THE BOTTOM EKMAN LAYER - GENERALIZED

Interior geostrophic flow varying on a scale sufficiently large to be
in geostrophic equilibrium:
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for a constant Coriolis parameter (on f-plane) the flow is non-
divergent: Ju/0x + 0v/0y = 0

The BL equations: i 924
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THE BOTTOM EKMAN LAYER - GENERALIZED

We can compute the transport related to the Ekman bottom layer:

U - /OOO () ds = — & (@+7)

vV = / (v—@)dz:é
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this transport is not necessarily parallel to the interior geostrophic
flow and may be divergent [...]:
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The flow in the BL converges/diverges if interior has a relative
- ... % 0V 0u

vorticity { = 9z 3y #+ 0 (pos/neg):
— Divergence in BEL and compensating downwelling in the interior + ACyc gyre

— Convergence in BEL and compensating upwelling in the interior + Cyc gyre

Due to the solid bottom, the only possibility to provide convergence
| divergence which supports upwelling / downwelling is a vertical
velocity w from the interior



THE BOTTOM EKMAN LAYER - GENERALIZED

f>0

Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior.
Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large
horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and
upwelling in the interior.

Interior is geostrophic and on f-plane d,w = 0 = w = cost = the vertical
velocity must occur throughout the depth of the fluid

Since divergence is « d «< H = the vertical velocity is very weak |...]
sz d oo g, - _ (U,
def. EKMAN PUMPING: W = 77 = - V2p = -V - (U,V) = (ax + ay)

The larger the vorticity from the interior, the greater the upwelling /
downwelling, with an effect increasing toward the equator (f — 0)



THE BOTTOM EKMAN LAYER OVER UNEVEN TERRAIN

Irregular topography has an effect over the structure of BEL
Terrain with elevation z = b(x, y) above a horizontal reference level

Since GFD flows are almost 2D: Vb(x,y) = (d,b,d,b) < 1

Interior geostrophic flow not uniform

The BL equations:
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..WithBCsu-»uandv > v forz—- ocandu(z=»b) =v(z=b) =0

...and solutions are the same as previous case withz -z — b :

u = u — elb—2)/d (ucos y + ¥ sin d)
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THE BOTTOM EKMAN LAYER OVER UNEVEN TERRAIN

« Computing vertical velocity from continuity eq.:
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 ...then we can integratefromz=b,w=0toz—->co,w=w:
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« The first component was found during the analysis of geostrophic
flow over irregular bottom, and it ensures no normal flow to the

bottom; the second is the Ekman pumping as in the flat bottom
case, which is not affected by the bottom slope



THE SURFACE EKMAN LAYER
The frictional stress against the flow is exerted by the WIND
STRESS (historically, the 1st problem investigated by Ekman)

Hypotheses:

— Interior flow is uniform and geostrophic: Ro; < 1 and Ro < 1
— Homogeneous fluid: py = costand p’ = 0

— Presence of wind stress: 7 = (7,,7,)

Primitive equations + BCs: 524
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THE SURFACE EKMAN LAYER

The solution has a wind-driven component fully related to the wind
stress 7, independent by the interior flow but dependent on 1/d =
the wind-driven component can be very large if d is very small (for
example with almost inviscid flow with vy very small), and even a
moderate wind stress may generate a large wind-driven component

Wind stress ~.

Sea surface

/ . d

(1, v)

Ekman Ve :

oy L
Interior o (u,v)=(u,0)

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.



THE SURFACE EKMAN LAYER

 The wind-driven (Ekman) transport in the SEL has components |...]:

U = /0 (u—u)dz:éry

TOP VIEW

Depth

Surface current

Ekman transport

Figure 8-7 Structure of the surface Ekman layer. The figure is drawn for the Northern Hemisphere
(f > 0), and the deflection 1s to the right of the surface stress. The reverse holds for the Southern

Hemisphere.




THE SURFACE EKMAN LAYER

« The Ekman transport is perpendicular to the wind stress, to the
right in the N. Hemisphere, to the left in the S. Hemisphere,

explaining why icebergs, mostly floating underwater, drift to the
right of the wind as observed by Fridtjof Nansen

« The surface velocity uy = u(z = 0) has an angle of 45° with 7 [...]

