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— Large-scale geophysical flows tend to be fully hydrostatic
even in presence of substantial motions



Primitive Equations of GFD

I — momentums:

Y — momentum:

2 — momentum:
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energy:
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THE PRIMITIVE EQUATIONS

« Scale analysis on x,y — momentum equations:
U U? U?> WU P vU

— ) ) JQU)_J_
T L’ L’ H pol’ H?

— Rotation (Coriolis) term QU is fundamental to measure the

importance of the terms relative to it:
1 U U WU 1 L P v

) ) ) * ._;1; )
QT' QL' QL' H QU L' poLQU’ QH?

1 local velocity variation
= def. Temporal Rossby number: Roy = — = e . (w)
QT Coriolis term
U advection
= def. Rossby number: Ro = — = —— .. (&)
QL Coriolis term
. wu 1 L WL U WL Ro — vertical convergence/divergence Ro
H QU L UH QL UH " horizontal convergence/divergence
v friction (z)
= def. EKman number: Ek = — = ——
QH Coriolis term
= GFDhas Ror <1...Ros1...Ek K1 far fromB.L.
UL U QH? L[> Ro I? advection
= def. Reynolds number: Re = — = — - — . — =— . — = 2= »1

v QL v H2 Ek H? friction (xy)



THE PRIMITIVE EQUATIONS

Fluid turbulence at subgeophysical scales (small eddies) can act as
dissipative mechanism: molecular viscosity v can be substituted by
a much larger EDDY VISCOSITY vy or vg

— For water: v~10~°m?/s and v;~10"2m?/s

Even with eddy viscosity, Ekman number remains small (Ek~10"?)
but friction is essential near boundary layers (Ek~1)

P pressure gradient .
= = r : P~poLQ)
oLU Coriolis term if terms are comparable poLQU
dp
from z-momentum: 0 = - ‘F - p9g = P~ApgH

oz

ApgH U ApgH U
polQU U poU?2 LQ

= Ri-Ro

ApgH _ potential energy

def. Richardson number: Ri =

.. (1/0)

poU? kinetic energy

Exercise: find scales for poLQU, ApgH, pogH in Ocean and Atmosphere
using Table 4.1




GEOSTROPHIC FLOWS

« After inertial oscillations, homogeneous geostrophic flows are the
second simple case where NSEq. can be solved, and can describe
natural GFD phenomena

 Hypoteses:
— Coriolis term dominates others (= rapidly rotating flows): Ror << 1 and Ro < 1
— Homogeneous fluids: py = costand p’ = 0

— Ignore frictional effect (= far from B.L.): Ek < 1

* Primitive equations: Ly = LoOp

po Ox

1 0
+fu = -
po Oy

10
0 = —— 2

po 0z
ou o, ou
ox 0y 0z

= 0,

e d,of x,y-momentum eq. [...]: % = % =0

=> Taylor-Proudman theorem: ‘horizontal velocity field has no vertical shear
and all the particles on the same vertical move in concert”



GEOSTROPHIC FLOWS

Solving the x,y-momentum eqgs.: —1 dp

U = ———, v =
pof Oy
(u,v) = u L Vp the flow is across-gradient (or isobaric):

41 9p
pof Ox

— NO pressure work is performed either on the fluid or by the fluid: Once
initiated the flow can persist without a continuous energy source u-Vp =0

Figure 7-1 Example of geostrophic
flow. The velocity vector is everywhere
parallel to the lines of equal pressure.
Thus, pressure contours act as stream-
lines. In the Northern Hemisphere (as
pictured here), the fluid circulates with
the high pressure on its right. The op-
posite holds for the Southern Hemi-
sphere.

http://it.wikipedié.orq/wiki/lmmaqinefLow pressure system over Iceland.jpg



http://it.wikipedia.org/wiki/Immagine:Low_pressure_system_over_Iceland.jpg

GEOSTROPHIC FLOWS
GEOSTROPHY comes from yn = Earth and otpopn = turning

Balance between Coriolis force and pressure gradient

All geostrophic flows are isobaric:
— Northern hemisphere f > 0 : currents flows with H on their right
— Southern hemisphere f < 0 : currents flows with H on their left

IF the flow extends over a meridional span not too wide L, < L,:

o 0= f =cost > f — PLANE and the horizontal divergence is

dy

1
8u+av:_(9 3p+8 1 Op _ 0
dxz 0Oy dx \ pof Oy dy \pof Ox

Geostrophic flows are naturally non-divergent on the f-plane

(9_10
0z

— 0 = w = cost and, if the fluid is bounded in the vertical by a flat
surface: w =0

