
Branch

ALU

- xc= ©

Addresult

MemRead

MemtoReg

Instruction [9-5]

ALUOp

MemWrite

| ALUSrc

RegWrite
]

F §

Instruction [20-16]

Instruction [4-0]

Instruction [31-0]

.|

Read
register 1 paqq

Read data 1
register 2

Write Read

register data 2

Write
data Registers

32@64

Instruction [31-21]

Oxcz—

A. Carini — Digital System Architectures

ALU Control

ALU control lines Function
0000 AND
0001 OR
0010 add
0110 subtract
0111 pass input b
1100 NOR

Instruction Desired ALU control
operation Opcode field ALU action Input

ALU used for

Load/Store: F = add
Branch: F = compare
R-type: F depends on opcode

Assume 2-bit ALUOp derived from opcode:

00 - add 00 for loads and stores,
01 - pass input b for CBZ, or

10 - determined by opcode field for R-type

LDUR load register 0010
STUR 00 store register HOXXXXXXXXXX | add 0010
CBZ 01 compare and HKXKXXXXXXXX | pass input b 0111
branch on zero
R-type 10 ADD 10001011000 | add 0010
R-type 10 SUB 11001011000 | subtract 0110
R-type 10 AND 10001010000 | AND 0000
R-type 10 ORR 10101010000 |OR 0001

\ UNIVERSITA
DEGLI STUDI
DI TRIESTE

fia)

Dipartimento di
Ingegneria
e Architettura

A. Carini —

Digital System Architectures

@

Intruction format

* We will see the implementation of three instructions:

ADD X1, X2, X3

LDUR X1, [X2, offset]

CBZ X1, offset
Field ‘ opcode ‘ Rm shamt Rn Rd
Bit positions 31:21 20:16 15:10 9:5 4:0
a. R-type instruction
Field 1986 or 1984 address | 0| Rn Rt
Bit positions 31:21 20:12 11:10 9:5 4:0
b. Load or store instruction
Field 180 address Rt
Bit positions 31:24 23:5 4:0

c. Conditional branch instruction

UNIVERSITA . Dipartmento &
DEGLI STUDI Ingegneria
\.;f’y" DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Instruction format

* There are several major observations about this instruction format that we will rely on:

* The opcode field is between 6 and 11 bits wide and found in bits 31:26 to 31:21.

* The first register operand is always in bit positions 9:5 (Rn) for both R-type instructions and for
the base register for load and store instructions.

* The other register operand is in one of two places. It is in bit positions 20:16 (Rm) for R-type
instructions and it is in bit positions 4:0 (Rt) for the register to be written by a load. That is also
the field that specifies the register to be tested for zero for compare and branch on zero.

* Another operand can also be a 19-bit offset for compare and branch on zero or a 9-bit offset for
load and store.

* The destination register for R-type instructions (Rd) and for loads (Rt) is in bit positions 4:0.

e Architettura

=% UNIVERSITA - Dpertmerto
@ EF%IIESS%DI Ia X A. Carini — Digital System Architectures

ADD X1, X2, X3

* Although everything occurs in one clock cycle, we can think of four steps to execute the instruction;
* these steps are ordered by the flow of information:
1. Theinstruction is fetched, and the PC is incremented.
2. Two registers, X2 and X3, are read from the register file; also, the main control unit computes
the setting of the control lines during this step.
3. The ALU operates on the data read from the register file, using portions of the opcode to
generate the ALU function.
4. The result from the ALU is written into the destination register (X1) in the register file.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

ADD X1, X2, X3

ALU
result

4 — Add

/Shlft |

Reg2Loc et 2/ _—
Branch N
\ MemRead

Instruction [31-21
[] Controli MemtoReg

MemWrite

ALUSrc

RegWrite
|

Instruction [9-5] Read
.| Read \nstruction 120-16 register 1
address nstruction [10 Read
Pl |
|l\j,| Read data 1
Instruction | | x | | register 2
[31-0] | ! Write dReag
Instruction register data
memory Instruction [4-0] g

&

Read
[
Address data

Oxeczm—

Write -
data Registers

Instruction [31-0] 32 |S|gn \ 64
\extend | i

_/

Instruction [31-21]

Creze

Data
memory

Write
data

@) o | o e
H Ingegneria R '
‘<=’ DITRIESTE 181) <arcnitettura A. Carini — Digital System Architectures

/__‘“

LDUR X1, [X2,offset]

* We can think of a load instruction as operating in five steps :
1. Aninstruction is fetched from the instruction memory, and the PC is incremented.
2. Avregister (X2) value is read from the register file.
3. The ALU computes the sum of the value read from the register file and the sign-extended 9 bits
of the instruction (offset).
4. The sum from the ALU is used as the address for the data memory.
5. The data from the memory unit is written into the register file (X1).

UNIVERSITA P Dipertmento i
@ EEGLI e Ia R A. Carini — Digital System Architectures

‘&= DITRIESTE e Architettura

LDUR X1, [X2,offset]

Add A

ALU
result

>

dd

S,
Reg2Loc \left2)
Branch v

\ MemRead
Instruction [31-21] | MemtoReg

Control ALUO
MemWrite
ALUSrc

RegWrite

Instruction [9-5] Read

nstruction [20-16] register 1 Road
1 data 1

Read
address

Read
register 2
Write Read
Instruction Instruction [4-0] register Cata 2
memory Wit
rite

data Registers

Instruction [31-0] 32 @ 64

Instruction [31-21]

r

Instr[uction L

Read
Address dala

COxecz

() BT | o v
) ngegneria " ¢ |
wj - Ia — A. Carini — Digital System Architectures

CBZ X1, offset

* |t operates much like an R-format instruction, but the ALU output is used to determine whether the PC
is written with PC + 4 or the branch target address.
* We can think of four steps in the execution:

1. Aninstruction is fetched from the instruction memory, and the PC is incremented.

2. The register X1 is read from the register file using bits 4:0 of the instruction (Rt).

3. The ALU passes the data value read from the register file. The value of PC is added to the sign-
extended, 19 bits of the instruction (offset) are shifted left by two; the result is the branch
target address.

4. The Zero status information from the ALU is used to decide which adder result to store in the
PC.

() BB [reo inl— Dig .
&;’:/j;j DROLUSTAY 1a facia A. Carini — Digital System Architectures

CBZ X1, offset

Add l\

ALU
result

= xcz O

4 Add

Reg2Loc
Branch
\ MemRead
Instruction [31-21] | MemtoReg

Control ALUO
MemWrite
ALUSrc

RegWrite
]

Instruction [9-5]
nstruction [20-16]

Read
register 1 pooq

Read data 1
register 2
Write Read

Instruction | | Tinstruction [4-0] register data 2
memory

Read
address

Instruction | |
[

P 5

Read

1d 3
Address data

Write
dala Registers

Instruction [31-0] 32 @ 64

Instruction [31-21]

—‘x:ga

Write Data
data Memory

() BT | o v
) ngegneria " ¢ |
wj - Ia — A. Carini — Digital System Architectures

@

Unconditional Branch

UNIVERSITA
DEGLI STUDI
DITRIESTE

fia)

Dipartimento di
Ingegneria
e Architettura

address

31:26

250

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [31-21]

Reg2Loc
Uncondbranch
Branch

MemRead

MemtoReg

Instruction [9-5]
Instruction [20-16]

Instruction [4-0]

Instruction [31-0]

Control ALUOD

MemWrite

ALUSrc

RegWrite

™| register data2

| Write

Read
register 1 pogq

Read data 1
register 2

Write Read

data Registers

32 @64

*xcga

Instruction [31-21]

Read
Address data

A. Carini —

Digital System Architectures

Why a Single-Cycle Implementation
is not Used Today

Although the single-cycle design will work correctly, it is too inefficient to be used in modern designs.
Notice that the clock cycle must have the same length for every instruction in this single-cycle design.
The longest possible path in the processor determines the clock cycle.

* This path is most likely a load instruction, which uses five functional units in series:

* theinstruction memory, the register file, the ALU, the data memory, and the register file.
Although the CPlis 1, the overall performance of a single-cycle implementation is likely to be poor,
since the clock cycle is too long.

Historically, early computers with very simple instruction sets did use this implementation technique.
However, if we tried to implement the floating-point unit or an instruction set with more complex
instructions, this single-cycle design wouldn’t work well at all.

IVERSITA 5 Dipartimento B . |
TG'{-IIESS%DI Ia :‘gm:;:m A. Carini — Digital System Architectures

z5% 8 . =
i- i Eizgesob wopsd s
Multi-cycle Control strategies sifgechiiziaie
LLILLLLLLLLLes
g
B P
: DES —*Clear ; 'g‘
msnod T
:>T\ ~—IR in E
Clock— —Clock
Riou— RI1 <::|>MDR“_MDRDut
R1 in—* = MDR in
Clock—
Z out—> Z
Z in—* — write

2 — read

i

Carry in—» AT, U

.1 T 0
2

—Clock
Add— T MAR
T T +—MAR in
Clock— ::l —Clock
Clear Y—* Y PC #—Clear
Y in—* :> *«—PC out

=—PCin

Figura 5.13: Un ipotetico processore a 8 bit.

) Sersss | FN
] Ingegneria 2 (B .
Q@; DITRIESTE |a Sk A. Carini — Digital System Architectures

Multi-cycle Control strategies

* Let us consider the hypothetical processor of the previous slide.
* The control unit decode and execute the instructions, and update the program counter (PC), fetching
the next instruction.
* The control unit is here composed of three register:
* IR has the OpCode of the instruction
* SRCcan contain a parameter included in the IW or a memory address, often expressed in
relative terms as a PC increment.
* DEST can contain an address or the pointer to a register where to write the result.
* From the analysis of the OpCode, the control unit must provide the sequence of control signals
necessary for
1. Fetch and update of the PC
2. Execution of the current instruction.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Multi-cycle Control strategies

Historically, two possible approaches have been followed for the control unit:
* Microprogrammed approach
* Cabled approach
* Microcontrollers with old architectures are microprogrammed. More recent ones, especially
RISC ones, are cabled.
* Two possible clocking strategies:
* Multi-cycle control
* Fetch, decode, execute performed with multiple clock periods.
* Single-cycle control
* Fetch, decode, execute performed in a single period.
Single-cycle control strategy is employed only in cabled controls.
Multi-cycle control strategy is used both in all microprogrammed controls and in some cabled controls.

UNIVERSITA 5 Dipartimento - B |
gl%llss#ém Ia :‘gm:;:m A. Carini — Digital System Architectures

Microprogrammed control

* Isimplemented with a control unit that replicates the structure of a simple CPU with a memory, a PC,
an ALU, called microcode engine.
* Each macro-instruction corresponds to a microcode, composed by some words. Microcodes are stored
in a ROM memory.
* Two possibilities:
* Horizontal microprogramming: the control unit execute the code strictly sequentially, starting
from the address pointed by the OpCode.
* Vertical microprogramming: jumps are possible and allow to repeat microcode segments, i.e.,
the introduction of micro-subroutines.
* The microcode is composed of words, whose bits directly assert/negate specific control signals.
* The microcode wordlenght depends on the number of control signals.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Microprogrammed control

IR

DEST

+— DEST out

IR in—" OpCode SRC ~—SRC out
Decodifica
Clock
Micro PC

Reset—>

I

Memoria ROM

Inizio blocco

Fine blocco

//\\ UNIVERSITA 5)
{ala} pecLrsTUDI) e

%=’ DITRIESTE Sk

Segnali di controllo

Figura 5.14: Schema a blocchi semplificato di una unita di controllo microprogrammata.