Nansen noticed icebergs moving
20° - 40° to right of wind direction

lceberg / -

Ship

Northern
Hemisphere

A - ~
< / \/ Surface /
https://people.ucsc.edu/~mdmccar/migrated/ocea1/01 Public/l ’ N movement
ectures/lect notes 2/14 SURF Ocean Circ 12Fall.pdf il T ) 45‘ from
- wind

from wind

f > 0 ‘ 11)0 meters / : e



https://people.ucsc.edu/~mdmccar/migrated/ocea1/01_Public/lectures/lect_notes_2/14_SURF_Ocean_Circ_12Fall.pdf

THE SURFACE EKMAN LAYER

Compute the divergence of the Ekman transport (as done for BEL):

L [ R 56)

ox oy o \ Oz oy po |0x \ f oy \ f
The divergence is totally independent by wvp and is entirely
dependent on?:V-ﬁoch?|Z—>wind—stress curl

On f-plane: V - U = —er|z
pof

IF VvxT|, # 0 the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior (as in BEL)

[] _ 0 ou ov g = 1 o (1Y o (T° B
o=+ [ (@ra)e=wlm(F) -5 F)] -

def. EKMAN PUMPING: W = wy;, = pr><§|2
0
Ekman pumping on f-plane: wg;, = VXle

pof



THE SURFACE EKMAN LAYER

« Ekman pumping on f-plane: wg, =V - U = p—for|Z
0

« Ekman pumping: a very effective mechanism to drive subsurface
ocean currents through the action of winds

Atmospherc/

FOCEAET  Becoin o s s v

Wgr, =V -U=—72VXT|, <0 Wgr =V -U=—72VXT|, >0

Po Po
Clockwise wind pattern Anticlockwise wind pattern
Convergence in SEL Divergence in SEL
Downwelling Upwelling

f>0




Effect of upwelling on biogochemistry in
the Mediterranean Sea

SATELLITE

North-Western Med Sea is an area of upwelling
and high productivity due to Ekman pumping




Effect of upwelling on biogochemistry in
the Mediterranean Sea

North-Western Med Sea is an area of upwelling
and high productivity due to Ekman pumping



THE EKMAN LAYER IN REAL GEOPHYSICAL FLOWS

Real geophysical flows are characterized by turbulence and
stratification = observations cannot match the highly idealized
models of BEL and SEL

GFD flows have Re > 1 = we can replace v with v to account for
the enhanced momentum transfer in a turbulent flow

Ekman layers are SHEAR FLOWS and turbulence is not
homogenous, increasing with the shear and suppressed close to
the boundary where size of turbulent eddies is limited = a general
theory of turbulence does not exist, as a minimum v; = vg(z) but
observations do not agree with simple models

The angle between near-boundary velocity / surface velocity and
interior in BEL / SEL is < 45° ranging 5° +~ 20°

Eddy viscosity scales with friction velocity u* =./|7|/poand d as
mixing length (the size of the most turbulent eddies): vy~ u'd

Ekman depth scales with d~,/vg/f~\/u*d /f = d~u*/f
Empirically: d = 0.4 u"/f



THE EKMAN LAYER IN REAL GEOPHYSICAL FLOWS

Real geophysical flows are characterized by vertical density
stratification p = p(z) : the gradual change of density with z hinders
vertical movements = reduction of vertical mixing of momentum by
turbulence and decoupling motions at separate levels

Stratification reduces the Ekman depth and increases the veering of
the velocity vector with z

Surface atmospheric layer during daytime over land and above
warm currents at sea is frequently in a state of CONVECTION due
to the heating from below: the Ekman dynamics is related to
convective motions, driven both by the geostrophic flow aloft and
by the intensity of the surface heat flux = Atmospheric Boundary
Layer (ABL)

Ekman depth scales with d =



One of the few cases when obs - theory

AY
cm/s

| => surface current

Figure 8-9 Comparison between observed currents below a drifting ice floe at 84.3°N and theoretical
predictions based on an eddy viscosity vg = 2.4 x 1072 m?/s. (Reprinted from Deep-Sea Reseaich,
13. Kenneth Hunkins, Ekman drift currents in the Arctic Ocean, p. 614, ©1966, with kind permission
from Pergamon Press Ltd, Headington Hill Hall, Oxford 0X3 0BW, UK)




observations: angle u, and u < 45°

Figure 8-10
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Wind vectors minus geostrophic wind as a function of height (in meters)

in the maritime

friction layer near the Scilly Isles. Top diagram: Case of warm air over cold water. Bottom diagram:
Case of cold air over warm water. (Adapted from Roll, 1965)



BAROTROPIC WAVES

Another possible simplification of the governing eqs. of GFD is to LINEARIZE
the egs. =2 restrictions must be imposed on the flows

Coriolis terms are linear = no need to simplify

U

Advection terms are non-linear = need to be simplified (Ro = or

< 1)

* - relatively weak flows (small U)
« —> relatively large scales (large L)
« - in LAB: fast rotation rates (large Q)

Local time rate of velocity change is linear = no need to simplify (Ro; = é ~1)

—> consider slow flow fields under rotation that evolve relatively fast = rapidly
moving disturbances do not require large velocities = information (or energy) may
travel faster then material particles = the flow is a WAVE FIELD !

