

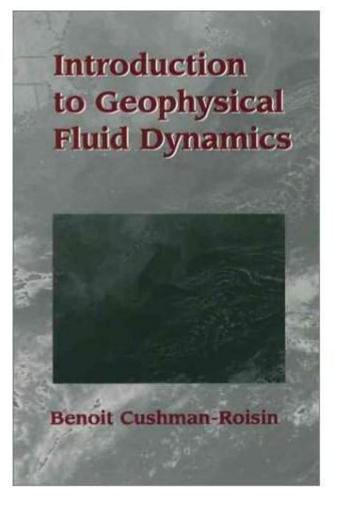
Fluidodinamica Geofisica

979SM

Stefano Salon ssalon@inogs.it Ricercatore OGS

Corso: 979SM - FLUIDODINAMICA Lecturers: F. Romanelli, D. Giaiotti, <u>S. Salon</u>, R. Farneti

Scopo: introduzione ai **temi principali della Fluidodinamica Geofisica (Geophysical** Fluid Dynamics - GFD)


Syllabus:

- Introduction to Geophysical FD: scales of motion, rotation/stratification in atmosphere and ocean
- Rotating frame of reference: Coriolis force, inertial oscillations, acceleration on a 3-D rotating planet
- Governing equations of GFD: momentum, mass conservation, energy, equation of state; Boussinesq approximation; scale analysis and further simplifications of governing equations; Rossby, Ekman, Reynolds numbers
- Geostrophy: geostrophic flows; Taylor-Proudman theorem; non-geostrophic flows; vorticity dynamics
- Friction and rotation: Ekman layers
- Barotropic waves: Kelvin, Poincarè, Rossby, topographic waves and analogies
- Stratification: static stability, Froude number, combination of rotation and stratification
- Mixing 1: mixing of stratified fluids, Kelvin-Helmoltz instability Instability of a stratified shear flow
- Mixing 2: Taylor-Goldstein equation, Richardson number; turbulence in a stratified shear flow

G Geophysical

Fluid

Dynamics

INTERNATIONAL GEOPHYSICS SERIES

VOL. 10

GEOPHYSICAL FLUID DYNAMICS

PHYSICAL AND NUMERICAL ASPECTS

SECOND EDITION

BENDIT CUSHMAN-ROISIN JEAN-MARIE BECKERS (\mathbf{AP})

PDF file will be provided during the course

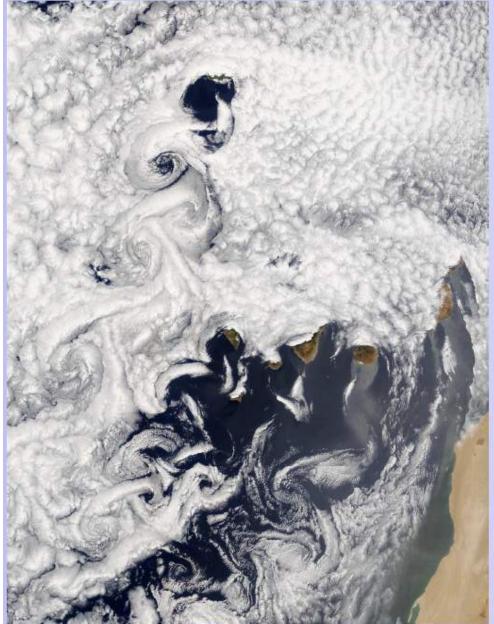
WHAT ?

WHY ?

HOW ?

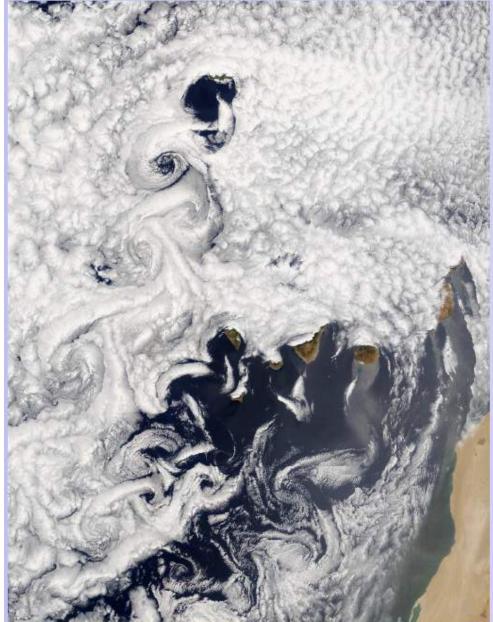
WHAT ?