Geostrophic flows are 2-dimensional
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Figure 7-2 A meteorological example showing the high degree of parallelism between wind velocities
and pressure contours (isobars), indicative of geostrophic balance. The solid lines are actually height
contours of a given pressure (500 mb in this case) and not pressure at a given height. However, because
atmospheric pressure variations are large in the vertical and weak in the horizontal, the two sets of con-
tours are nearly identical by virtue of the hydrostatic balance. According to meteorological convention,
wind vectors are depicted by arrows with flags and barbs: on each tail, a flag indicates a speed of 50
knots, a barb 10 knots and a half-barb 5 knots (1 knot = 1 nautical mile per hour = 0.5144 m/s). The
wind is directed toward the bare end of the arrow. because meteorologists emphasize where the wind
comes from, not where it is blowing. The dashed lines are isotherms. (Chart by the National Weather
Service, Department of Commerce, Washington, D.C.)



A simplified schematic (top) of the AMOC.
Warm water flows north in the upper

ocean (red), gives up heat to the
atmosphere (atmospheric flow gaining
heat represented by changing color of
broad arrows), sinks, and returns as a
deep cold flow (blue).

Latitude of the 26.5° N AMOC
observations is indicated. The actual flow
is considerably more complex. (Bottom)

The 10-year (April 2004 to March 2014)
time series of the AMOC strength at
26.5° N in Sverdrups (1 Sv = 105 m3 s™1).
This is the 180-day filtered version of the
time series. Visible are the low AMOC
event in 2009-2010 and the overall
decline in AMOC strength over the 10-
year period.

Transport (Sv)
&

http://www.sciencemag.org/content/348/6241/1255575
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Published by AAAS M. A. Srokosz, and H. L. Bryden Science 2015;348:1255575 ‘ RAYAAAS




GEOSTROPHIC FLOWS OVER IRREGULAR BOTTOM
Same framework, but with no-flat bottom:

1L >

k
w ‘ Figure 7-3 Schematic view of a flow

Boﬁom Tb over a sloping bottom. A vertical ve-

locity must accompany flow across iso-
baths.

Bottom elevation (bathymetry / topography): b = b(x, y)

d db ob ab db
w=" = —+u |7z—0+u—+v—+ —=u o+
dt dy 0z ay

But on the f-plane w = costand sincew(z=H)=0=>w =0Vz

=>u-Vb=0 flow is directed to zones of equal depth: FREE
geostrophic flows can occur only along closed isobaths

ISOBARS = ISOBATHS

If bumps or dips exist, the fluid can only go around them: due to
vertical rigidity, fluid particles at all levels must likewise go around:

TAYLOR COLUMNS are permanent tubes of fluid above bumps or
dips



GEOSTROPHIC FLOWS OVER IRREGULAR BOTTOM

« Same framework, but with no-flat bottom:
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w Figure 7-3 Schematic view of a flow
Boﬁom over a sloping bottom. A vertical ve-
b locity must accompany flow across iso-
baths.
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: Figure 7-4 Geostrophic flow in a
closed domain and over irregular to-

pography. Solid lines are isobaths (con-

Wall tours of equal depth). Flow is permitted
N only along closed isobaths.

« ISOBARS = ISOBATHS

« If bumps or dips exist, the fluid can only go around them: due to
vertical rigidity, fluid particles at all levels must likewise go around:
TAYLOR COLUMNS are permanent tubes of fluid above bumps or
dips



BAROTROPIC FLOWS

Generalization to non-geostrophic flows: “second level” of flows

Hypoteses:
— Coriolis term DOES NOT dominate others: Roy~1 and Ro~1
— Homogeneous fluids: py = costand p’ = 0

— Ignore frictional effect (SLIP is allowed [...]): Fk < 1

Primitive equations:

ou ou ou ou 1 Op
T R R MR
ov ov ov ov 1 Op
a—i—u%—FUa—y—l—w%—i—fu = —%8—y
0 — _Lop

po 0z

ou ov ow

a—x—Fa—y—F& = 0,

IF T.-P. theorem still holds 2 = 2 — o initially, it will hold also at all

) 0z 0z
future time

Advection, Coriolis and Pressure terms remain z-independent
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BAROTROPIC FLOWS

