
Exercises Lecture V
Numerical Integration in 1D

1. Equispaced points: comparison trapezoidal-Simpson rules
Consider the definite integral :

I =

Z 1

0
ex dx = e� 1 = 1.718282 . . .

Write a code (e.g. int.f90) to calculate the integral using the (1) trape-
zoidal rule or (2) the Simpson rule. In general, we indicate with Fn the
estimate of the integral from x0 to xn using a discretisation in n intervals

(even for the Simpson algorithm) of width h =
xn � x0

n
. Therefore:

Z xn

x0

f(x)dx = F trap
n +O(h2) = FSimpson

n +O(h4)

where

F trap
n = h

1

2
f0 + f1 + . . .+ fn�1 +

1

2
fn

�

and

FSimpson
n = h

1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + . . .+

+
4

3
fn�3 +

2

3
fn�2 +

4

3
fn�1 +

1

3
fn

�

(a) Which is the dependence on n of the error �n = Fn � I ? You can
choose n = 2k (with k = 2, . . . 8, at least) in order to have equispaced
points when doing a log-log plot. You should find �n ⇡ 1/n2 for the
trapezoidal rule and �n ⇡ 1/n4 for the Simpson rule.

1

2. Monte Carlo method:
generic sample mean and importance sampling

(a) Write a code to compute the numerical estimate Fn of I =
R 1
0 e�x2

dx =
p
⇡
2 erf(1) ⇡ 0.746824 with the MC sample mean method using a set
{xi} of n random points uniformly distributed in [0,1]:

Fn =
1

n

nX

i=1

f(xi)

(b) Write a code (a di↵erent one, or, better, a unique code with an
option) to compute Fn using the importance sampling with a set
{xi} of points generated according to the distribution p(x) = Ae�x

(Notice that erf is an intrinsic fortran function; useful to compare the
numerical result with the true value). Remind that in the importance
sampling approach:

Z b

a
f(x)dx =

⌧
f(x)

p(x)

�Z b

a
p(x)dx ⇡

1

n

nX

i=1

f(xi)

p(xi)

Z b

a
p(x)dx = Fn

with p(x) which approximates the behaviour of f(x), and the average
is calculated over the random points {xi} with distribution p(x).
Notes: pay attention to:
- the normalization of p(x);
- the exponential distribution: expdev provides random numbers x

distributed in [0,+1[; here we need x in [0,1] . . .

(c) Compare the e�ciency of the two sampling methods (uniform and
importance sampling) for the estimate of the integral by calculating
the following quantities: Fn, �n = (< f2

i > � < fi >2)1/2, �n/
p
n,

where fi = f(xi) in the first case, and fi = f(xi)
p(xi)

R b
a p(x)dx in the

second case (make a log-log plot of the error as a function of n: what
do you see?).

3. MC Method: acceptance-rejection
Using the acceptance-rejection method, calculate ⇡ = 4I with I =

R 1
0

p
1� x2dx.

The numerical estimate of the integral is Fn =
ns

n
where ns is the num-

ber of points under the curve f(x) =
p
1� x2, and n the total number

of points generated. An example is given in pi.f90. Estimate the error
associated, i.e. the di↵erence between Fn and the true value. Discuss the
dependence of the error on n.
(Notice that many points are needed to see the n�1/2 behavior, which can
be hidden by stochastic fluctuations; it is easier to see it by averaging
over many results (obtained from random numbers sequences with di↵er-
ent seeds))

2

4. MC method–sample mean (generic);
error analysis using the “average of the averages” and the “block
average” NOTE: THIS EXERCISE IS VERY IMPORTANT !!!

(a) Write a code to estimate the same integral of previous exercise, ⇡ =

4I with I =
R 1
0

p
1� x2dx, using the MC method of sample mean

with uniformly distributed random points. Evaluate the error �n =
Fn � I for n=102, 103, 104: it should have a 1/

p
n behaviour.

(b) Choose in particulat n = 104 and consider the corresponding error
�n. Calculate �2

n =< f2 > � < f >2. You should recognize that
�n CANNOT BE CONSIDERED A GOOD ESTIMATE OF THE
ERROR (it’s much larger than the actual error. . .)