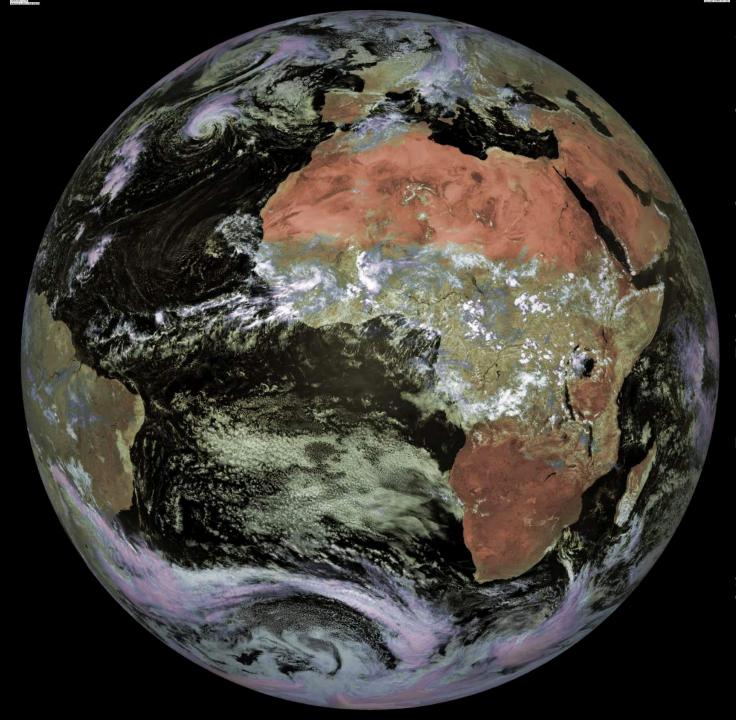
WHY ?

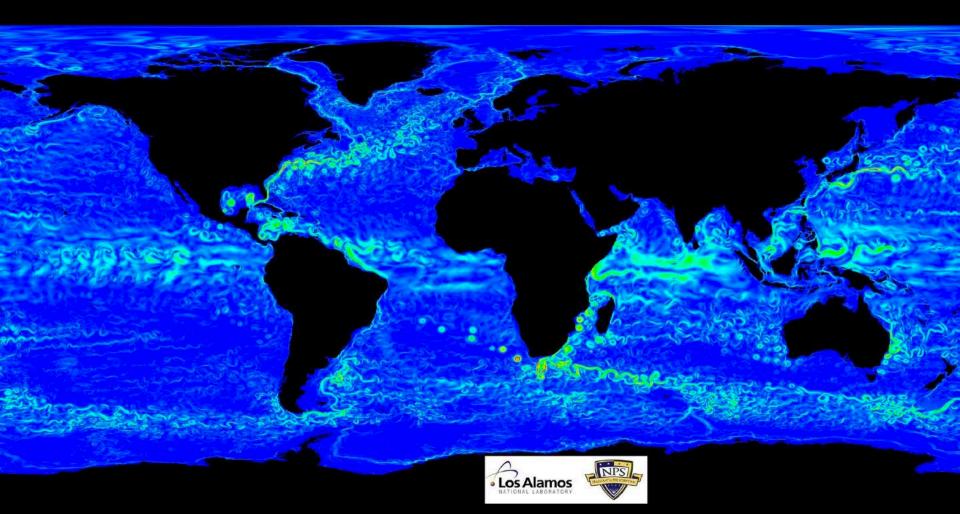

HOW ?