A. Carini — Digital System Architectures

Cabled control

* The microcode engine is replaced by a combinatorial logic circuit that generates directly the control
signals form the OpCode of the current instruction, managing also temporizations.

* Includes a secondary clock generator, whose purpose is the time distribution of control signal
activations.

* Let us assume that a single instruction is executed in 7 periods.

* The secondary clock generator is a clock divider by 7 that generates 1 pulse every 7 clock periods, and
feeds a shift register of 6 FlipFlops.

* The decoder activates one output line for each OpCode.

* The combinatorial network, composed by AND and OR gates, feeds the control lines on the basis of
the OpCode and of secondary clock state (from 1 to 7).

* The solution provides very fast response, with little silicon area occupation, but lack flexibility, and
could require nop cycles to manage shorter instructions.

Zay UNIVERSITA | [T) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Cabled control

IR IR in
OpCode
@ 4 bit
Decoder 4-16
=
o
e
250 S@
. Generatore dei 4 Clock
Rete loglca clock secondari
SEENER S ELEEENEL
e
8055m5g5>§<5ﬁENN

Figura 5.15: Unita di controllo cablata: ¢ visibile un decodificatore delle istruzioni (a 4 bit), un
generatore dei clock secondari e una rete logica combinatoria che asserisce i segnali di controllo del
processore, elaborando sia i clock secondari che le linee del bus gestito dal decodificatore.

A. Carini — Digital System Architectures

=% UNIVERSITA - Dipartimero &
DEGLI STUDI Ingegneria
< DITRIESTE Ia e Architettura

Cabled control

Contatore
modulo 7

Clock—+

D
Q Q
PN
Clky Clk

Clk, Clk, 4 Clks Clky Clky

o L= [
Clk, ’—‘ | |
Clks ’—‘ :

I I e N

e R B e A

Ciclo macchina

Figura 5.16: Circuito per la generazione dei segnali di clock secondari richiesti da una unita di controllo
cablata.

@ BEQ[,EE?.'_,TE,‘. 1 :);'D:::'::'?; A. Carini — Digital System Architectures
==/ DITRIESTE Ila' e Architettura : g v

e
e}

Example

UNIVERSITA
DEGLI STUDI

== DITRIESTE

ap

ap

sl

Y11

Yo

Yo1

Yoo

Figura 5.17: Schema di principio di un decodificatore binario, o demultiplexer, a 2 bit. Ciascuna delle 4
combinazioni di ingresso attiva, portandola, in questo caso, a livello logico basso, una e una sola delle

ul

fia)

uscite.

Dipartimento di
Ingegneria
e Architettura

A. Carini — Digital System Architectures

Cabled control

@

NIVERSITA
EGLI STUDI
ITRIESTE

fia)

Dipartimento di
Ingegneria
e Architettura

e 4
d68888s 1 . I B
< @ H.E
Q
s,
| o
E
NE
%}N.E
-
D =g
= D
D_‘—\\ o
k-
D_,—M Z
[T
% :ED £3
=E
&
A%
S8
=i
=]
=4
[
| S5
=
| D%
D D¢
D}E-E
- e
EEEEERE
Figura 5.18: Una parte della rete combinatoria richiesta dal controllo del processore di Fig. 5.13.

A. Carini — Digital System Architectures

Multi-cycle vs Single-cycle Organization

IVERSITA = Dipartimento
TRnsie Ia R A. Carini — Digital System Architectures

TRIESTE

Only the availability of multiple resources allow a single cycle temporization.
It requires at least that the fetch phase is performed simultaneously to decode and execute.
It imposes the following system requirements:
. Separate data memory and instruction memory;
. Separate ALU for PC increment;
* Flexible PC increment for managing jumps without main ALU intervention.
Unless the instruction set is very simple, the single cycle organization is often inefficient. It is the most
onerous instruction that determine the clock period.
On the contrary, in multi-cycle organization, it is the slowest functional unit (ALU or memory) that
determines the minimum period.
It is possible to combine advantages of both, using a pipeline organization.

e Architettura

An Overview of Pipelining

* Pipelining is an implementation technique in which multiple instructions are overlapped in execution.
* Today, pipelining is nearly universal.

@ e |) 5 - |
& S DITRIESTE 1) et A. Carini — Digital System Architectures

Pipelining analogy

* Pipelined laundry overlapping execution

* Parallelism improves performance
Time —-:l_:-:l_:-:l_:-:l_ljlq—'
Task
order

A =
wo=l
5 B0=l__
e §0=l
- Bo=l

Time W \ \ \

Task

order
» BE=H
N &=
c 85=0
. 5=l

"\ UNIVERSITA partmento &
k DEGLI STUDI lg gneria

‘f DITRIESTE e Architettura

Four loads:
= Speedup
=16/7=2.3
Non-stop:
= Speedup
=4n/1ln+3 =4

= number of stages

The pipelining paradox is that the time for
processing a single laundry load is not shorter
for pipelining.

But more loads are process per hour.

Pipelining improves throughput of our laundry
system.

A. Carini — Digital System Architectures

Single-Cycle versus Pipelined Performance

* LEGv8 instructions classically take five steps:

Fetch instruction from memory.

Read registers and decode the instruction.
Execute the operation or calculate an address.
Access an operand in data memory (if necessary).
Write the result into a register (if necessary).

e wWwN e

Hence, the LEGVS8 pipeline we consider has five stages.

() s | FR v
] Ingegneria 2 (B .
gﬂ,/yﬂ DITRIESTE |a Sk A. Carini — Digital System Architectures

Single-Cycle versus Pipelined Performance

* We limit our attention to seven instructions: load register (LDUR), store register (STUR), add (ADD),

subtract (SUB), AND (AND), OR (ORR), and compare and branch on zero (CBZ).

* Assume time for stages is

* 100ps for register read or write

* 200ps for other stages

Instruction | Register ALU Data | Register | Total
Instruction class fetch read operation | access | write time

Load register (LOUR) 200 ps 100 ps 200 ps 200 ps 100 ps | 800 ps
Store register (STUR) 200 ps 100 ps 200 ps 200 ps 700 ps
R-format (ADD, SUB, AND, 200 ps 100 ps 200 ps 100 ps | 600 ps
ORR)

Branch (CBZ) 200 ps 100 ps 200 ps 500 ps

DEGLI STUDI

DITRIESTE I a e Architettura

&% UNIVERSITA - parerto
ria
& -E%'.

A. Carini — Digital System Architectures

Single-Cycle versus Pipelined Performance

Program
execution 200 400 600 800 1000 1200 1400 1600 1800

Time
order
(in instructions)

Instruction Data
LDUR X1, [X4,#100] fetch | Red| ALU accens | ReD Single—cycle (TC= 800ps)
LDUR X2, [X4,#200] 800 ps Instuclion| peg| ALU | D28 Reg
LDUR X3, [X4 #400] 800 ps '”Sft::ff,t,'on
800 ps
Program
execution T 200 400 600 800 1000 1200 1400
ime T T T T T T T
order
(in instructions)
Instruction Data 0 o
LDUR X1, [X4.#100] fetch Reg| ALU access Reg Plpe“ned (Tc: ZOOpS)
LDUR X2, [X4#200] 200 ps | " en™" Reg| ALU | D IReg
LDUR X3, [X4,#400] 200 ps | "o Reg| ALU | 008 |Reg

200 ps 200ps 200 ps 200ps 200 ps

NIVERSITA = Dipartimento
R Ia R A. Carini — Digital System Architectures

e Architettura

Pipeline Speedup

If the stages are perfectly balanced, then

))) Time between instructions nonpipelined
Time between instructions

pipelined ™ Number of pipestages
* Under ideal conditions and with a large number of instructions, the speed-up from pipelining is
approximately equal to the number of pipeline stages.
* If the stages are not balanced, the speedup is less.
* Moreover, we will see pipelining involves some overhead.

* Inreality, in our case the total execution time for the three instructions is 1400 ps versus 2400 ps.

e Butif we add 1,000,000 instructions: 800,002,400 ps _ 800ps _ 4.00

200,001,400 ps 200 gz

* Pipelining improves performance by increasing instruction throughput, in contrast to decreasing the
execution time of an individual instruction.

(Rl BEeLEEUA I)."" o .
‘<= DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Designing Instruction Sets for Pipelining

* LEGv8 was designed for pipelined execution:

* Allinstructions are 32-bits
* Easier to fetch and decode in one cycle
* c.f.x86: 1- to 17-byte instructions

* Few and regular instruction formats
* Can decode and read registers in one step

* Memory operands only appear in loads or stores
* We can use the execute stage to calculate the memory address and then access memory

in the following stage

@ UNIVERSITA | % Diarirento o)
i /"fB %IIESSTT%DI Ia :'gfgr:'iz:m A. Carini — Digital System Architectures

S

Pipeline Hazards

* There are situations in pipelining when the next instruction cannot execute in the following clock
cycle.
* These events are called hazards, and there are three different types:

* Structure hazards
* When a planned instruction cannot execute in the proper clock cycle because the hardware
does not support the combination of instructions that are set to execute.
* Data hazard
* When a planned instruction cannot execute in the proper clock cycle because data that are
needed to execute the instruction are not yet available.
. Control hazard, also called branch hazard
* When the proper instruction cannot execute in the proper pipeline clock cycle because the
instruction that was fetched is not the one that is needed; that is, the flow of instruction
addresses is not what the pipeline expected.

=% UNIVERSITA P —
@EF%IESS%M 1a < Aeniars A. Carini — Digital System Architectures

Structural Hazards

* When a planned instruction cannot execute in the proper clock cycle because the hardware does not
support the combination of instructions that are set to execute.
* The LEGvVS instruction set was designed to be pipelined, making it fairly easy for designers to avoid
structural hazards when designing a pipeline.
* Suppose, however, that we had a single memory instead of two.
* Load/store requires data access
* Instruction fetch would have to stall for that cycle
* Would cause a pipeline “bubble”
* Hence, pipelined datapaths require separate instruction/data memories
* Orseparate instruction/data caches

W) st i) e D .
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Data Hazards

* Data hazards arise from the dependence of one instruction on an earlier one that is still in the
pipeline.

° Forexample: np yi9. ¥0. X1

SUB X2, X19, X3

. 200 400 600 800 1000
Time : T T . T

ADD X19, X0, X1 | IF

SUB X2, X19, X3 .
xf—ﬁ\\ UNIVERSITA - —
[“%; BIE%IIESSTT%DI Ia :‘gmz:m A. Carini — Digital System Architectures

Forwarding (aka Bypassing)

* We could try to rely on compilers to remove all such hazards, but the results would not be
satisfactory: these dependences happen just too often.
* The primary solution is based on forwarding:
* Assoon as the ALU creates the sum for the add, we can supply it as an input for the subtract.
. Requires extra connections in the datapath

Program

execution . 200 400 600 800 1000
order Time | | | | |

(in instructions)
ADD X1, X2, X3 IF C 1D

WB |

SUB X4, X1, X5 IF MEM WB |

@‘ UNIVERSITA - oumam - |
? B FRIESTE Ia v A. Carini — Digital System Architectures

ITRIESTE e Architettura

Load-Use Data Hazard

* Forwarding cannot prevent all pipeline stalls.
* Suppose the first instruction was a load of X1 instead of an add.
The desired data would be available only after the fourth stage of the first instruction in the

dependence, which is too late for the input of the third stage of SUB.