- WAVES supported by inviscid, homogeneous fluid in rotation

. y e distance covered by the signal L
Velocity scale: “celerity” C = Y 2 = o LO>U

nominal evolution time




BAROTROPIC WAVES

» slow flow fields under rotation that evolve relatively fast = rapidly moving
disturbances do not require large velocities = information (or energy) may travel
faster then material particles

 NOTE: look Appendix B of Cushman to review wave dynamics (already done in
the first part of the course)



BAROTROPIC WAVES

System governing the linear wave dynamics of an inviscid,
homogeneous, shallow-water fluid 1n rotation (for £ > 0) =>
start from the shallow-water model excluding advection

ou
— + U ;

o> + zx — fv = —g S—i;
o Oh

E_'_UX_'_lX_'_fU:_(I
Oh 0

W -+ E(hll) + E(hl) = 0.

h(x,y,t) =n(x,y,t) + H(x,y)



BAROTROPIC WAVES

System governing the linear wave dynamics of an 1nviscid,
homogeneous, shallow-water fluid 1n rotation (for £ > 0) =>
if H(x,y) = cost [flat bottom] and through the scale
analysis we obtain a linearized form of the continuity
equation which brings to small amplitude waves |...]
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KELVIN WAVE 1

A traveling disturbance requiring a lateral boundary
layer as a support: u=v =0 at x = 0 (coastline)

Lord Kelvin’s hypothesis was that u = 0 in the whole

domain

2 2
From the previous equations [...] : _8 v c? 0~

Ot? Iy?
c = \/gH

Wave equation => propagation of 1-d non-dispersive waves => speed of surface gravity waves
in non-rotating shallow waters
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KELVIN WAVE 2
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with the coast on their right, but the accompanying currents diffe n the x—
momentum equation leads to a velocity v that is maximum at the bulge and directed as the geostrophic
equilibrium requires. Because of the different geostrophic velocities at the bulge and further away,
convergence and divergence patterns create a lifting or lowering of the surface. The lifting and lowering
is such that the wave propagates towards negative y in either case (positive or negative bulge).

ATLANTIC
OCEAN

Figure 9-2 Cotidal lines (dashed) with time in lunar hours for the M2 tide in the English Channel
showing the eastward progression of the tide from the North Atlantic Ocean. Lines of equal tidal range
(solid, with value in meters) reveal larger amplitudes along the French coast, namely to the right of the
wave progression in accordance with Kelvin waves. (From Proudman, 1953, as adapted by Gill, 1982.)



POINCARE’ WAVES 1

Keep u # 0 1n the whole domain

The system has to be solved entirely => all coeffs. are
constant and a Fourier-like solution can be set:

n A
U —RwlU 6i (kzx+kyy—wt)
v V

Dispersion relation [...] : w [w2 — f% — gH (ki + kg)] =0

w = 0 - steady geostrophic flow
solution:

W = \/ f 2 4 gH k2 - superinertial travelling waves (PW)

and cases [...]: f=0, HF, LF With? = V1 + R?%k?2



POINCARE’ WAVES 2
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Figure 9-3 Recapitulation of the dis-
persion relation of Kelvin and Poincaré
waves on the f-plane and on a flat
bottom. While Poincaré waves (gray
shades) can travel in all directions and
occupy therefore a continuous spec-
trum 1n terms of k,, the Kelvin wave
(diagonal line) propagates only along a
boundary.

The solution of KW as w/f = k,R can be found with Fourier-like solution in the egs. for KW with eitkyroy



POINCARE’ WAVES 2

t
f w/f

I Rotation effect decreases I

Poincaré

too fast and short
to feel rotation
(gravity waves)

"""""""""""""""" ky R Figure 9-3 Recapitulation of the dis-

persion relation of Kelvin and Poincaré
|i <<R |waves on the f-plane and on a flat
HF bottom. While Poincaré waves (gray
shades) can travel in all directions and
occupy therefore a continuous spec-
trum 1n terms of k,, the Kelvin wave

(diagonal line) propagates only along a
boundary.