http://wwwrses.anu.edu.au/research/a nnrep/ar2006/cover-mountains.png

http://www.math.uio.no/research/ groups/FluidMechanics/images/spl ash.jpg

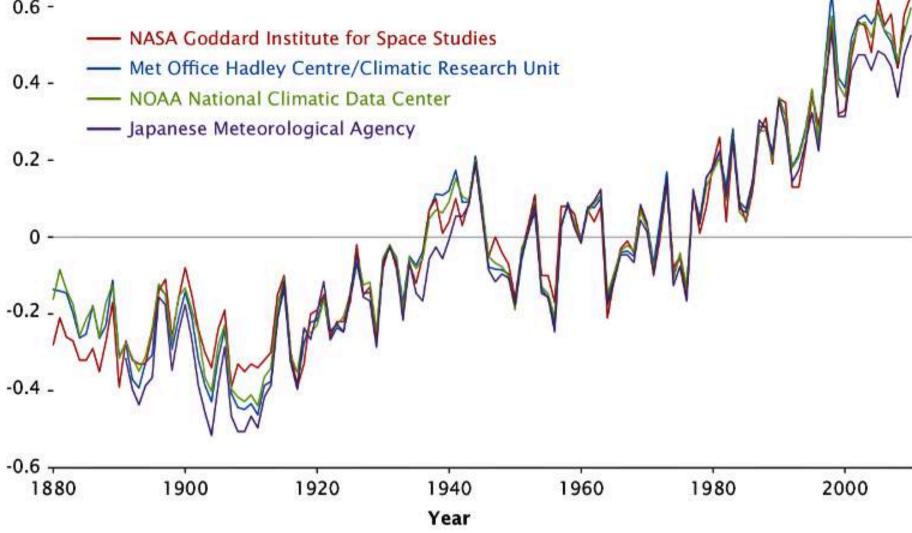

Vortex street near Canary Islands as seen from the Terra satellite (*Image courtesy of MODIS* Rapid Response Project at NASA/GSFC.)


http://wwwrses.anu.edu.au/research/a nnrep/ar2006/cover-mountains.png


http://www.math.uio.no/research/ groups/FluidMechanics/images/spl ash.jpg

Vortex street near Canary Islands as seen from the Terra satellite (*Image courtesy of MODIS* Rapid Response Project at NASA/GSFC.)

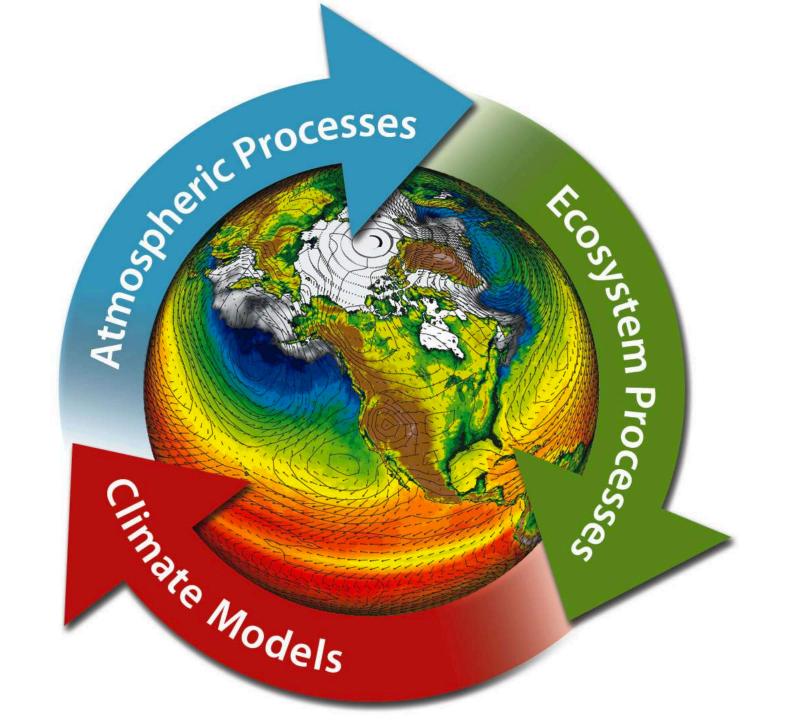
http://www.geo-web.org.uk/MSGimagery_files/met9_fulldisk-190912.jpg



https://sos.noaa.gov/kml/resources/2048_rolled/speed.0003.jpg

Global Surface Temperatures

Four independent records show nearly identical long-term warming trends.