Program
exacution , 200 400 600 800 1000 1200 1400
order Time | 1 | 1 T T >
(in instructions) \ .

LDUR X1, [X2,#0] | IF —C ID ﬁ MEM| < {WB |

bubble bubble
@ o

MEM|— WB |

SUB X4, X1, X5

A. Carini — Digital System Architectures

#57% UNIVERSITA Diperieerio
L@\\) DEGLI STUDI 1 Ingegneria
5Z%J” DITRIESTE |a e Architettura

Load-Use Data Hazard

* load-use data hazard A specific form of data hazard in which the data being loaded by a load
instruction have not yet become available when they are needed by another instruction.

* pipeline stall Also called bubble. A stall initiated in order to resolve a hazard.

=/ DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@ BITRIESTE Ia R A. Carini — Digital System Architectures

Reordering Code to Avoid Pipeline Stalls

* We can prevent Load-Use Data Hazard by reordering the code to
avoid the use of the load result in the next instruction.
. Ccodefor A=B+E;, C=B+F;

[san j—

#5% UNIVERSITA
DEGLI STUDI

5 Dipartimento di
DITRIESTE I| a' Lt A. Carini — Digital System Architectures

e Architettura

Control Hazards

* Control hazard also called branch hazard. When the proper instruction cannot execute in the proper
pipeline clock cycle because the instruction that was fetched is not the one that is needed; that is, the
flow of instruction addresses is not what the pipeline expected.

* Inthe conditional branch instruction, we must begin fetching the instruction following the branch on
the following clock cycle....

* Nevertheless, the pipeline cannot possibly know what the next instruction should be, since it only just
received the branch instruction from memory!

* In LEGvS pipeline:

* We need to compare registers and compute the target early in the pipeline.

* Let’s assume that we put in enough extra hardware so that we can test a register, calculate the
branch address, and update the PC during the second stage of the pipeline (ID stage).

Zay UNIVERSITA | [T) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Stall on Branch

* One possible solution is to stall immediately after we fetch a branch, waiting until the pipeline

determines the outcome of the branch.

Program
execution
order

(in instructions)

ADD X4, X5, X6

CBZ X1,40

ORR X7, X8, X9

\%\ UNIVERSITA - Diportinenio &
w DEGLI STUDI Ingegneria
; DITRIESTE |a e Architettura

Time

200 400 600 800 1000 1200 1400 -
[[[o
Instructi Data
nsfgil;hlon Reg ALU access Reg
| Instruction Data
200 ps fetch Reg ALU access Reg

bubble/(_bubble/ bubble/(bubble/(bubble
@ @ @ @ O

A

Y

400 ps

Instruction
fetch

Reg

ALU

Data
access

Reg

A. Carini — Digital System Architectures

Performance of “Stall on Branch”

* Estimate the impact on the clock cycles per instruction (CPI) of stalling on branches.
* Assume all other instructions have a CPI of 1.

. Conditional branches are 17% of the instructions executed in SPECint2006.

* Since the other instructions (83%) run have a CPI of 1, and conditional branches took one extra clock
cycle for the stall, then we would see a CPI of

CP1=0.83*1+0.17*2 = 1.17

. Hence a slowdown of 1.17 versus the ideal case.

2/ DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@DEGL'STUD' Ia R A. Carini — Digital System Architectures

Branch Prediction

* If we cannot resolve the branch in the second stage, as is often the case for longer pipelines, then
we’d see an even larger slowdown if we stall on conditional branches.

* The cost of this option is too high for most computers to use and motivates a second solution to the
control hazard: predict the outcome of branch.

* This option does not slow down the pipeline when you are correct.

* When you are wrong: you need to redo the load that was washed while guessing the decision (with
the creation of a bubble).

* Onesimple approach is to predict always that conditional branches will be untaken.
* When you're right, the pipeline proceeds at full speed.
* Only when conditional branches are taken does the pipeline stall.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Branch Prediction

Program
execution Time 200 400 600 800 1000 1200 1400
order
(in instructions)
Instruction Data
ADD X4, X5, X6 | "faten Reg| AU | socess |Red
Instruction Data
CBZ X1,40 420TF>; fetch Reg| ALU access Reg
<= Instruction Data
LDUR X3, [X0,#400] 200 ps| fetch Reg| ALU access | Re9

Program
execution
order

(in instructions)

200 400 600 800 1000 1200 1400
T T T T T T T

Time

ADD X4, X5, X6 | "IN \reg | ALy | D3 g
Instruction
CBZ X1,40 - Reg| ALU Reg
200 ps fetch B] ° - -
e e e a el
(bubble/_bubble/(| “bubble/bubble/
Lo/ Lo/ T Lo/ Lo/
ORR X7, X8, X9 Instruction Data
400 ps fetch Reg| ALU access | &9
e ;
o \%\ UNIVERSITA n Dipartnorto di
| : DEGLI STUDI Ingegneria Mgt .
[@; DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

More-Realistic Branch Prediction

* A more sophisticated version of branch prediction would have some conditional branches predicted
as taken and some as untaken.
e Static branch prediction
* Based on typical branch behavior
* Example: loop and if-statement branches
* Predict backward branches taken
* Predict forward branches not taken
* Dynamic branch prediction
* Hardware measures actual branch behavior
* e.g., record recent history of each branch
* Assume future behavior will continue the trend
* When wrong, stall while re-fetching, and update history

IVERSITA g
GLI STUDI Ingegneria Mg .
I TRIESTE Ila' SR A. Carini — Digital System Architectures

Dipartiments di

Third approach: delayed branch

* There is a third approach to the control hazard, called a delayed branch.
* Used in MIPS, Tl C54, and many other processors
* The delayed branch always executes the next sequential instruction, with the branch taking place
after that one instruction delay.
* ltis hidden from the MIPS assembly language programmer because the assembler can automatically
arrange the instructions to get the branch behavior desired by the programmer.

* MIPS software will place an instruction immediately after the delayed branch instruction that is
not affected by the branch.

* Ataken branch changes the address of the instruction that follows this safe instruction.

) SRR, r'\ el o .
@ DROLUSTAY Ia e A. Carini — Digital System Architectures

Pipeline Summary: the BIG picture

* Pipelining increases the number of simultaneously executing instructions and the rate at which
instructions are started and completed.
* Pipelining does not reduce the time it takes to complete an individual instruction, i.e., the latency.
* For example, the five-stage pipeline still takes five clock cycles for the instruction to complete.
* Pipelining improves instruction throughput rather than individual instruction execution time.
* Instruction sets can either make life harder or simpler for pipeline designers, who must already cope
with structural, control, and data hazards.
* Branch prediction and forwarding help make a computer fast while still getting the right answers.

UNIVERSITA 5 Dipartimento - B |
; gl%llss#ém Ia :‘gm:;:m A. Carini — Digital System Architectures

LEGvS8 Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

Right-to-left flow wB
leads to hazards

@

4	
[
0 " : Road Read } :	
register data 1	
PC Address Z	
:	Read
; I ea ‘ ALU ALy !	
.	register 2
MEM Instruction -r!l Registers i 0 de;a‘—l—u- 1	
Write Read	
Instruction	register data 2
memo x	
Y o	Write I 1 0 x
l / data } Write	
v	data
Sign- }	
I	

K

R o e
Ingegneria — .
PITRIESTE Fal et A. Carini — Digital System Architectures

Pipeline registers

. Need registers between stages
* To hold information produced in previous cycle

IFID IDEEX EX/MEM MEMWB
————— |
4 —
Le0
M g
u PC 8= Address 5 Read
X S register 1 Read |
L1 z data 1
~ g—-| RE2C
Instruction register 2
egisters po g
memery _‘,_.. Write dam A
register
Write
| data
32 sign- | 6¢
% UNIVERSITA 3 Disertenko & . .
il BIE%%IIESS‘:I"JEDI |a Iengfgr:‘i:e;:ura A. Carini — Digital System Architectures

Pipeline Operation

* Cycle-by-cycle flow of instructions through the pipelined datapath
* “Single-clock-cycle” pipeline diagram
* Shows pipeline usage in a single cycle
* Highlight resources used
* c.f. “multi-clock-cycle” diagram
* Graph of operation over time
* WEeé'll look at “single-clock-cycle” diagrams for load & store

=% UNIVERSITA P Cpartinonto &
@DEGL'STUD' Ia R A. Carini — Digital System Architectures

“2’ DITRIESTE e Architettura

IF for Load, Store, ...

LDUR

Instruction fetch

IFID IVEX EX/MEM MEM/WE
—
4 — -
Shift
left 2
= 0
M e
u - | Address 2 Read
i g register 1 Read &
. 7 data 1
= Read e
Instruction register2 Read
— Registers a
memory —4 . Read Address o
4 Write dataz[™ data
register Data
’ Write memery
data [o
Wirite:
= data
sign- | &} =
@

A. Carini — Digital System Architectures

UNIVERSITA
DEGLI STUDI
DITRIESTE

= Dipartimento d
Ingegneria
I a e Architettura

ID for Load, Store, ...

LDUR

Instruction decode

—
4 —
b
M
u | Address

x
- 1

Instruction

memory

UNIVERSITA . Dipartimenta d
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

EX/MEM

IFID IDVEX
Shift
left2
5
b= Read
T— Read
e register 1 [
i g data 1
= | Read
register 2
I Registers geag
. Wri_le data 2
register
, Write
data
32 sign- | &
- @

{

Address
Data
memory
Wirite
data

Read
data

MEMWB

A. Carini — Digital System Architectures

EX for Load

LDUR

Execution

UNIVERSITA

Add

|

Address

Instruction
memory

IF/ID

] Instruction

e

Read Read
register 1 ed

N data 1
Read
register 2

Registers

Write Read
register data 2
Write
data

32 @m

‘ @ ‘

EX/MEM

{

Address
Data
memory

Write
data

Read
data

MEM/WEB

Sx ez

DEGLI STUDI A. Carini — Digital System Architectures

DITRIESTE

= Dipartimento d
Ingegneria
I a e Architettura

MEM for Load

UNIVERSITA
DEGLI STUDI
DITRIESTE

fia)

Dipartimento d
Ingegneria
e Architettura

4 —

| Address

Instruction
memory

IFID

=
2 Read
] register 1 Read
B data 1
= Read
" |registerz
] Registers Reag
b | Viite data2
S register
Write
data
32 Sign-
T extend

64

| LDUR |
| Memory |
EX/MEM MEMMWE
Zero [
ALU
ALL Read
result Address data [
Data
memory
Write

data

A. Carini — Digital System Architectures

WB for Load

UNIVERSITA
DEGLI STUDI
DITRIESTE

fia)