Generalization to non-geostrophic flows: “second level” of flows

Hypoteses:
— Coriolis term DOES NOT dominate others: Roy~1 and Ro~1

— Homogeneous fluids: py = costand p’ = 0

— Ignore frictional effect (SLIP is allowed [...]): Fk < 1

Primitive equations:
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B 1 Op

VT po 0z
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IF T.-P. theorem still holds |- = 7~ = o‘ initially, it will hold also at all

future time

Advection, Coriolis and Pressure terms remain z-independent



BAROTROPIC FLOWS

« Although the flow has NO VERTICAL SHEAR, this remains the only
similarity with geostrophic flows: Barotropic flows are not required
to be aligned with isobars, neither be non-divergent on the
horizontal plane, so they can develop a vertical velocity w + 0

+ Integrating continuity eq. over the entire fluid depth |[...]:

J”+hau+av+awd
, ox ay ez’

Reference surface

H
k Figure 7-5 Schematic diagram of un-
steady flow of a homogeneous fluid
‘ ,/ b(z,y) over an irregular bottom and the attend-
z=0- ing notation.
: 0 0 0
> NEW CONTINUITY EQUATION: a_?; b () + 2 (hv) = 0
Withn = b + h — H and 8,n = d,h J



Shallow-water model
in case of flat bottom b(x,y)=0

3 unknowns 1n 3 equations

ou N ou N ou f Oh
— U — vV— — fo = —g—
o1 i ) e
Ov N Ov N Ov Ly Oh
— U — Vv — U = —q—
ot O y 7 By

oh 0 0

— + —(hu) + —(hv) = 0.

ot (?a:( ) ()y( )



Geostrophy and altimetry

.. . 0
Variation of n with x,y measured —fv = —g 8_Z
from satellite gives info on on
geostrophic currents + fu = —g 3y
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Example of absolute dynamic topography (in cm) of the Mediterranean
Sea on 1 June 2009 using the Rio et al. (2007) synthetic mean dynamic
topography. http://www.goceitaly.asi.it/ Gocel T/index.php?ltemid=94




VORTICITY DYNAMICS

Geostrophic flows are non-divergent on the f-plane, with 2d-
divergence equal to zero: let’s investigate the role of the horizontal
divergence in barotropic flows

Subtract y-derivative of x-mom.eq from x-derivative of y-mom.eq of
barotropic flow system (or the shallow-water model) |...]

def. ambient vorticity f

ov ou

def. relative vorticity { = 3y (the vertical component of Vi)

def. total vorticity f + ¢

% (f+0+ (Z—Z + Z—Z) (f + 0) = 0 = total vorticity ruled by horiz. div.

— + h( Z—;) = 0 = fluid column heigth ruled by horiz.div.

d . .
= (h-dS) = 0 = parcel’s volume is conserved in time

Combining the above equations... [...]



VORTICITY DYNAMICS

Kelvin’s theorem for 2-d rotating flows: “in barotropic flows
without friction the circulation is conserved”

This conservation principle has the same meaning of that of the
angular momentum for an isolated system

d

E[(erC)dS] = 0

s Horizontal convergence f+<

F i}

B o2
= S

S~ Horizontal divergence

Figure 7-6 Conservation of volume and circulation of a fluid parcel undergoing vertical squeezing or
stretching. The products /2 ds and ( f + () ds are conserved during the transformation. As a corollary,
the ratio (f + ¢)/h, called the potential vorticity, is also conserved.




VORTICITY DYNAMICS

Kelvin’s theorem for 2-d rotating flows: “in barotropic flows
without friction the circulation is conserved”

This conservation principle has the same meaning of that of the
angular momentum for an isolated system

IF both circulation and volume are conserved, so is their ratio,
allowing to eliminate dependency on cross-section

h h

%(fz@) o where ¢ {tC& _ [+ 8v/0r — 9ujdy

and q is called POTENTIAL VORTICITY, or “circulation per volume”,
thus obtaining the conservation of potential vorticity
f

For rapidly rotating flows: Ro = & K1=>f+7~Q +% ~Q=>q= .

and, IF f = cost each fluid column must conserve its height f: and
in particular, if the upper boundary is flat, fluid parcels must follow
the isobaths => barotropic flows become geostrophic




The Ekman models

Fridtjof Nansen (1861 —1930)
Norwegian scientist, explorer, diplomat.