Credit: NASA Earth Observatory/Robert Simmon

Data Sources: NASA Goddard Institute for Space Studies, NOAA National Climatic Data Center, Met Office Hadley Centre/Climatic Research Unit, and the Japanese Meteorological Agency.

http://www.icsusa.org/media/pictures/articles/2011-2-1p.png

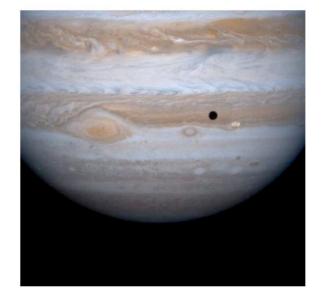


Figure 1-5 Southern Hemisphere of Jupiter as seen by the spacecraft *Cassint* in 2000. The Jupiter moon Io, of size comparable to our moon, projects its shadow onto the zonal jets between which the Great Red Spot of Jupiter is located (on the left). For further images visit http://photojournal.jpl.nasa.gov/target/Jupiter. (Image courtesy of NASA/JPL/University of Arizona)

GFD on rotating planets

NASA's Juno spacecraft soared directly over Jupiter's south pole when JunoCam acquired this image on February 2, 2017, from an altitude of about 101,000 km above the cloud tops.

https://www.jpl.nasa.gov/news/ne ws.php?feature=6752 Saturn's north polar hexagon basks in the Sun's light now that spring has come to the northern hemisphere. Many smaller storms dot the north polar region and Saturn's signature rings, which appear to disappear on account of Saturn's shadow, put in an appearance in the background.

The image was taken with the Cassini spacecraft's wide-angle camera on Nov. 27, 2012 using a spectral filter sensitive to wavelengths of near-infrared light centered at 750 nanometers.

The view was acquired at a distance of approximately 649,000 km from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 21 degrees. Image scale is 35 km per pixel.

Image Credit: NASA/JPL-Caltech/Space Science Institute Last Updated: Aug. 4, 2017

WHAT ?

WHY ?

HOW ?

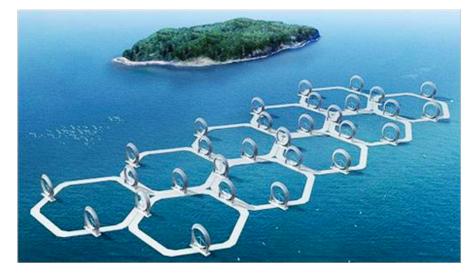
da Vinci, c.1500: Sketch of Turbulent Flow

Hokusai, c.1850: The Great Wave

http://ceae.colorado.edu/~crimaldi/teaching.html

W. Turner (1812) http://it.wikipedia.org/wiki/Bufera_di_neve:_Annibale_e_il_suo_esercito _attraversano_le_Alpi

W. Homer (1899) http://en.wikipedia.org/wiki/The_Gulf_Stream_(painting)



https://www.nasa.gov/image-feature/geocolor-image-of-hurricane-irma (Geocolor image of Hurricane Irma passing the eastern end of Cuba at about 8:00 a.m. EDT on Sept. 8, 2017 captured by the NOAA satellite GOES-16)

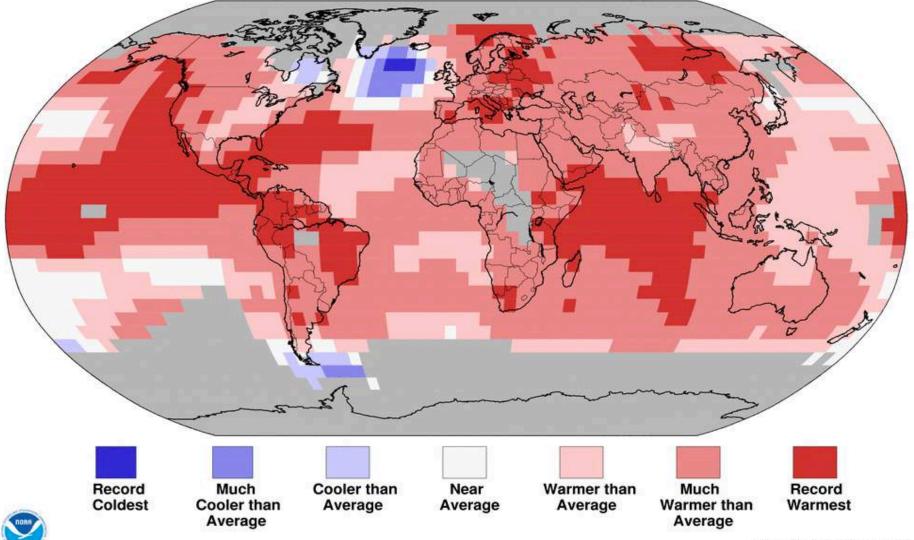
http://www.spc.noaa.gov/ - http://www.nssl.noaa.gov/ - http://www.nhc.noaa.gov/

http://www.midcoastgreencollaborative.org /articles/images/Stone_Windmill.jpg

http://cdn.oilprice.com/uploads/AA9002.png

http://marine.unc.edu/files/2015/09/windenergy-free-desktopwallpaper_1920x1200_81824.jpg