Dipartimento d
Ingegneria
e Architettura

4 —

| Address

Instruction
memory

IFID

LDUR

EX/MEM
Adg Add
Shift resul
left 2
5
Read
i register 1 Read -
T data 1
_ - REE; 2 Zero [
register ALU
L 4 © Registers oo A et Address
| Virite data 2 M
TR u Data
> |data oL e
Write
data

MEMMWB
Pl el
]

u

X

0

A. Carini — Digital System Architectures

WB for Load

IFID IDEX - N
—t
Shift
left 2
L0
M c
u PC 8| Address £ Read
x | register 1 Read - .
! B data 1
= Regd Zero i
Instruction —_—— register 2 ALU
memol = _ Registers gy _ ALY Address Read | | ’
" < data 2 o result data = .
|7 W
, ~N—1 _'5'“3" u Data u
Vire memory X
| cata |1 o
Write
data
32\ _ Sign- 5‘\1 | o
Wrong U
Register
number L

A. Carini — Digital System Architectures

UNIVERSITA
DEGLI STUDI
DITRIESTE

. Dipartimento d
Ingegneria
I a e Architettura

Corrected Datapath for Load

IFAD ID/EX EX/MEM MEMWE
—
4 — Add Adﬁ >
Shift resu
left 2
—--
5
PC 8-+ &
H -
—]
= Zero > o
Instruction ALY
ALU Read
memery = — - L 0 result - | Address data [= 1
M
M
u Data u
x memory O"
. 1
| Write
o data
k) sign- | 64 -
O——————" extend

A. Carini — Digital System Architectures

7% UNIVERSITA . Dipartimenta d
5 DEGLI STUDI Ingegneria
=2/ DITRIESTE Ia e Architettura

EX for Store

STUR

xecution

4 —»

p—>-| Address

Instruction
memory

IF/ID

ID/EX

l

] Instruction

R

Shift
left 2

Read

. Read
register 1 data 1
Read
register 2
Write Reg\stersRead
register data 2
Write
data

22 ®64

T @ T

EX/MEM

!

Address

Data
memory

Write
data

Read
data

MEM/WB

SRR

UNIVERSITA
DEGLI STUDI A. Carini — Digital System Architectures

DITRIESTE

= Dipartimento d
Ingegneria
I a e Architettura

MEM for Store

UNIVERSITA
DEGLI STUDI
DITRIESTE

fia)

Dipartimento d
Ingegneria
e Architettura

4 —»

| Address

Instruction
memory

IFID

MEM/WE

| STUR |
| Memory |
IDVEX EX/MEM
Adg Add
shit result -
left 2

5
= Read
2 register 1 Read -
T data 1
= Read Zero -

" | register 2 ALU

Registers ALU Read

= 4 Wiite g ?:;dz e result Address data

>] M

\r:iltster u Data
» e memory
data [S 1)‘
Write
- data
32 i -
. Sign- 64 L
T extend v

A. Carini — Digital System Architectures

WB for Store

| Address

Instruction
memory

IFD

IVEX.

Instruction

3

Read
register 1 Read .
data 1
Read
register 2
Registers Reaq
Wiite data 2 o
register
Write
data [L
32 sign- | 84
extend

EX/MEM

Add "*dﬂ -
Shift resd
left 2

{

Address

Write
data

Data
memory

Read
data

A. Carini — Digital System Architectures

UNIVERSITA
DEGLI STUDI
DITRIESTE

= Dipartimento d
Ingegneria
I a e Architettura

Multi-Cycle Pipeline Diagram

Time (in clock cycles)
CC1 ccz2 CC3 CC4 CC5 CCe6 cc7 cc8 CC9

Program
execution
order

(in instructions)

LDUR X10, [X1,#40]

-1
i

SUB X11, X2, X3

I -1

ADD X12, X3, X4 @— Reg —Ee_gJ
|~ e -1
LDUR X13, [X1,#48] @— FReg | —Reg

1~ = 1
B fomj— —§
ADD X14, X5, X6 @— Rég eg

UNIVERSITA = Dipartimento B . |
: BFTG&IIESSTTUEDI Ia R A. Carini — Digital System Architectures

e Architettura

Multi-Cycle Pipeline Diagram

. Traditional form:

Time (in clock cycles)
CC1 CC2 CC3 CcC4 CC5 CCé6 CCT7 CCs8 CC9

Program
execution
order
(in instructions)
LDUR X10, [x1,#40]| "STucton | INSTUCRON | ocution | D2 | write-back
SUB X11, X2, X3 '“Sft;‘;:"’” '";gg'g;‘g“ Execution agfézs Write-back
Instruction | Instruction) Data i
ADD X12, X3, X4 fetch decode Execution access Write-back
Instruction | Instruction . Data .
LDUR X13, [X1,#48] fetch decode Execution access Write-back
Instruction | Instruction ‘ Data ;
ADD X14, X5, X6 fetch decode Execution access Write-back
J
%% UNIVERSITA 3 e
‘\\ﬂ;/ DEGLISTUCE 1a it A. Carini — Digital System Architectures
95-’;;“» e Architettura

Single-Cycle Pipeline Diagram

* State of pipeline in a given cycle.

| ADD X14, X5, X6 | LDUR X13, [X1,48] | ADD X12, X3, X4 | SUB X11, X2, X3 | LDUR X10, [X1,40] |
| Instruction fetch | Instruction decode \ Execution \ Memory | Write-back |
IF/D IDIEX EX/MEM MEMMWB
EEE—
— >
Shift result]
left 2
(0
" b—p-| Address Read
1: & [|register 1 5;2“1 —
——
o | Read Zex -
Instruction reg\sterlg : ALU N_rj
memory . Wiite egisters ?e;dz_* =0 result, " 1M
[T register . 'l\:l u
| Wik * o
32

g | N
/ Ingegneria o .
PITRIESTE 1) R A. Carini — Digital System Architectures

Pipelined Control (Simplified)

PCSrc
IFND IDIEX EX/MEM MEM/WEB
———
4 — Adg"dd
Shift result Branch
left 2 .
) Reg2loc
M |
u PC |-#—-|Address 5 = Read S
x k= register 1 dﬁggd1 Mem\Write
—-\ % P reZ?sLer , - MemtoReg
Instruction I ae) R
— —— ead
memory Write Reg'SlemRead - Address data [— |.1|
register data 2 Data u
| Wite memory 3
data [
Write
. data
Instruction I
[31-0] 32 Sign- 6{1 -
v extend [_ emRead
Instruction U MemRez
[31-21] -
Instruction
[4-0]

g | N
Ingegneria o .
PITRIESTE 1) R A. Carini — Digital System Architectures

Pipelined Control

* Control signals derived from instruction
* Asinsingle-cycle implementation

/ WB

f
[
Instruction/ |

™| Control | M

WB

\.__

S / EX

IF/ID ID/EX

#2% UNIVERSITA Dptmerc
{‘% DEGLI STUDI 1 Ingegneria
‘sz DITRIESTE 181) <arcnitettura

EX/MEM

WB

MEM/WB

A. Carini — Digital System Architectures

Pipelined Control

IFID

o Instruction
28] Reg:

u PC | Address
X

Instruction
memory

| Instruction

Read
data

register

Data
memory

—s | Write
data

Write
data

Instruction
[Bi-g] 32

[A\
| controf |

Instruction
[31-21]

\

Instruction
14-0]

(@) Seossua,
il Ingegneria ni — Dioi i
" DITRIESTE A) < Archietiura A. Carini — Digital System Architectures

Data Hazards in ALU Instructions

* Consider this sequence:

SUB X2, X1,X3 // Register X2 written by SUB

AND X12,X2,X5 // 1lst operand(X2) depends on SUB
OR X13,X6,X2 // 2nd operand(X2) depends on SUB
ADD X14,X2,X2 /] 1st(X2) & 2nd(X2) depend on SUB

STUR X15,[X2,#100] // Base (X2) depends on SUB

* We can resolve hazards with forwarding
* How do we detect when to forward?

() s | FR v
] Ingegneria 2 (B .
gﬂ,/yﬂ DITRIESTE |a Sk A. Carini — Digital System Architectures

Dependencies & Forwarding

Time (in clock cycles) =
Value of CC1 ccz2 CC3 CC4 CC5 CCé6 cCc7 ccs CCo
register X2: 10 10 10 10 10/-20 -20 =20 =20 =20
Program
execution

order
(in instructions)

SUB X2, X1, X3 @ Lﬁi—g[
AND X12, X2, X5 M

: 1
‘|7j‘ gJ

R
I
ADD X14, X2, X2 (IMH —Reg |1 —E_gjw

—

ORR X13, X6, X2

o

y STUR X15, [X2,#100]

=

| 1
i B

@

BER [r) e
Ingegneria o '
PITRIESTE Ia ¢ Arehiterturs A. Carini — Digital System Architectures

Detecting the Need to Forward

* Pass register numbers along pipeline

. e.g., ID/EX.RegisterRs = register number for Rs sitting in ID/EX pipeline register
* ALU operand register numbers in EX stage are given by

* ID/EX.RegisterRn1, ID/EX.RegisterRm2
* Data hazards when

la. EX/MEM.RegisterRd = ID/EX.RegisterRn1 } Fwd from EX/MEM
1b. EX/MEM.RegisterRd = ID/EX.RegisterRm2 pipeline reg

2a. MEM/WB.RegisterRd = ID/EX.RegisterRn1 } Fwd from MEM/WB
2b. MEM/WB.RegisterRd = ID/EX.RegisterRm2 pipeline reg

* But only if forwarding instruction will write to a register!
* EX/MEM.RegWrite, MEM/WB.RegWrite
* And only if Rd for that instruction is not XZR
* EX/MEM.RegisterRd # 31, MEM/WB.RegisterRd # 31

Rt e . .
Kil ingegneria —_—
[\g:/yy DITRIESTE 1a) i< A. Carini — Digital System Architectures

e Architettura

Forwarding Paths

EX/IMEM

ID/IEX
-. :
— .
—_—
Registers
- -
Rn
Rm_
Rd

n

4 ForwardA

ALU—

c

c
L

ForwardB

MEM/WB

Data

memory

Forwarding |“‘—

EX/MEM.RegisterRd

MEM/WB.RegisterRd

=, unit

UNIVERSITA . Dipartimenta d
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Forwarding Conditions

Cmocconto | Sowce | Goplaaton

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memeory or an
earlier ALU result.