Nobel Peace Prize 1922

https://en.wikipedia.org/wiki/Fridtjof Nansen

Vagn Walfrid Ekman (1874 —1954)

Swedish oceanographer.

http://en.wikipedia.org/wiki/Vagn Walfrid Ekman

* Prandtl hypothesis on Boundary Layers
« Ek — 1 close to the wall - Ek < 1 far from the wall

« study of iceberg’s motion (Nansen/Fram = Bjerknes = Ekman)


http://en.wikipedia.org/wiki/Vagn_Walfrid_Ekman
https://en.wikipedia.org/wiki/Fridtjof_Nansen

The Ekman models

Fridtjof Nansen (1861 —1930)

Norwegian scientist, explorer, diplomat.

Nobel Peace Prize 1922

https://en.wikipedia.org/wiki/Fridtjof Nansen

e

i
w=t

https://frammuseum.no/polar-history/vessels/the-polar-ship-fram/ https://en.wikipedia.org/wiki/Nansen%27s Fram expedition



https://en.wikipedia.org/wiki/Fridtjof_Nansen
https://frammuseum.no/polar-history/vessels/the-polar-ship-fram/
https://en.wikipedia.org/wiki/Nansen%27s_Fram_expedition

EKMAN LAYER

As seen from the scale analysis of the primitive egs. vertical friction
has a very minor role in the balance of forces (Ek «< 1) and may be
omitted

But we lost something, since the frictional terms have the highest
derivative order => when Ek « 1 not all the BCs can be applied, the
result is that SLIPPING ON THE BOUNDARY is allowed

Prandtl hypothesis: the fluid has 2 distinct behaviors:

— far from the boundary (INTERIOR, vertical scale H), friction can be

-2.,2
neglected (Ek « 1): Ek = 2L~ 0 ™/ 104
I ( ) QH?  10-15-1.(103m)"

— across a short distance near the boundary (BOUNDARY LAYER, vertical
scale d), friction acts to bring the finite interior velocity to zero at the wall

~1)- —vr _ R L
(Ek~1): Bk =" ~1> d \/; 10m=d<H

Because of the Coriolis effect, the frictional layer of the geophysical
flows, called EKMAN LAYER, greatly differs from the BL in non-
rotating flows (48), which does not have a thickness and grows
downstream (8 « /x)



THE BOTTOM EKMAN LAYER

The bottom exerts a frictional stress against the flow bringing its
interior velocity gradually to zero within a thin layer above the wall
d <H

Hypotheses:
— Interior flow is uniform and geostrophic: Ror << 1 and Ro « 1

— Homogeneous fluid: py = costand p’ = 0

— Flat bottom
Primitive equations: B 1 Jp 0*u
—fo = — == +vp
po Ox 0z
1 Op 0%v
+fu = - % 8_y + VE 9.2
1 0
0 = - —2&,
po 0z
Boundary conditions: Bottom (= 0): u =0, v =0,
Toward the interior (z >> d) : u=1a v=0p=pxy)

Interior flow is uniform, no horizontal gradient

...]



THE BOTTOM EKMAN LAYER

e Solutions:

u = U (1 — e~ %/ cos E) 5n
. d -\ Ekman depth
v = we % sin 7

« Considerations:

As expected, the Ekman depth corresponds to Ek~1

Although the driving interior flow is along x, we have a transversal velocity
(along y) which is not negligible

Close towall z—> 0 or% & 1= u~v~uz/d ...the velocity near the bottom is at
45 degree to the left of the interior velocity (with f>0) [...]

Where u reaches its maximum at z = BT"d the velocity is u = 1.07u that is,
larger than its interior value

The net transport of fluid transverse to the main flow is V = fooo vdz =ud/2
while U = —ud/2



THE BOTTOM EKMAN LAYER

Z
- — —z/d
“r u:u(l—e/cosg
Interior
s o—z/d <
y vV = ue S1n —
S ) D :‘X _______________
Ekman
layer u(z) d d = QI/E
> =0
uw=0 f
Figure 8-3 Frictional influence of a flat bottom on a uniform flow in a rotating framework.
AV
z/A n
3

oA

> ()

Figure 8-4 The velocity spiral in the bottom Ekman layer. The figure is drawn for the Northern
Hemisphere (f > 0), and the deflection is to the left of the current above the layer. The reverse holds

for the Southern Hemisphere.