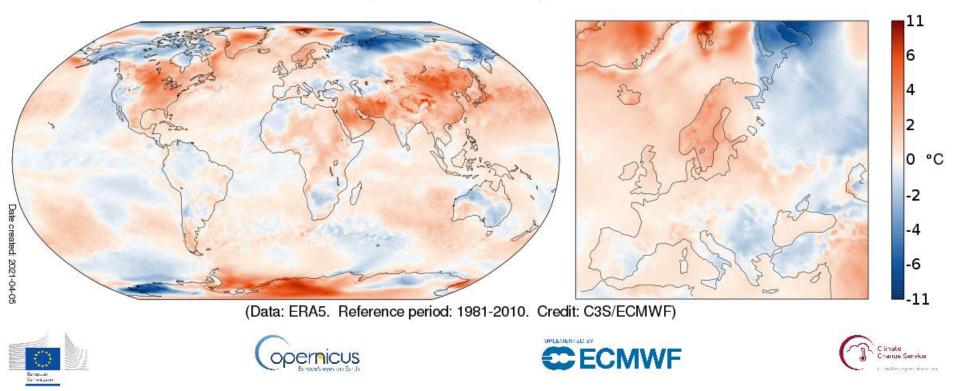
The **Global Wind Energy Council** is the international trade association for the wind power industry.


[*In 2014 it* was less than 7%]

Land & Ocean Temperature Percentiles Jan–Dec 2015

NOAA's National Centers for Environmental Information

Data Source: GHCN-M version 3.3.0 & ERSST version 4.0.0


Wed Jan 13 12:15:02 EST 2016

http://www.icsusa.org/media/pictures/articles/2016-2-1p.png

Surface air temperature anomaly for March 2021 relative to the March average for the period 1981-2010. Source: ERA5.

(Credit: Copernicus Climate Change Service / ECMWF)

Surface air temperature anomaly for March 2021

https://climate.copernicus.eu/climate-bulletins

http://www.vos.noaa.gov/MWL/aug_08/tropicalareas.shtml

http://www.thehindu.com/sci-tech/energy-and-environment/rena-seadisaster/article2531689.ece

http://www.unep.org/ecosystemmanagement/water/regionalseas40/KeyIssues/MarineLitt er/tabid/132275/Default.aspx

A PLASTIC OCEAN

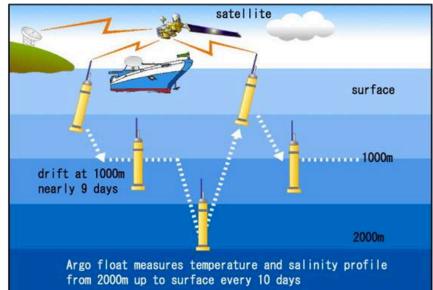
WE NEED A WAVE OF CHANGE.

PLASTIC OCEANS Ltd

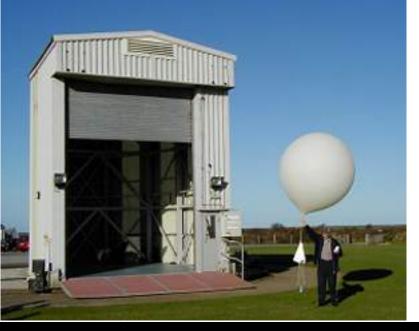
ADESSIVE FOUNDATION HEMETIA FOUNDATION A PLASTIC OCEAN Execute Creig Leeson Tanya Streeter Maic by Minam Cutler Supervention Doug Blush, Act Edestry Mindy Blott Greeter of Perspectry Michael Pitts Destave Reprocess Bonja Norman Daniel Austbach Within by Creig Leeson Produced by Creig Leeson Water Attact Dates for

COMING

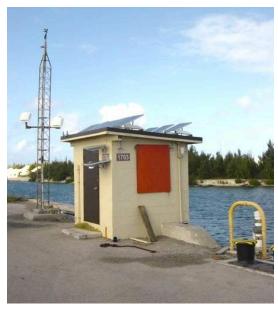
WHAT ?


WHY ?