=5 UNIVERSITA Dipertimento &
(@ DEGLI STUDI H Ingegneria
‘o= DITRIESTE 1A) - arehicettura

A. Carini — Digital System Architectures

Detection Conditions

1. EX hazard:

if (EX/MEM.ReglWrite
and (EX/MEM.RegisterRd = 31)
and (EX/MEM.RegisterRd = ID/EX.RegisterRnl)) ForwardA = 10

if (EX/MEM.RegWrite
and (EX/MEM.RegisterRd = 31)
and (EX/MEM.RegisterRd = ID/EX.RegisterRm2)) ForwardB = 10

2. MEM hazard:

it (MEM/WB.RegWirite

and (MEM/WB.RegisterRd = 31)

and (MEM/WB.RegisterRd = ID/EX.RegisterRnl)) ForwardA = 01
if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 31)

and (MEM/WB.RegisterRd = ID/EX.RegisterRmZ2)) ForwardB = 01

@ e |) 5 - |
& S DITRIESTE 1) et A. Carini — Digital System Architectures

Double Data Hazard

* Consider the sequence:

add X1,X1,X2
add X1,X1,X3
add X1,X1,X4

. Both hazards occur
* We want to use the most recent data
. Revise MEM hazard condition
* Only fwd if EX hazard condition isn’t true

@ UNIVERSITA | % Diarirento o)
i /"fB %IIESSTT%DI Ia :'gfgr:'iz:m A. Carini — Digital System Architectures

S

Double Data Hazard

. MEM hazard revised:

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 31)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd = 31)
and (EX/MEM.RegisterRd = ID/EX.RegisterRnl))

and (MEM/WB.RegisterRd = ID/EX.RegisterRnl)) ForwardA = 01

if (MEM/WB.RegWrite

and (MEM/WB.RegisterRd = 31)

and not(EX/MEM.RegWrite and (EX/MEM.RegisterRd = 31)
and (EX/MEM.RegisterRd = ID/EX.RegisterRm?Z))

and (MEM/WB.RegisterRd = ID/EX.RegisterRm2)) ForwardB = 01

) et [R) e _—— |
DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Datapath with Forwarding

fia)

Instruction
memory

Dipartimento di
Ingegneria
e Architettura

ID/EX
7N\ I—'WB | EX/MEM
~| Control L M WB MEM/WB
IF/ID N4 EX |—- M |—> WBL,
il = — _— —
M
— | u
- X
= — |
2 Ry
5 Registers t ALU~
B n ~
] . I:':I Data
T | x memory
=
N/
IF/ID.RegisterRn Rn
IF/ID.RegisterRm |Rm
IF/ID.RegisterRd Rd EX/MEM.RegisterRd
[Forwarding\=— | | MEM/WB.RegisterRd
unit j

xc=

A. Carini — Digital System Architectures

Load-Use Hazard Detection

* One case where forwarding cannot save the day is when an instruction tries to read a register
following a load instruction that writes the same register.
* Inthat case it is necessary to stall the pipeline.

* We check this condition when the using instruction is decoded in ID stage
* The ALU operand register numbers in ID stage are given by
* |F/ID.RegisterRn1, IF/ID.RegisterRm?2
* We have a Load-Use hazard when
* ID/EX.MemRead and
((ID/EX.RegisterRd = IF/ID.RegisterRn1) or
(ID/EX.RegisterRd = IF/ID.RegisterRm?2))
. If detected, we must stall and insert bubble.

UNIVERSITA P Dipartimento
@ EF%IIESS%DI Ia R A. Carini — Digital System Architectures

‘:-./ e Architettura

How to Stall the Pipeline

* Force control values in ID/EX register to 0
* EX, MEM and WB do nop (no-operation)
* Prevent update of PC and IF/ID register
* The decoded instruction is decoded again
* The following instruction is fetched again
* 1-cycle stall allows MEM to read data for LDUR
* Cansubsequently forward to EX stage

=% UNIVERSITA P Cpartinonto &
@DEGL'STUD' Ia R A. Carini — Digital System Architectures

“2’ DITRIESTE e Architettura

Load-Use Hazard

Time (in clock cycles)
CC1 Ccz2 CC3 CC4 CC5 CC6 CC7 CCs8 CC9 CC 10

Program
execution
order

(in instructions)

LDUR X2, [X1,#20]

AND becomes nop

AND X4, X2, X5

ORR X8, X2, X6

eg

—

ADD X9, X4, X2

() BEeSUD [r) e
Ingegneria e Digi .
¥ DITRIESTE 1) < Zrchietiura A. Carini — Digital System Architectures

Datapath with Hazard Detection

' '7'\ ’
[goazard) ID/EX.MemRead
E—
—= unit
= ID/EX
(= TN R
= w8 EX/MEM
\Conlrolll M W MEM/WB
© | | L
5 IF/ID 0= EX I—. M I—» WB[—
Q v 1 L -
P
M
u
g - X
S Registers \hf A . N
= orward —
! _ 5 RN ALufe
PC Instruction £
M M
memory u Data -
memol
x ry
S
ForwardB
IF/ID.RegisterRn
IF/ID.RegisterRm _
IF/ID.RegisterRd Rd
Rn le|;<>r\.r~'ar¢1r'1;;\"' * —‘
Rm—.‘1 - unit —
N S

Ingegneria
e Architettura

Ila) A. Carini — Digital System Architectures

Stalls and Performance the BIG
Picture

* Although the compiler generally relies upon the hardware to resolve hazards and thereby ensure
correct execution, the compiler must understand the pipeline to achieve the best performance.
* Otherwise, unexpected stalls will reduce the performance of the compiled code.

* Stalls reduce performance
* Butarerequired to get correct results

* Compiler can arrange code to avoid hazards and stalls
* Requires knowledge of the pipeline structure

Zay UNIVERSITA | [T) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Branch Hazards

* If branch outcome determined in MEM

Time (in clock cycles)
CC1 CC2 CcC3 CcC4

Program
execution
order

(in instructions)

40CBZ X1, 8

I

44 AND X12, X2, X5
48 ORR X13, X8, X2
52 ADD X14, X2, X2

—

72 LDUR X4, [X7,#100]

=5 UNIVERSITA Diperieerio
f_ “\E DEGLI STUDI H Ingegneria
‘o= DITRIESTE 1A) <Acnietura

CC5

CCéo

CC7

cCcs8

CC9

Flush these
instructions
(Set control
values to 0)

A. Carini — Digital System Architectures

Reducing Branch Delay

* If we move the conditional branch execution earlier in the pipeline, then fewer instructions need be
flushed.
* Moving the branch decision up requires two actions to occur earlier:
* computing the branch target address and
* evaluating the branch decision.
* Moving the branch test to the ID stage implies additional forwarding and hazard detection hardware.

* During ID, we must decode the instruction, decide whether a bypass to the zero test unit is needed,
and complete the zero test so that if the instruction is a branch, we can set the PC to the branch
target address. The bypassed source operands of a branch can come from either the ALU/MEM or
MEM/WB pipeline latches.

* Because the value in a branch comparison is needed during ID but may be produced later in time, it is
possible that a data hazard can occur and a stall will be needed.

* If an ALU instruction immediately preceding a branch produces the operand for the test in the
conditional branch, a stall will be required.

* Ifaloadis immediately followed by a conditional branch that depends on the load result,
two stall cycles will be needed.

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Example: branch taken

36: SUB X10, X4, X8
40: CBZ X1, X3, 8

44: AND X12, X2, X5
48: ORR X13, X2, X6
52: ADD X14, X4, X2
56: SUB X15, Xo, X7

72: LDUR X4, [X7,#50]

() s | FR v
] Ingegneria 2 (B .
gﬂ,/yﬂ DITRIESTE |a Sk A. Carini — Digital System Architectures

Example: branch taken

AND X12, X2, X5

IF.Flush

CBZ X1,8

/~ Hazard ™\

Clock 3

Ml et
) Ingegneria
==/ DITRIESTE 181) <arcnitettura

—

SUB X10, X4, X8

before<1>

before<2>

detection

_unit

= |Control|

40 [
b X4
+— =
X8 Data
memory
[o

' { Forwarding | ,

: 1

1 1

1

T

A. Carini — Digital System Architectures

Example: branch taken

LDUR X4, [X7,100]

Bubble (no|
IF.Flush (P)

CBZ X1, 8

SUB X10, ...

before<1>

¢~ Hazard

detection i

\ unit ./

p»| Control

B 1o

'Shift’

Registers

L1, ?slrz

xc=

‘
|
‘
|
|
IDIEX
WB
M
EX

_E—)@rhEM
-

memory

10

Clock 4

|

7 B I
Forwardi na\l"

—..\ unit -

) SRR) e
Ingegneria
o=/ DITRIESTE 1A) - arehicettura

A. Carini — Digital System Architectures

Dynamic Branch Prediction

* In deeper and superscalar pipelines, branch penalty is more significant
* Use dynamic prediction
* Branch prediction buffer (aka branch history table)
* Indexed by recent branch instruction addresses
* Stores outcome (taken/not taken)
* To execute a branch
* Check table, expect the same outcome
* Start fetching from fall-through or target
* If wrong, flush pipeline and flip prediction

2/ DITRIESTE e Architettura

=% UNIVERSITA P Cpartinonto &
@DEGL'STUD' Ia R A. Carini — Digital System Architectures

1-Bit Predictor: Shortcoming

* Inner loop branches mispredicted twice!

A

outer:

inner:

A

CBZ .., .., inner

cBz .., .., outer

* Mispredict as taken on last iteration of inner loop
* Then mispredict as not taken on first iteration of inner loop next time around

@ nosn | o) e ini - Dig i
[{ Kil ngegneria -—
Y= DITRIESTE 1a) i< A. Carini — Digital System Architectures

Bereds e Architettura

2-Bit Predictor

* Only change prediction on two successive mispredictions

Not taken

Predict taken

LY

Taken

[

Not taken { Taken
r

Not taken /-

(Predict not taken

Taken
#F&% UNIVERSITA n_ Dipertmio @
(g‘_@ BF%IIES#EN Ia rﬁm‘"‘ A. Carini — Digital System Architectures

®

Branch Target Buffer and Other Branch Predictors

* Even with predictor, still need to calculate the target address
* 1-cycle penalty for a taken branch
* Branch target buffer
* Cache of target addresses
* Indexed by PC when instruction fetched
* If hit and instruction is branch predicted taken, can fetch target immediately

* Correlating predictor
* A branch predictor that combines local behavior of a particular branch and global information
about the behavior of some recent number of executed branches.

* Tournament branch predictor
* A branch predictor with multiple predictions for each branch and a selection mechanism that
chooses which predictor to enable for a given branch.

UNIVERSITA 5 Dipartimento - B |
BITRIESTE Ia R A. Carini — Digital System Architectures

Exceptions and Interrupts

* “Unexpected” events requiring change in flow of control

* Different ISAs use the terms differently
* Exception

* Arises within the CPU

* e.g., undefined opcode, overflow, syscall, ...

* Interrupt

* From an external I/O controller
* Dealing with them without sacrificing performance is hard

Type of event From where? ARMvS terminology
System reset External Exception
I/0 device request External Interrupt
Invoke the operating system from user program Internal Exception
Floating-point arithmetic overflow or underflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or interrupt

\BEG‘[FEHS. | \f‘“"‘"‘"‘“* o .
DITRIESTE oAt A. Carini — Digital System Architectures

Handling Exceptions

* Save PC of offending (or interrupted) instruction
* In LEGvS8: Exception Link Register (ELR) 64bit

* Save indication of the problem
* In LEGv8: Exception Syndrome Register (ESR) 32bit, e.g.:
* 8representing an undefined instruction,
* 10 representing arithmetic overflow or underflow, and
* 12 representing hardware malfunction.