The solution of KW as w/f = k,R can be found with Fourier-like solution in the egs. for KW with eitkyroy



PLANETARY or ROSSBY WAVES 1

KW and PW are relatively fast waves (w = f): do
exist other slower waves (w < f), associated with
evolution of disturbances in the geostrophic flow?

c/education/rossby.htm

] Coriolis parameter: f = 2() sin

l 72 Taylor expansion around a reference latitude ¢y
N f = 2Qsingo + QQ% CoSpo + ...
= Jo + Doy

2(€2/a) cos g BETAPARAMETER
BoL

— f_ < 1 PLANETARY NUMBER

0
The system for the f-plane has “large” and “small” terms = [...] retaining the
large ones we obtain the geostrophic flow (ug,v, 1%-approx solution)

http://paoc.mit.edu/pao




PLANETARY or ROSSBY WAVES 2

solving the system with (u,,v,) we obtain: velocity = geostr + ageostr

[...] and then including (u,v) n , 0 ) On
. . - R Vi — BoR =0
in the continuity equation: ot ot Oz
Using a Fourier-like solution for 7 we have the dispersion relation:
k
2 x
W = — ﬁQR
I + R2 (k;% + kg) * For both cases of LW and SW:
w w K fo subinertial wave
S e ¢, = c,(k) dispersive wave
VI ks o ¢, = kﬂ < 0 westward
propagation

aw aa)
e (C, = 1s westward
9 ™ \oky’ ok,

for LW and eastward for SW

Eastward Westward Eastward

Figure 9-4 Dispersion relation of planetary (Rossby) waves. The frequency w is plotted against the
zonal wavenumber k. at constant meridional wavenumber k,. As the slope of the curve reverses, so
does the direction of zonal propagation of energy.



PLANETARY or ROSSBY WAVES 3

ROSSBY WAVE PATTERNS OVER THE NORTH POLE

* Rewriting the dispersion relation we
obtain eq. for circles in (kx, ky) at
constant w: w; < Wy < W3 < Wmax

[...]

_ BoR

*  Wpgxy =, Max frequency
kyR
Direction of
propagation
k:R
0<w; Sws <ws<[oR/2 w=20

Figure 9-5 Geometric representation
of the planetary-wave dispersion rela-
tion. Each circle corresponds to a fixed
frequency, with frequency increasing
with decreasing radius. The group ve-
locity of the (kz, ky) wave is a vector
perpendicular to the circle at point (k,
ky) and directed toward its center.
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TOPOGRAPHIC WAVES 1

Perturbing effect 1s small and
associated with weak bottom
irregularity (not uncommon in the
GFD phenomena...)

Surface

H = HO + oYy

The system has “large” and “small” terms which scale as Ro: retaining
the large ones we obtain the geostrophic flow (u,,v, 1%-approx solution)



TOPOGRAPHIC WAVES 2

solving the system with (u,,v,) we obtain: velocity = geostr + ageostr

[...] and then including (u,v) an 9

. . . . - R2 TVQ‘I —+
in the continuity equation: ot ot *

apg On
f Ox

= 0

Using a Fourier-like solution for 7 we have the dispersion relation:
xog llx.'-a:
f 1+ R2(kZ + k)

» Phase speed ¢, has the same sign as a, = TW propagate in the Northern
Hemisphere with the shallower side on their right

* For both cases of LW and SW: w < f subinertial wave

« Since RW always propagate westward = with north on their right, analogy with RW
is: “shallow-north” and “deep-south”

. . . . . (04
e Similar considerations as RW to obtain w = %09 hax frequenc
max = g q y



ANALOGY BETWEEN PLANETARY AND TOPOGRAPHIC WAVES

_ fo + Boy + Ov/Ox — Ou/dy

Potential vorticity on f-plane and sloping bottom: ¢

Ho + agy + 7

Taylor expansion:

=> gradient of potential vorticity

Planetary
wave

L
l £
(o]
w
State of Toward higher
rest values of .
potential vorticity A %
T
oy
%]
Topographic

- wave
[
Q.
8]
QO
y QO

Crest Trough Crest

Figure 9-7 Comparison of the physical mechanisms that propel planetary and topographic waves.
Displaced fluid parcels react to their new location by developing either clockwise or counterclockwise
vorticity. Intermediate parcels are entrained by neighboring vortices, and the wave progresses forward.