HOW ?



http://www.jamstec.go.jp/e/about/press_release/2016012 9/img/image002.jpg



Polar-orbiting meteorological satellite

High-altitude research aircraft

Baseline air station

Voluntary observing

ship

Drifting

buoy

and the

Polar-orbiting

Automatic

weather station

2

International aircraft

Domestic

aircraft

Meteorological satellite-ground

statio

١.

earth resources satellite

Geostationary meteorological satellite

Radiosonde

Pilotiess aircraft

Automated river-height and rain gauges

Wind pro

Meteorological observing station

Meteorological research aircraft

> Over-thehorizon radar

http://www.dii.unina.it/images/laboratori/navale/3.jpg

= MECHANICS =

Analytical Solutions of Navier–Stokes Equations for Axisymmetric and Plane Flows of a Viscous Incompressible Fluid

A. V. Shcheprov

Presented by Academician A.A. Petrov September 4, 2003

Received September 8, 2003

Solving the Navier–Stokes equations with Cauchy data on a certain line, one can obtain, as in a particular case [1], systems of vortex structures in a fluid that are unknown to date. These equations for axisymmetric flows have singularities on the axis. The Kovalevskaya theorem for analytic data on the axis is generalized. In addition, the size of the domain where the solution is analytic is estimated, and an example is given. Similar analysis is also made for the plane case, when the Kovalevskaya theorem is valid in its original form, and the size of the domain where the solution is analytic is estimated.

First, we consider axisymmetric flows. The current function $\varphi(x, r)$ of the cylindrical coordinates (x, r) is introduced as

$$d\phi = rv_{x}dr - rv_{y}dx,$$

where v_x and v_r are axial and radial velocity components multiplied by the Reynolds number, respectively. In this work, flow curl around the symmetry axis is limited by the potential dependence, when the azimuthal velocity component has the form $V = \frac{W}{r}$, where W is an arbitrary constant. In terms of the differential operator

$$L = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial r^2} - \frac{1}{r}\frac{\partial}{\partial r}$$

and auxiliary function $\sigma(x, r)$, the Navier–Stokes equation is represented in the form

$$L\varphi = \sigma, \quad L\sigma = \frac{1}{r} \left(\frac{\partial \varphi}{\partial r} \frac{\partial \sigma}{\partial x} - \frac{\partial \varphi}{\partial x} \frac{\partial \sigma}{\partial r} \right) + \frac{2\sigma \partial \varphi}{r^2 \partial x}.$$
 (1)

Computer Center, Russian Academy of Sciences, ul. Vavilova 40, Moscow, 117333 Russia A solution to system (1) is sought in the form of the series

$$\varphi(x,r) = \sum_{m=0}^{\infty} f_m(x)r^m, \quad \sigma(x,r) = \sum_{m=0}^{\infty} \omega_m(x)r^m.$$
(2)

The substitution of expansions (2) into Eqs. (1) gives

$$\sum_{m=0}^{\infty} [f_m^{"}r^m + m(m-2)f_m r^{m-2}] = \sum_{m=0}^{\infty} \omega_m r^m,$$

$$\sum_{m=0}^{\infty} [\omega_m^{"}r^m + m(m-2)\omega_m r^{m-2}]$$

$$= \sum_{k,l=0}^{\infty} [(2-l)f_k^{'}\omega_l + kf_k\omega_l^{'}]r^{k+l-2},$$
(3)

where prime means the derivative of a function with respect to its argument.

For analytic solutions, $\phi = \frac{\partial \phi}{\partial r} = 0$ on the symmetry