) BB 13 s _— .
g,/y; DROLUSTAY 1a facia A. Carini — Digital System Architectures

An Alternate Mechanism

* Vectored Interrupts
* The handler address we jump to is determined by the cause
* Exception vector address to be added to a vector table base register:

e Unknown Reason: 00 0000two
e Qverflow: 10 1100two
L 11 1111two

* Instructions either
* Deal with the interrupt, or
* Jump to real handler

=% UNIVERSITA P Cpartinonto &
@DEGL'STUD' Ia R A. Carini — Digital System Architectures

“2’ DITRIESTE e Architettura

Handler Actions

* Read cause, and transfer to relevant handler
* Determine action required
* |Ifrestartable
* Take corrective action
* use ELR to return to program
* Otherwise
* Terminate program
* Report error using ELR, cause, ...

) BB 13 s _— .
g,/y; DROLUSTAY 1a facia A. Carini — Digital System Architectures

Exceptions in a Pipeline

* Another form of control hazard
* Consider overflow or hardware mulfunction on add in EX stage
ADD X1, X2, X1
* Prevent X1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set ESR and ELR register values
* Transfer control to handler
* Similar to mispredicted branch
* Use much of the same hardware

) BB 13 s _— .
g,/y; DROLUSTAY 1a facia A. Carini — Digital System Architectures

Pipeline with Exceptions

EX.Flush
IF.Flush *——
ID.Flush
-/ Hazard
— detection ! ;
\ unit / K
N v] "
\/ ID/EX u
X
V_\; A
// — i e 0 (EX/MEM
/
B~ Control} u M M WB MEMWE
1 / u
T g1 : |
IF/ID __/ 0 Ex TR 0 M E\—«
— [1 L 7
Shift M
4 left 2 M
4 T u
X
. —
Registers L/ | g
! ¥ ,\L ALU > M
1C090000 —— pcll,| Instruction | | || u
memory M Data -
! — : memory J
o Y 1.

{ Forwardi

I unit

o]]

. UNIVERSITA . Dipartimenta d
' DEGLI STUDI Ingegneria
DITRIESTE Ia e Architettura

A. Carini — Digital System Architectures

Exception Properties

* Restartable exceptions
* Pipeline can flush the instruction
* Handler executes, then returns to the instruction
» Refetched and executed from scratch
* PCsavedin ELR register
* |dentifies causing instruction
* Actually PC + 4 is saved
* Handler must adjust

) B [s ini - Dig i
kg}y} DEGLI STU Q) recmee A. Carini — Digital System Architectures

Exception Example

* Exception on ADD in

40 SUB X111, X2, X4

44 AND X12, X2, X5

48 ORR X13, X2, X6

4C ADD X1, X2, X1

50 SUB X15, X6, X7

54 LDUR X16, [X7,#100]

* Handler
80000180 STUR X26, [X0,#1000]
80000184 STUR X27, [X0,#1008]
@ E?ﬂfgj@f‘}' ﬁa E':g%z':;%m A. Carini — Digital System Architectures

Exception Example

LDUR X186, [X7,#100] | SUB X15, X6, X7 : ADD X1, X2, X1 | ORR X13, .., AND X12, . ..
1 | EXFlush 1 |
IF.Flush | i i i
‘ ID.Flush l | |
! /~ Hazard ! ! !
detection ! v ! !
_unt__/ Yy M ! !
ID/EX u | |
D=l X ' i
/t\; ':f — E1MO—IMEN:INVB
58 v FD_ 0% =] 1
hift’

I |
Data .

1C000000 =]
1ch9000 54

memory
d
| S
H 12

Clock 6

1
Forwafdmg
unit

=% UNIVERSITA n_ Cpartinonto &
@ BF%IIES#,EDI Ia’ At A. Carini — Digital System Architectures

e Architettura

Exception Example

STUR X26, [X0,#1000] bubble (nop) | bubble . bubble , ORX13, ...
} | EX.Flush | |
IF.Flush ! | — ! !
; ID.Flush i | i
! Hazard ' ! !
' detection | | | |
-k unit J ¥ ! M | |
v IDIEX Up—_ '
. L EXIMEM !
Control u — M [s MEM/WB

I Geuse u | M

0 2 EPC Oi)_(/ i

1C090000 ‘r :l m
L. 13 ters ALY - | -
10080000 - d M Data =
| : memory

Clock 7

unit

/

=% UNIVERSITA P Cpartinonto &
@EF%IESS%M Ia’ oA A. Carini — Digital System Architectures

e Architettura

Multiple Exceptions

* Pipelining overlaps multiple instructions
* Could have multiple exceptions at once
* Simple approach: deal with exception from earliest instruction
* Flush subsequent instructions
* “Precise” exceptions
* In complex pipelines
* Multiple instructions issued per cycle
* Qut-of-order completion
* Maintaining precise exceptions is difficult!

UNIVERSITA . Dipartimento di
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Imprecise Exceptions

* Just stop pipeline and save state

* Including exception cause(s)
* Let the handler work out

* Which instruction(s) had exceptions

* Which to complete or flush

* May require “manual” completion

* Simplifies hardware, but more complex handler software
* Not feasible for complex multiple-issue out-of-order pipelines

) BB 13 s _— .
g,/y; DROLUSTAY 1a facia A. Carini — Digital System Architectures

HW/SW interface

* The hardware and the operating system must work in conjunction so that exceptions behave as you
would expect.
* The hardware contract is normally to

stop the offending instruction in midstream,

let all prior instructions complete,

flush all following instructions,

set a register to show the cause of the exception,
save the address of the offending instruction,
and then branch to a prearranged address.

* The operating system contract is to look at the cause of the exception and act appropriately.

() BT

572’ DITRIESTE

For an undefined instruction or hardware failure, the operating system normally kills the
program and returns an indicator of the reason.

For an I/O device request or an operating system service call, the operating system saves the
state of the program, performs the desired task, and, at some point in the future, restores the
program to continue execution.

Dipartiments di

i a Ingegneria A. Carini — Digital System Architectures

e Architettura

Parallelism via Instructions

* Pipelining exploits the potential parallelism among instructions.
* This parallelism is called instruction-level parallelism (ILP).
* There are two primary methods for increasing the potential amount of instruction-level parallelism:
1. Increase the depth of the pipeline to overlap more instructions.
* Performance is potentially greater since the clock cycle can be shorter.
2. Replicate the internal components of the computer so that it can launch multiple instructions in
every pipeline stage.
* The general name for this technique is multiple issue.
* It allows the instruction execution rate to exceed the clock rate or the CPI to be less than 1.
* E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI =0.25, peak IPC=4
* But dependencies reduce this in practice

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Multiple Issue

There are two main ways to implement a multiple-issue processor, with the major difference being the
division of work between the compiler and the hardware:

* Static multiple issue
* An approach to implementing a multiple-issue processor where many decisions are made
by the compiler before execution.

* Dynamic multiple issue

* Anapproach to implementing a multiple-issue processor where many decisions are made
during execution by the processor.
* Two primary and distinct responsibilities must be dealt with in a multiple-issue pipeline:

1. Packaging instructions into issue slots.

* How does the processor determine how many instructions and which instructions can be
issued in a given clock cycle?
2. Dealing with data and control hazards.

=% UNIVERSITA - Dpertmerto
@ DEGLI STUDI Ia Ingegneria N Dlgltal System o

572’ DITRIESTE e Architettura

The Concept of Speculation

* Speculation is an approach that allows the compiler or the processor to “guess” what to do with an
instruction, to start execution of other instructions that may depend on the speculated instruction.
* Examples
* Speculate on branch outcome
* Roll back if path taken is different
* Speculate on load
* Roll back if location is updated
* The difficulty with speculation is that it may be wrong.
* Any speculation mechanism must include both a method to check if the guess was right and a
method to unroll or back out the effects of the instructions that were executed speculatively.
* Speculation may be done in the compiler or by the hardware.
* Common to static and dynamic multiple issue

S UNIVERSITA 5 Diperinento o .
@i prrmesres | 1AL st A. Carini — Digital System Architectures

Compiler/Hardware Speculation

* Compiler can reorder instructions
* e.g., move and instruction across a branch or a load across a store.
* Caninclude “fix-up” instructions to recover from incorrect guess.
* Hardware can look ahead for instructions to execute
* Buffer results until it determines they are actually needed.
* Flush buffers on incorrect speculation and re-execute the correct instruction sequence.

) g [i3) e - .
gﬂ,/yﬂ DITRIESTE |a s A. Carini — Digital System Architectures

e Architettura

Static Multiple Issue

* Static multiple-issue processors use the compiler to assist with packaging instructions and handling
hazards.

* In astatic issue processor, you can think of the set of instructions issued in a given clock cycle, the issue
packet, as one large instruction with multiple operations.

* Since a static multiple-issue processor usually restricts what mix of instructions can be initiated in a given
clock cycle, it is useful to think of the issue packet as a single instruction allowing several operations in
certain predefined fields.

* This view led to the original name for this approach: Very Long Instruction Word (VLIW).

* The compiler must remove some/all hazards
* Reorder instructions into issue packets
* No dependencies within a packet
* Possibly some dependencies between packets
* Varies between ISAs; compiler must know!
* Pad with nop if necessary

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

LEGv8 with Static Dual Issue

* Two-issue packets
* One ALU/branch instruction
* One load/store instruction
* 64-bit aligned
* ALU/branch, then load/store
* Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM WB

n+12 Load/store IF ID EX MEM wWB

n+16 ALU/branch IF ID EX MEM WB
n+ 20 Load/store IF ID EX MEM WB

vt | N -
Ingegneria) '
PITRIESTE 1A} crenie A. Carini — Digital System Architectures

LEGv8 with Static Dual Issue

DEGLI STUDI
DITRIESTE

fia)

+ —
4 —»
10090000: pcile Instruction —»|
memory [~
L,
% UNIVERSITA DRpoxaTenko

Ingegneria
e Architettura

+
Ny
M
u
7 5
1 g
™
M
Registers u
—
N/

(e}
" \extend, "Sign-‘u

\extend/

/

SALU—»

1 Write
data

Data
memory

Address

A. Carini — Digital System Architectures

LEGv8 with Static Dual Issue

* Clearly, this two-issue processor can improve performance by up to a factor of two!
Doing so, however, requires that twice as many instructions be overlapped in execution, and this
additional overlap increases the relative performance loss from data and control hazards.
* Forexample,
* Now we can’t use ALU result in load/store in same packet
ADD X0, X0, X1
LDUR X2, [X0,#0]
* We have to split into two packets (effectively a stall).

In our five-stage pipeline, loads have a use latency of one clock cycle, which prevents one
instruction from using the result without stalling.

* Inthe two-issue, five-stage pipeline the result of a load instruction cannot be used on the next
clock cycle. This means that the next two instructions cannot use the load result without stalling.

To effectively exploit the parallelism, a more aggressive scheduling and a more ambitious compiler is
needed.

=% UNIVERSITA P —
@EF%IESS%M 1a < Aeniars A. Carini — Digital System Architectures

Scheduling Example

* How would this loop be scheduled on a static two-issue pipeline for LEGv8?

