Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2021

Lecture 8: Signal Temporal Logic

[Many Slides due to J. Deshmukh, A. Donzé]

Typical day in a control designer's life

Chief Engineer

- Normally in natural language (ambiguous, error-prone)
- Sometime absent
- If you are LUCKY, they are written in English

Typical day in a control designer's life

Requirements Driving Design

Requirements **formally** capture what it means for a system to operate correctly in its operating environment

Linear Temporal Logic (LTL) specification

It is a logic interpreted over infinite discrete-time traces

E.g. For the next 3 days the highest temperature will be below 75 degree and the lowest temperature will be above 60 degree

X $(p \land q) \land X X (p \land q) \land X X X (p \land q)$ with p = T < 75, q = T > 60

Metric Interval Temporal Logic (STL)

Invented by R. Alur, T.Feder, T.A. Henzinger (1991) It extended LTL by adding **dense time intervals**:

 $G_{[0,3]}(\mathbf{p} \wedge q)$

Signal Temporal Logic (STL)

Invented by D. Nickovic and O. Maler from Verimag (2004) It extended MITL by having **signal predicates over real values as atomic formulas:**

 $G_{[0,3]}(T < 75 \land T > 60)$

STL Syntax

Syntax of STL

φ ::=	$f(\mathbf{x}) \sim 0$	I	$f: \mathbb{D} \to \mathbb{R}$ is a function over the signal $\mathbf{x}: \mathbb{T} \to \mathbb{D}$,
			$\sim \in \{\leq, <, >, \geq, =, \neq\}$
	$\neg arphi$		Negation
	$\varphi_1 \wedge \varphi_2$		Conjunction
	$\mathbf{F}_{[a,b]} \varphi$		At some F uture step in the interval $[a, b]$
	$\mathbf{G}_{[a,b]} arphi$		G lobally in all times in the interval $[a, b]$
	$\varphi_1 \mathbf{U}_{[a,b]} \varphi_2$		In all steps U ntil in interval $[a, b]$
	$arphi_1 \pmb{S}_{[a,b]} arphi_2$		In all steps S ince in interval $[a, b]$

Since and Until Operators

Can we express our engineer's requirements?

Example STL formulas: Overshoot

Example STL formulas: Settling Time

Specification-based Monitoring

Specification-based Monitoring

Boolean Signal

$$s_{\varphi}: [0, T] :\rightarrow \{0, 1\} \text{ s.t. } s_{\varphi}(t) = 1 \Leftrightarrow (\vec{x}, t) \models \varphi$$

Quantitative Signal

$$\rho_{\varphi}: [0, T] :\rightarrow \mathbb{R} \cup \{\pm \infty\} \text{ s.t. } \rho_{\varphi}(t) = \rho(\varphi, \vec{x}, t)$$

Monitoring STL

Recursive Boolean Semantics of STL					
arphi	$s(\varphi, \mathbf{x}, t)$				
$f(\mathbf{x}) \sim 0$	$f(\mathbf{x}(t)) \sim 0$, $\sim \in \{\leq, <, >, \ge, =, \neq\}$				
$\neg \varphi$	$\neg s(\varphi, \mathbf{x}, t)$				
$\varphi_1 \wedge \varphi_2$	$s(\varphi_1, \mathbf{x}, t) \land s(\varphi_2, \mathbf{x}, t)$				
$\mathbf{F}_{[a,b]} arphi$	$\exists \tau \in [t + a, t + b] \ s(\varphi, \mathbf{x}, \tau)$				
${f G}_{[a,b]} arphi$	$\forall \tau \in [t + a, t + b] \ s(\varphi, \mathbf{x}, \tau)$				
$arphi {f U}_{[a,b]} \psi$	$\exists \tau \in [t + a, t + b] \left(s(\psi, \mathbf{x}, \tau) \land \forall \tau' \in [t, \tau) \ s(\varphi, x, \tau') \right)$				
$arphi \; {f S}_{[a,b]} \psi$	$\exists \tau \in [t - a, t - b] \left(s(\psi, \mathbf{x}, \tau) \land \forall \tau' \in (\tau, t] s(\varphi, x, \tau') \right)$				

 $\mathsf{s}(\varphi, \mathbf{x}) = s(\varphi, \mathbf{x}, 0)$

STL semantics

▶ Semantics of STL specified recursively over a signal \mathbf{x} : $\mathbb{T} \rightarrow \mathbb{D}$ at each time,

For each STL formula φ , here's how we define it's semantics:

• If φ is the signal predicate $\mu = f(\mathbf{x}) > 0$, then $s(\varphi, \mathbf{x}, t) = true$ iff $f(\mathbf{x}(t)) > 0$

$$\mathbf{x} = (x1, x2)$$

$$\mathbf{f} = x2 - x1 - 1$$

$$s(f(\mathbf{x}) > 0, \mathbf{x}, 2.15)?$$

STL has quantitative semantics

- Quantitative semantics defined using the notion of a Robust Satisfaction Value, or Robustness Value
- Robustness ρ is a function that maps
 - ▶ a given trace $\mathbf{x}(t)$,
 - ▶ a formula φ ,
 - ▶ and a time *t*

to some real value

We can interpret robustness as "distance to violation" of a given formula

Recursive Quantitative Semantics				
arphi	$\rho(\varphi, \mathbf{x}, t)$			
$f(\mathbf{x}) > 0$, $f(\mathbf{x}) \ge 0$	$f(\mathbf{x}(t))$			
$\neg \varphi$	$-\rho(\varphi, \mathbf{x}, t)$			
$\varphi_1 \wedge \varphi_2$	$\min(\rho(\varphi_1, \mathbf{x}, t) \land \rho(\varphi_2, \mathbf{x}, t))$			
$\mathbf{F}_{[a,b]} \varphi$	$\sup_{\tau \in [t+a,t+b]} \rho(\varphi, \mathbf{x}, \tau)$			
${f G}_{[a,b]} arphi$	$\inf_{\tau \in [t+a,t+b]} \rho(\varphi, \mathbf{x}, \tau)$			
$arphi ~ \mathbf{U}_{[a,b]} \psi$	$\sup_{\tau \in [t+a,t+b]} \left(\min \left(\rho(\psi, \mathbf{x}, \tau), \inf_{\tau' \in [t,\tau)} \rho(\varphi, \mathbf{x}, t) \right) \right)$			

 $\rho(\varphi, \mathbf{x}) = \rho(\varphi, \mathbf{x}, 0)$

•

Distance to violation/satisfaction

 $\mathbf{G}_{[50,100]}(x(t) < 3)$

Property of Robust Satisfaction Signal

Sign indicates satisfaction status (soundness):

$$\rho(\varphi, \mathbf{x}, t) > 0 \implies s(\varphi, \mathbf{x}, t) = 1$$

$$\rho(\varphi, \mathbf{x}, t) < 0 \implies s(\varphi, \mathbf{x}, t) = 0$$

Absolute value indicates tolerance (correctness)

$$||\mathbf{x} - \mathbf{x}'||_{\infty} < \rho(\varphi, \mathbf{x}, t) \Rightarrow s(\varphi, \mathbf{x}, t) = s(\varphi, \mathbf{x}', t)$$

Robustness computation example

Analog Monitoring Tool (AMT)

http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/AMT/content.html

- Java toolbox
- STL with qualitative semantics
 - Correctness
- Offline monitoring

Breach

https://github.com/decyphir/breach

MATLAB toolbox for

- Simulation
- Monitoring of temporal properties
- Reachability
- STL with qualitative and quantitative semantics
 - Correctness
 - Robustness

Offline and Online monitoring

https://sites.google.com/a/asu.edu/s-taliro/s-taliro

- MATLAB toolbox for searching trajectories with minimal robustness
 - Randomized testing
 - Monte-Carlo simulation
 - Ant-colony optimization
 - Simulated annealing
 - Genetic algorithms
 - Cross enthopy
- MTL with quantitative semantics
 - Robustness
- Offline and Online monitoring

Moonlight

https://github.com/MoonLightSuite/MoonLight

- Java-toolbox + Matlab (and Python) interface for:
 - Monitoring of temporal properties

- STL + spatial operator with qualitative and quantitative semantics
 - Correctness
 - Robustness
- Offline monitoring

Bibliography

- 1. G. Fainekos, and G. J. Pappas. *Robustness of temporal logic specifications for continuous-time signals*. Theoretical Computer Science 2009.
- 2. Maler, Oded, and Dejan Nickovic. "Monitoring temporal properties of continuous signals." Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer, Berlin, Heidelberg, 2004. 152-166.
- 3. Donzé, Alexandre, and Oded Maler. "Robust satisfaction of temporal logic over real-valued signals." International Conference on Formal Modeling and Analysis of Timed Systems. Springer, Berlin, Heidelberg, 2010.