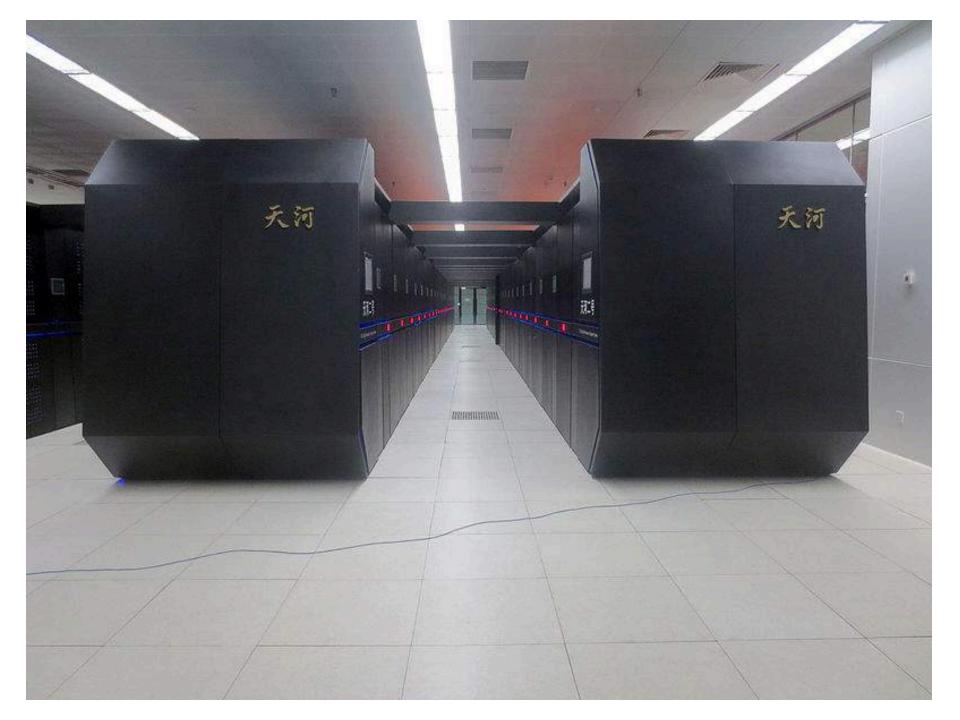
axis, and it is necessary that $f_0 = f_1 \equiv 0$. Equating the sums of coefficients of the same *r* powers in Eqs. (3), we arrive at the relations $\omega_0 = 0$ and $f_l = \omega_l \equiv 0$ for l = 2n - 1, n = 1, 2, ... According to Eqs. (3), the coefficients f_{2n} and ω_{2n} of even *r* powers in series (2) for $n \ge 2$ satisfy the chain of equations

$$f_{2n} = \frac{1}{4n(n-1)} (\omega_{2n-2} - f_{2n-2}''), \qquad (4)$$
$$\omega_{2n} = \frac{1}{2n(n-1)} \sum_{k=1}^{n-1} [(k+1-n)f_{2k}' \omega_{2n-2k} + k f_{2k} \omega_{2n-2k}'] - \frac{1}{4n(n-1)} \omega_{2n-2}''.$$

In this case, the functions $f_2(x)$ and $\omega_2(x)$ can be chosen arbitrarily. System (4) for given f_2 and ω_2 functions,

1028-3358/04/4902-0127\$26.00 © 2004 MAIK "Nauka/Interperiodica"

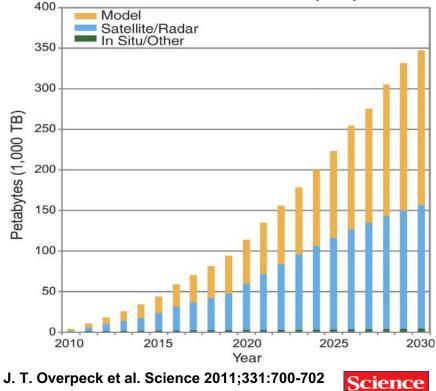
http://tech.mit.edu/V129/N48/graphics/obama-0.jpg


 $\nabla \cdot \mathbf{u} = 0$ $\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u}$

http://hpc-asia.com/real-hardware-including-prototype-hpc-server-showed-off-by-open-power/

https://earth.nullschool.net/

CLICK !



IF you like numerical models, you have to consider also some related technological challenges: HPC fast development, BigData, energy efficiency

MAAAS

The volume of **worldwide climate data** is expanding rapidly, creating challenges for both physical archiving and sharing, as well as for ease of access and finding what's needed, particularly if you are not a climate scientist. The figure shows

the projected increase in global climate data holdings for climate models, remotely sensed data, and in situ instrumental/proxy data.

Systems	2009	2011	2015	2018
System Peak Flops/s	2 Peta	20 Peta	100-200 Peta	1 Exa
System Memory	0.3 PB	1 PB	5 PB	10 PB
Node Performance	125 GF	200 GF	400 GF	1-10 TF
Node Memory BW	25 GB/s	40 GB/s	100 GB/s	200-400 GB/s
Node Concurrency	12	32	0(100)	0(1000)
Interconnect BW	1.5 GB/s	10 GB/s	25 GB/s	50 GB/s
System Size (Nodes)	18,700	100,000	500,000	O(Million)
Total Concurrency	225,000	3 Million	50 Million	O(Billion)
Storage	15 PB	30 PB	150 PB	300 PB
1/0	0.2 TB/s	2 TB/s	10 TB/s	20 TB/s
МТТІ	Days	Days	Days	O(1Day)
Power	6 MW	~10 MW	~10 MW	~20 MW