Loop: LDUR X0, [X20,ff01 // XO=array element
ADD X0,X0,X21 // add scalar in X21
STUR X0, [X20,#01 // store result
SUBI X20,X20,%#8 // decrement pointer

CMP X20,X22 // compare to loop lTimit
BGT Loop // branch if X20 > X22
N T e ——— Ty
Loop: LDUR X0, [X20,#0] 1
SUBT X20, X20, #8 2
ADD X0, X0, X21 3
CMP X20, X22 4
BGT Loop STUR X0,[X20,#8] 5

IPC =6/5=1.2 (c.f. peak IPC = 2)

FES UNIVERSITA - — - |
@; BiRIESTe 1a < Aeniars A. Carini — Digital System Architectures

Loop Unrolling for Multiple-Issue Pipelines

* Animportant compiler technique to get more performance from loops is loop unrolling, where multiple
copies of the loop body are made.

* After unrolling, there is more ILP available by overlapping instructions from different iterations.

* During the unrolling process, the compiler generally introduces additional registers.

* The goal of this process, called register renaming, is to eliminate dependences that are not true data
dependences, the so called antidependences or name dependences.

* Antidependence, also called name dependence, is an ordering forced by the reuse of a name, typically a
register, rather than by a true dependence that carries a value between two instructions.

IVERSITA 5 Dipartimento B . |
ITG;IIES#,EDI Ia :‘gm:;:m A. Carini — Digital System Architectures

Loop Unrolling Example

* Loop unrolling with factor 4 of the previous loop:

X0,

Loop: SUBI X20, X20,#32 LDUR [X20,#0] 1

LDUR X1, [X20,#24] 2

ADD X0, X0, Xx21 LDUR X2, [X20,#16] 3

ADD X1, X1, Xx21 LDUR X3, [X20,#8] 4

ADD X2, X2, x21 STUR X0, [X20,#32] 5

ADD X3, X3, X21 STUR X1, [X20,#24] 6

CMP X20, X22 STUR X2, [X20,#16] 7

BGT Loop STUR X3, [X20,#8] 8

IPC=15/8 =1.875
Closer to 2, but at cost of registers and code size
@ E?ﬂfgigﬁ" ﬁa E':g:;:gz':i:m A. Carini — Digital System Architectures

Dynamic Multiple Issue

* Dynamic multiple-issue processors are also known as superscalar processors.
* In the simplest superscalar processors, instructions issue in order, and the processor decides whether
zero, one, or more instructions can issue in a given clock cycle.
* Achieving good performance on such a processor still requires the compiler to try to schedule
instructions to move dependences apart and thereby improve the instruction issue rate.
* Big difference with VLIW: now the code, whether scheduled or not, is guaranteed by the
hardware to execute correctly.

* Compiled code will always run correctly independent of the issue rate or pipeline structure of the
processor.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Dynamic Pipeline Scheduling

* Many superscalars extend the multiple issue framework to include dynamic pipeline scheduling.
* Hardware allow the CPU to execute instructions out of order to avoid stalls.
* But commit result to registers in order

* Example
LDUR X0, [X21,#20]
ADD X1, X0, X2
SUB X23,X23,X3
ANDI X5, X23,#20

* Even though the SUB instruction is ready to execute, it must wait for the LDUR and ADD to
complete first, which might take many clock cycles if memory is slow.
* Dynamic pipeline scheduling allows such hazards to be avoided.

ITRIESTE e Architettura

L “
/—ﬁ\\ UNIVERSITA . Diparimento &

A 5 DEGLI STUDI Ingegneria Mg q
Q@; b Ila’ geg A. Carini — Digital System Architectures

Dynamic Pipeline Scheduling

* Dynamic pipeline scheduling chooses which instructions to execute next, possibly reordering them to
avoid stalls.
* Insuch processors, the pipeline is divided into three major units:
* aninstruction fetch and issue unit,
* multiple functional units (a dozen or more in high-end designs in 2015), and
* a2 commit unit.
* The first unit fetches instructions, decodes them, and sends each instruction to a corresponding
functional unit for execution.
* Each functional unit has buffers, called reservation stations, which hold the operands and the operation.
* Assoon as the buffer contains all operands and the functional unit is ready to execute, the result is
calculated.
* When the result is completed, it is sent to any reservation stations waiting for it and to the commit unit,
which buffers the result until it is safe to put it into the register file or into memory. Its buffer is often
called reordering buffer and is also used for forwarding operands.

UNIVERSITA P Dipartimento
@ UL 1) BEt A. Carini — Digital System Architectures

Dynamically Scheduled CPU

/ Preserves

Instruction fetch dependencies

and decode unit

In-order issue

Y Y A Y

Reservation | | Reservation Reservation | [Reservation Hold pending
station station T station station operands

Functional Integer Integer o Load- | oyt-of-order execute
units store
«—i
Results also sent

to any waiting
\ reservation stations

— Commit In-order commit
Reorders buffer for unit
register writes

Can supply
operands for
issued instructions

vt | N -
Ingegneria) '
PITRIESTE 1A} crenie A. Carini — Digital System Architectures

Register Renaming

* Reservation stations and reorder buffer effectively provide register renaming
* On instruction issue to reservation station
* If operand is available in register file or reorder buffer
* Copied to reservation station
* Nolonger required in the register; can be overwritten
* If operand is not yet available
* It will be provided to the reservation station by a function unit
* Register update may not be required

UNIVERSITA . Dipartimento di
DEGLI STUDI Ingegneria
DITRIESTE I a e Architettura

A. Carini — Digital System Architectures

Out-of-order Execution

* Conceptually, you can think of a dynamically scheduled pipeline as analyzing the data flow structure of a
program.
* The processor then executes the instructions in some order that preserves the data flow order of the
program.
* This style of execution is called an out-of-order execution, since the instructions can be executed in a
different order than they were fetched.
* To make programs behave as if they were running on a simple in-order pipeline:
* theinstruction fetch and decode unit is required to issue instructions in order,
* which allows dependences to be tracked,
* and the commit unit is required to write results to registers and memory in program fetch order.
* This conservative mode is called in-order commit.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Speculation

* Dynamic scheduling is often extended by including hardware-based speculation, especially for branches.
* Because the instructions are committed in order, we know whether the branch was correctly
predicted before any instructions from the predicted path are committed
* A speculative, dynamically scheduled pipeline can also support speculation on load addresses,
* allowing load-store reordering, and
* using the commit unit to avoid incorrect speculation.

W BER [e ini - Dig |
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Why Do Dynamic Scheduling?

* Why not just let the compiler schedule code?

* Not all stalls are predicable
* e.g., cache misses
* Can’t always schedule around branches
* Branch outcome is dynamically determined
* Different implementations of an ISA have different latencies and hazards

) g [i3) e i Dig .
&:f/j DROLUSTAY 1a facia A. Carini — Digital System Architectures

Does Multiple Issue Work?

* Yes, but not as much as we’d like.

* Both pipelining and multiple-issue execution increase peak instruction throughput and attempt to
exploit instruction-level parallelism (ILP).

* Data and control dependences in programs, however, offer an upper limit on sustained performance
because the processor must sometimes wait for a dependence to be resolved.

* Software-centric approaches to exploiting ILP rely on the ability of the compiler to find and reduce the
effects of such dependences, while hardware-centric approaches rely on extensions to the pipeline and
issue mechanisms.

* Speculation, performed by the compiler or the hardware, can increase the amount of ILP that can be
exploited via prediction, although care must be taken since speculating incorrectly is likely to reduce
performance.

W) st i) e D .
@?yﬁ DITRIESTE 1A) - arehicettura A. Carini — Digital System Architectures

Energy Efficiency and Advanced Pipelining

* The downside to the increasing exploitation of instruction-level parallelism via dynamic multiple issue
and speculation is potential energy inefficiency.

* The current belief is that while the simpler processors are not as fast as their sophisticated brethren,
they deliver better performance per Joule, so that they can deliver more performance per chip when
designs are constrained more by energy than they are by the number of transistors.

Pipeline Issue | Out-of-Order/ Cores/
Microprocessor Year | Clock Rate Stages Width Speculation Chip Power
5 No 5

Intel 486 1989 25 MHz 1 1 W
Intel Pentium 1993 66 MHz 5 2 No 1 10 W
Intel Pentium Pro 1997 200 MHz 10 3 Yes 1 29 W
Intel Pentium 4 Willamette 2001 2000 MHz 22 3 Yes 1 75 W
Intel Pentium 4 Prescott 2004 3600 MHz 31 3 Yes 1 103 w
Intel Core 2006 2930 MHz 14 4 Yes 2 75 W
Intel Core i5 Nehalem 2010 3300 MHz 14 4 Yes 2-4 87 W
Intel Core 15 Ivy Bridge 2012 3400 MHz 14 4 Yes 8 77 W

5% UNIVERSITA n_ parerto
@ BiRIESTe Ia’ At A. Carini — Digital System Architectures

< DITRIESTE e Architettura

Real Stuff: The ARM Cortex-A53 and Intel Core i7

ARM A53

Intel Core i7 920

Market Personal Mobile Device Server, Cloud
Thermal design power 100 milliwatts 130 Watts
(1 core @ 1 GHz)
Clock rate 1.5 GHz 2.66 GHz
Cores/Chip 4 (configurable) 4
Floating point? Yes Yes
Multiple Issue? Dynamic Dynamic
Peak instructions/clock cycle 2 4
Pipeline Stages 8 14

Pipeline schedule

Static In-order

Dynamic Out-of-order with Speculation

Branch prediction

Hybrid

2-level

1st level caches/core

1664 KiB |, 1664 KiB D

32KiBI, 32 KIBD

2nd level cache/core

128-2048 KiB (shared)

256 KiB (per core)

3rd level cache (shared)

(platform dependent)

2-8 MiB

=% UNIVERSITA Diperieerio
f_ ,\\;j DEGLI STUDI 1 Ingegneria
‘o= DITRIESTE 1) < Arenitettura

A. Carini — Digital System Architectures

ARM Cortex-A53 pipeline

F1 F2 F3 F4 Iss Ex1 Ex2 Wr

Integer execute and load-store

Instruction fetch & predict

- ALU pipe 0 '—»
Integer
AGU | Register |

+ il o ALU pipe 1

T8 Hybrid * e
. Predictor
Lo Instruction MAC pipe
Cache - PP Writeback
Indirect

N Predictor K _

B Divide pipe

lssue Load pipe

Lo Store pipe '—-
Instruction Decode Floating Point execute
MUL/DIVISQRT pipe ‘
13-Entry NEON |
Early Main Late Register
™| Decode Instruction Decode Decode file ;
Queue ‘ ALU pipe ‘
D1 D2 D3 F1 F2 F3 F4 F5

g | N
/ Ingegneria o .
PITRIESTE 1) R A. Carini — Digital System Architectures

ARM Cortex-A53 pipeline

Key features of the microarchitecture of the Cortex-A53 core -2

* The Cortex-A53 core has a dual-issue in-order front end with 5 pipelines
constituting the back end, as indicated in the next Figure.

Writeback

Integer
Multipy

Dual
Fetch Decode Issue

iy o

A Inteier
l Load/Store
Queue - .

Figure: Pipeline stages of the Cortex-A53 [76]

Floating-Point / NEON

* The pipeline for integer processing has 8 pipeline stages, NEON and FP

processing has two additional pipeline stages, as seen in the Figure above.