(c) In order to improve the error estimate, apply the following two dif-
ferent methods of variance reduction: 1) “average of the averages”:
do m =10 runs with n points each, and consider the average of the
averages and its standard deviation:

�2
m =< M2 > � < M >2

where

< M >=
1

m

mX

↵=1

M↵ e < M2 >=
1

m

mX

↵=1

M2
↵

and M↵ is the average of each run. You should recognize that �m is
a good estimate of the error associated to each measurement (=each
run) and �m ⇡ �n/

p
n is the error associated to the average over the

di↵erent runs.

(d) 2) Divide now the n = 10, 000 points into 10 subsets. Consider the
averages fs within the individual subsets and the standard deviation
if the average over the subsets:

�2
s =< f2

s > � < fs >
2 .

You should notice that �s/
p
s ⇡ �m.

3

!CCC

! int.f90:

! integrates f(x)=exp(x) in the interval [vmin,vamx]=[0,1]

! using trapezoidal and Simpson rule

!ccc

module intmod

public :: f, trapez, simpson

contains

! function to be integrated

!

function f(x)

implicit none

real :: f

real, intent(in) :: x

f = exp(x)

return

end function f

! trapezoidal rule

!

function trapez(i, min, max)

implicit none

real :: trapez

integer, intent(in) :: i

real, intent(in) :: min, max

integer :: n

real :: x, interval

trapez = 0.

interval= ((max-min) / (i-1))

! sum over the internal points (extrema excluded)

do n = 2, i-1

x = interval * (n-1)

trapez = trapez + f(x) * interval

end do

! add extrema

trapez = trapez + 0.5 * (f(min)+f(max)) * interval

return

end function trapez

! Simpson rule

!

function simpson(i, min, max)

implicit none

real :: simpson

4

integer, intent(in) :: i

real, intent(in) :: min, max

integer :: n

real :: x, interval

simpson = 0.

interval = ((max-min) / (i-1))

! loop EVEN points

do n = 2, i-1, 2

x = interval * (n-1)

simpson = simpson + 4*f(x)

end do

! loop ODD points

do n = 3, i-1, 2

x = interval * (n-1)

simpson = simpson + 2*f(x)

end do

! add extrema

simpson = simpson + f(min)+f(max)

simpson = simpson * interval/3

return

end function simpson

end module intmod

program int

use intmod

!

! variable declaration

! accuracy limit

! min and max in x

!

implicit none

real :: r1, r2, theo, vmin, vmax, t0, t1

integer :: i, n

! exact value

vmin = 0.0

vmax = 1.0

theo = exp(vmax)-exp(vmin)

print*,’ exact value =’,theo

open(unit=7,file=’int-tra-sim.dat’,status=’unknown’)

!

write(7,*)"# N, interval, exact, Trap-exact, Simpson-exact"

call cpu_time(t0)

do i = 2,8

n = 2**i

r1 = trapez(n+1, vmin, vmax)

5

r1 = (r1-theo)

r2 = simpson(n+1, vmin, vmax)

r2 = (r2-theo)

write(7,’(i4,4(2x,f10.6))’) n, 1./n, theo, r1, r2

end do

call cpu_time(t1)

print*," total time spent:",t1-t0

close(7)

print*,’ data saved in int-tra-sim.dat (|diff from exact value|)’

stop

end program int

!cc

!c pi.f90: Calculates pi using MC

!cc

Program pi

Implicit none

integer, dimension(:), allocatable :: seed

real, dimension(2) :: rnd

Real :: area, x, y

Integer :: i, max, pigr, sizer

call random_seed(sizer)

allocate(seed(sizer)

print*,’ enter max number of points=’

read*, max

print*,’ enter seed (or type /) >’

read*, seed

call random_seed(put=seed)

! open data file, initializations

Open(7, File=’pigr.dat’, Status=’Replace’)

pigr=0

! points generated within a square of side 2

! count how many fall within the circle x*x+y*y <= 1;

Do i=1, max

call random_number(rnd)

x = rnd(1)*2-1

y = rnd(2)*2-1

If ((x*x + y*y) <= 1) then

pigr = pigr+1

Endif

area = 4.0 * pigr/Real(i)

if (mod(i,10)==0) Write(7,*) i, abs(acos(-1.)-area) !write every 10 points

end do

Close(7)

Stop ’data saved in pigr.dat ’

End program pi

6