ROADMAP TO EXASCALE

• FLOPS vs IOPS = HPC is today compute-

centric \rightarrow evolution towards **data-centric**

 scientific computing needs data accessibility rather than computing speed + energy sustainability

computing 1 calculation	moving 1 calculation
≈ 1 picojoule	≈ 100 picojoule

IDC Direction, 2013

- <u>GEOPHYSICAL</u>: ROTATION AND STRATIFICATION
- <u>FLUID</u>: GAS (ATMOSPHERE) AND LIQUID (OCEAN)
- <u>DYNAMICS</u>: EVOLUTION OF A FLUID UNDER THE INFLUENCE OF BODY FORCES (gravity) AND SURFACE FORCES (friction)
- GFD treats the physical aspects of the dynamics of fluids on Earth-like planets
- only LARGE-SCALE MOTIONS
- SIMILARITY exists among different systems e.g. *Great Red Spot*
- WHAT does GFD deal with? ATMOSPHERE VARIABILITY (weather and climate) and OCEAN VARIABILITY (waves, eddies, currents)... but also: dynamo effects in the Earth interior, vortices on planets, convection in stars ...
- WHY study GFD? Importance for Life, Nature, Economy, Energy...
- **HOW** to tackle with GFD? Observations AND mathematical/physical description of phenomena by means of analytical theory, numerical models, laboratory experiments \rightarrow comparison with measurements

• **ROTATION** AND **STRATIFICATION** => GFD ≠ FD

- Rotation introduces 2 acceleration terms acting on fluid parcels: Coriolis & centrifugal
- Coriolis will introduce «*vertical rigidity*» in rapidly rotating homogeneous fluids
- in Atm/Oc large-scale motions rotation is not fast enough and density is not uniform to mask other processes BUT motions have a tendency to manifest columnar behaviour [ex. currents in Western North Atlantic extend over 4000 m without significant change in amplitude and direction]
- Stratification is due to density variations in fluids
- gravitational force tends to lower the heaviest and raise the lightest
- in equilibrium, fluids are stably stratified = vertically stacked horizontal layers
- motions disturbances destroy stability and gravity tends to restore equilibrium
- small perturbations => internal waves (3d analogous of surface waves)
- large perturbations => mixing and convection (ex. general circulation)

• SCALES OF MOTION help to understand whether a physical process is dynamically important in any particular situation

• SCALES OF MOTION = dimensional quantities expressing the overall magnitude of the variables under consideration \rightarrow esitmates or orders of magnitude (L, T, U, ρ_0 , $\Delta\rho$, H)

- Ex:
- L = 300 km (~3° lat),
- ➤ T = 2x10⁵ s (~2 days),
- ➤ U = 70 km/h (H5)
- Selection of T reflects the particular choice of physical processes studied in the system
- «Scales selection is

more an art than a science»

Choose relevant quantities, simple to establish

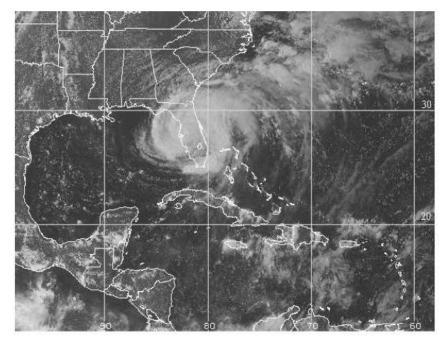


Figure 1-1 Hurricane Frances during her passage over Florida on 5 September 2004. The diameter of the storm is about 830 km and its top wind speed approaches 200 km per hour. (Courtesy of NOAA, Department of Commerce, Washington, D.C.)

- SCALES OF MOTION :
- $L \rightarrow$ space
- $T \rightarrow time$
- $U \rightarrow$ velocity
- $\rho_0 \rightarrow$ average density
- $\Delta \rho \rightarrow$ range of density variations \rightarrow different role in ATM / OC
- $H \rightarrow$ height over which $\Delta \rho$ occurs
- Usually H ~ total depth of the fluid, since GFD flows are generally bounded in the vertical => H chosen as the smaller between the total depth and height over which $\Delta\rho$ occurs