/-; A ipartimento di
m pEcLiotuol | [e\ ingegneria
%= DITRIESTE 181) < Archicettura

From:

A. Carini — Digital System Architectures

ARM Cortex-A53 pipeline

* The first three stages fetch two instructions at a time and try to keep a 13-entry instruction queue full.
It uses a 6k-bit hybrid conditional branch predictor, a 256-entry indirect branch predictor, and an 8-
entry return address stack to predict future function returns. The prediction of indirect branches takes
an additional pipeline stage. When the branch prediction is wrong, it empties the pipeline, resulting in
an eight-clock cycle misprediction penalty.

* The decode stages of the pipeline determine if there are dependences between a pair of instructions,
which would force sequential execution, and in which pipeline of the execution stages to send the
instructions.

* The instruction execution section primarily occupies three pipeline stages and provides one pipeline for
load instructions, one pipeline for store instructions, two pipelines for integer arithmetic operations,
and separate pipelines for integer multiply and divide operations. Either instruction from the pair can
be issued to the load or store pipelines. The execution stages have full forwarding between the
pipelines.

* Floating-point and SIMD operations add a two more pipeline stages to the instruction execution section
and feature one pipeline for multiply/divide/square root operations and one pipeline for other
arithmetic operations.

Zay UNIVERSITA | [T) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

ARM Cortex-A53 performance

10.00
B Memoary hierarchy stalls
9.00 —— ' Pipeline stalls 5EG
M |deal CPI
8.00
7.00
6.00
5.00
4.00
3.37
3.00
214
200 1.75 1.76
1.39
147 122 133 . . .
100 0_97 1.04 1.07 — - = -
w il H H H H H B B B B E B

hmmer h264ref libquantum perlbench sjeng bzip2 gobmk xalancbm|

=2
=
Q
<]
o
[
w
o
[

omnetpp mcf

=% UNIVERSITA n_ Cpartinonto &
@ BF%IIES#,EDI Ia’ At A. Carini — Digital System Architectures

e Architettura

w)

5

Intel Core i7 920
pipeline

UNIVERSITA = Dipertmento i
| DEGLI STUDI Ingegneria
s/ DITRIESTE I a e Architettura

128-Entry y| 32 KB Inst. cache (four-way associative) Id
inst TLB |4 v
(four-way) 16-Byte pre-decode+macro-op
* * fusion, fetch buffer
Im;ﬁlm 18-Entry instruction queue
hardware | d > > >
Complex Simple Simple Simple
M ¥ macro-op macro-op macro-op Macro-op
_code v decoder decoder decoder decoder
— v v v v
28-Entry micro-op loop stream detect buffer
|
¥
| Register alias table and allocator |
Retirement
register file ¥ 128-Entry reorder buffer
P 36-Entry reservation station
v v v v v v
ALU ALU Load Store Store ALU
shift shift address | address data shift
| |
SSE SSE L2 v v SSE
shuffle shuffle Memory order buffer shuifle
ALU ALU ALU
1 T A
128-bit 128-bit 128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
1 Il 1 '—l
| |
YY VY v
512-Entry unified ©64-Entry data TLB 32-KB dual-ported data 256 KB unified L2
L2TLB (4-way) —»|(4-way associative) | | cache (8-way associative) cache (eight-way)

8 MB all core shared and inclusive L3 —# Uncore arbiter (handles scheduling and

cache (16-way associative) +— clock/power state differences)

v 4

A. Carini — Digital System Architectures

Intel Core i7 920 pipeline

1. Instruction fetch—The processor uses a multilevel branch target buffer to achieve a balance between
speed and prediction accuracy. There is also a return address stack to speed up function return.
Mispredictions cause a penalty of about 15 cycles. Using the predicted address, the instruction fetch
unit fetches 16 bytes from the instruction cache.

2. The 16 bytes are placed in the predecode instruction buffer—The predecode stage transforms the 16
bytes into individual x86 instructions. This predecode is nontrivial since the length of an x86 instruction
can be from 1 to 15 bytes and the predecoder must look through a number of bytes before it knows the
instruction length. Individual x86 instructions are placed into the 18-entry instruction queue.

3. Micro-op decode—Individual x86 instructions are translated into micro-operations (micro-ops). Three
of the decoders handle x86 instructions that translate directly into one micro-op. For x86 instructions
that have more complex semantics, there is a microcode engine that is used to produce the micro-op
sequence; it can produce up to four micro-ops every cycle and continues until the necessary micro-op
sequence has been generated. The micro-ops are placed according to the order of the x86 instructions
in the 28-entry micro-op buffer.

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Intel Core i7 920 pipeline

4. The micro-op buffer performs loop stream detection—If there is a small sequence of instructions (less
than 28 instructions or 256 bytes in length) that comprises a loop, the loop stream detector will find the
loop and directly issue the micro-ops from the buffer, eliminating the need for the instruction fetch and
instruction decode stages to be activated.

5. Perform the basic instruction issue—Looking up the register location in the register tables, renaming
the registers, allocating a reorder buffer entry, and fetching any results from the registers or reorder
buffer before sending the micro-ops to the reservation stations.

6. Thei7 uses a 36-entry centralized reservation station shared by six functional units. Up to six micro-ops
may be dispatched to the functional units every clock cycle.

7. The individual function units execute micro-ops and then results are sent back to any waiting
reservation station as well as to the register retirement unit, where they will update the register state,
once it is known that the instruction is no longer speculative. The entry corresponding to the
instruction in the reorder buffer is marked as complete.

8. When one or more instructions at the head of the reorder buffer have been marked as complete, the

pending writes in the register retirement unit are executed, and the instructions are removed from the
reorder buffer.

Zay UNIVERSITA | [T) o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

Intel Core i7 920 performance

3 ___
Stalls, misspeculation
267
m [deal CPI
P bt S
212
2, ,,
o .. .1
S 15
1.23
102 108
1_ ______________________________________ -B--3 -
074 077 082
059 061 ©
0_5,,0,-44,, N BN s B BN NN BN e N B -
SIEEEEEEEEREER]
S & & SO P PR S
SIS Q& & & sQ
S & FTFHFP S F &P 9 ¢
N N > &
& T @ h J
¥ < ¥

Dipartimento di
Ingegneria
e Architettura

fia)

A. Carini — Digital System Architectures

Intel Core i7 920 performance

Branch misprediction % m Wasted work %

L s XY
38% o
350 -
32%
30% - -
D5, | s e 2% [
20% - ---- -
15% F----m-mmmmm ---- -

10%
0% - omcm e e S 9%
7%
6% 5%
5% 1 5% ____ I _. I - .
oac1% Z%I 29;I 2,
0% f—m : : : . : :
!\
& .
0

@ BEQ[,EE?.'_,TE,‘. 1 :);'D:::'::'?; A. Carini — Digital System Architectures
==/ DITRIESTE Ila' e Architettura : g v

Going Faster: Instruction-Level Parallelism and
Matrix Multiply

1 //include <x86intrin.h>

2 //define UNROLL (4)

3

4 void dgemm (int n, double* A, double* B, double* C)
5 {

9 for (int 1 = 0; 1 < n; 1i+= *4)

7 for (int 7 = 0; J < n; Jj++) {

8 __m256d c[4];

9 for (int x = 0; x < UNROLL; x++)

10 c[x] = mm256 load pd(C+i+x*4+j*n);

11

12 for(int k = 0; k < n; k++)

13 {

14 __m256d b = mm256 broadcast sd(B+k+j*n);
15 for (int x = 0; x < UNROLL; x++)

16 cl[x] = mm256 add pd(c[x],

17 ~mm256 mul pd(mm256 load pd(A+n*k+x*4+1), b));
18 }

19

20 for (int x = 0; x < UNROLL; x++)

21 -~ mm256_store pd(C+i+x*4+j*n, c[x]);

22 }

23 }

@) Bl) . ,
&kﬁf/y‘j DITRIESTE 1a) i< A. Carini — Digital System Architectures

e Architettura

Matrix Multiply

O J oy U wbN R

Ne}

vmovapd (%rll), $ymmé

mov $rbx, $rax

X0or %ecx, %ecx

vmovapd 0x20 (%rll)

vmovapd 0x40 (%rll), Symm2
)

vmovapd 0x60 (%rll), $Symml

vbroadcastsd (%rcx,%r9,1), $ymmO
add $0x8,%rcx
vmulpd (%rax), symm0O, $ymmb

10 vaddpd %Symm5, $ymm4, $ymm4

11 vmulpd 0x20 (%rax), symmQO, $ymm5
12 vaddpd %Symm5, $ymm3, $ymm3

13 vmulpd 0x40 (%rax), symmQ0, $ymm5
14 vmulpd 0x60 (%rax), symm0O, $ymmO
15 add %r8, $rax

16 cmp %rl0,%rcx

17 vaddpd %Symm5, $ymm2, %ymm2

18 vaddpd %$ymmO, $ymml, $ymml

19 jne 68 <dgemm+0x68>

20 add $0x1, %$esi

21 vmovapd %ymmé4, (%rll)

22 vmovapd %ymm3, 0x20 (%$rll)

23 vmovapd %ymm2, 0x40 (%$rll)

24 vmovapd %ymml, 0x60 (%$rll)

UNIVERSITA
DEGLI STUDI
DITRIESTE

= Dipartimento di
Ingegneria
I a e Architettura

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
/7
/7
/7
/7

Load 4 elements
register Srax =

register %Secx =
Load 4 elements
Load 4 elements
Load 4 elements
Make 4 copies of B element

register
Parallel
Parallel
Parallel
Parallel
Parallel
Parallel
register

Parallel add %ymmb5,
Parallel add %ymmO,

branch if
register

srcx =
Symml, 4 A

mul

add %Symmb,

mul

add %Symmb,

mul
mul

of C into %Symm4
Srbx

0

of C into %Symm3
of C into %Symm2
of C into %Symml

$rcx + 8

% ymm4

Symml, 4 A

Symm3

Symml, 4 A
Symml, 4 A

$rax =
compare %r8 to %

o
sr
o

s e

Store %Symm4
Store %ymm3
Store %ymm2
Store %Symml

8 !=
si =
into
into
into
into

$rax + %r8
rax

% ymm2
Symml
Srax

esi + 1

C elements
C elements
C elements
C elements

o

O

A. Carini — Digital System Architectures

Matrix Multiply performance

16.0 7

12.0 7

8.0 7

GFLOPS

4.0 4

unoptimized AVX AVX+unroll

\ UNIVERSITA - Dpartmento & N .
. EIETG'{.:ESSTTUEm |a L"xfé’,?.:;:i'..,a A. Carini — Digital System Architectures

References

* David A. Patterson and John L. Hennessy, “Computer organization and design ARM edition: the
hardware software interface,” Morgan Kaufmann, 2016.
* Chapter4:4.1,4.2,4.3,4.4,45,4.6,4.7,4.8,4.9,4.10,4.11,4.12

* Simone Buso, “ Introduzione alle applicazioni industriali di Microcontrollori e DSP”, Societa editrice
Esculapio, 2018
* Chapter 5.3

Most of the text has been taken and adapted from “Computer Organization and Design ARM Edition: The
Hardware Software Interface”.

If not differently indicated, all figures have been taken from the book or the material in the companion
website of “Computer Organization and Design ARM Edition: The Hardware Software Interface”.

S UNIVERSITA 5 Diperinento o .
@J prrmesres | 1AL st A. Carini — Digital System Architectures

