
THE BOTTOM EKMAN LAYER - GENERALIZED
• Interior geostrophic flow varying on a scale sufficiently large to be

in geostrophic equilibrium:

• for a constant Coriolis parameter (on f-plane) the flow is non-
divergent:

• The BL equations:

• …with BCs 𝒖 → #𝒖 𝒂𝒏𝒅 𝒗 → #𝒗 𝒇𝒐𝒓 𝒛 → ∞ 𝒂𝒏𝒅 𝒖 𝒛 = 𝟎 = 𝒗 𝒛 = 𝟎 = 𝟎

• …and solutions:
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It is instructive to calculate the net transport of fluid transverse to the main flow:

V =

∫ ∞

0
v dz =

ūd

2
, (8.19)

which is proportional to the interior velocity and the Ekman depth.

8.4 Generalization to non-uniform currents
Let us now consider a more complex interior flow, namely, a spatially nonuniform flow that
is varying on a scale sufficiently large to be in geostrophic equilibrium (low Rossby number,
as in Section 7.1). Thus,

− f v̄ = −
1

ρ0

∂p̄

∂x
, f ū = −

1

ρ0

∂p̄

∂y
,

where the pressure p̄(x, y, t) is arbitrary. For a constant Coriolis parameter, this flow is non-
divergent (∂ū/∂x + ∂v̄/∂y = 0). The boundary-layer equations are now

− f(v − v̄) = νE
∂2u

∂z2
(8.20a)

f(u − ū) = νE
∂2v

∂z2
, (8.20b)

and the solution that satisfies the boundary conditions aloft (u → ū and v → v̄ for z → ∞)
is

u = ū + e−z/d
(
A cos

z

d
+ B sin

z

d

)
(8.21)

v = v̄ + e−z/d
(
B cos

z

d
− A sin

z

d

)
. (8.22)

Here, the “constants” of integrationA andB are independent of z but will be dependent on x
and y through ū and v̄. Imposing u = v = 0 along the bottom (z = 0) sets their values, and
the solution is:

u = ū
(
1 − e−z/d cos

z

d

)
− v̄ e−z/d sin

z

d
(8.23a)

v = ū e−z/d sin
z

d
+ v̄

(
1 − e−z/d cos

z

d

)
. (8.23b)

The transport attributed to the boundary-layer flow has components given by

U =

∫ ∞

0
(u − ū) dz = −

d

2
(ū + v̄) (8.24a)

V =

∫ ∞

0
(v − v̄) dz =

d

2
(ū − v̄) . (8.24b)
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u = ū + e−z/d
(
A cos

z

d
+ B sin

z

d

)
(8.21)

v = v̄ + e−z/d
(
B cos

z

d
− A sin

z

d

)
. (8.22)

Here, the “constants” of integrationA andB are independent of z but will be dependent on x
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is
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THE BOTTOM EKMAN LAYER - GENERALIZED
• We can compute the transport related to the Ekman bottom layer:

• this transport is not necessarily parallel to the interior geostrophic
flow and may be divergent […]:

• The flow in the BL converges/diverges if interior has a relative
vorticity /𝜻 = 𝝏"𝒗

𝝏𝒙
− 𝝏"𝒖

𝝏𝒚
≠ 𝟎 (pos/neg):

– Divergence in BEL and compensating downwelling in the interior + ACyc gyre

– Convergence in BEL and compensating upwelling in the interior + Cyc gyre

• Due to the solid bottom, the only possibility to provide convergence
/ divergence which supports upwelling / downwelling is a vertical
velocity #𝒘 from the interior

8.4. NON-UNIFORM CURRENTS 227

It is instructive to calculate the net transport of fluid transverse to the main flow:

V =

∫ ∞

0
v dz =

ūd
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Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior.
Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large
horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and
upwelling in the interior.

Since this transport is not necessarily parallel to the interior flow, it is likely to have a non-zero
divergence. Indeed,

∂U
∂x

+
∂V
∂y

=

∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz = −

d

2

(
∂v̄

∂x
−

∂ū

∂y

)

= −
d

2ρ0f
∇2p̄. (8.25)

The flow in the boundary layer converges or diverges if the interior flow has a relative
vorticity. The situation is depicted in Figure 8-5. The question is: From where does the fluid
come, or where does it go, to meet this convergence or divergence? Because of the presence
of a solid bottom, the only possibility is that it be supplied from the interior by means of a
vertical velocity. But, remember (Section 7.1) that geostrophic flows must be characterized
by

∂w̄

∂z
= 0, (8.26)

that is, the vertical velocity must occur throughout the depth of the fluid. Of course, since
the divergence of the flow in the Ekman layer is proportional to the Ekman depth, d, which is
very small, this vertical velocity is weak.

The vertical velocity in the interior, called Ekman pumping, can be evaluated by a vertical
integration of the continuity equation (4.21d), using w(z = 0) = 0 and w(z → ∞) = w̄:

w̄ = −
∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz =

d

2

(
∂v̄

∂x
−

∂ū

∂y

)

=
d

2ρ0f
∇2p̄ =

1

ρ0

√
νE

2f3
∇2p̄. (8.27)
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THE BOTTOM EKMAN LAYER - GENERALIZED

• Interior is geostrophic and on f-plane 𝝏𝒛"𝒘 = 𝟎 ⇒ "𝒘 = 𝒄𝒐𝒔𝒕 ⇒ the vertical
velocity must occur throughout the depth of the fluid

• Since divergence is ∝ 𝒅 ≪ 𝑯 ⇒ the vertical velocity is very weak […]

• def. EKMAN PUMPING: "𝒘 = 𝒅
𝟐
/𝜻 = 𝒅

𝟐𝝆𝟎𝒇
𝛁𝟐"𝒑 = −𝛁 4 𝑼, 𝑽 = − 𝝏𝑼

𝝏𝒙
+ 𝝏𝑽

𝝏𝒚

• The larger the vorticity from the interior, the greater the upwelling /
downwelling, with an effect increasing toward the equator (𝒇 → 𝟎)

f > 0



THE BOTTOM EKMAN LAYER OVER UNEVEN TERRAIN
• Irregular topography has an effect over the structure of BEL

• Terrain with elevation 𝐳 = 𝐛 𝒙, 𝒚 above a horizontal reference level

• Since GFD flows are almost 2D: 𝜵𝒃 𝒙, 𝒚 = (𝝏𝒙𝒃, 𝝏𝒚𝒃) ≪ 𝟏

• Interior geostrophic flow not uniform

• The BL equations:

• …with BCs 𝒖 → #𝒖 𝒂𝒏𝒅 𝒗 → #𝒗 𝒇𝒐𝒓 𝒛 → ∞ 𝒂𝒏𝒅 𝒖 𝒛 = 𝒃 = 𝒗 𝒛 = 𝒃 = 𝟎

• …and solutions are the same as previous case with 𝒛 → 𝒛 − 𝒃 :
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It is instructive to calculate the net transport of fluid transverse to the main flow:
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Here, the “constants” of integrationA andB are independent of z but will be dependent on x
and y through ū and v̄. Imposing u = v = 0 along the bottom (z = 0) sets their values, and
the solution is:

u = ū
(
1 − e−z/d cos
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d

)
− v̄ e−z/d sin
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d
(8.23a)
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z
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The transport attributed to the boundary-layer flow has components given by

U =

∫ ∞

0
(u − ū) dz = −

d

2
(ū + v̄) (8.24a)

V =
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2
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So, the greater the vorticity of the mean flow, the greater the upwelling/downwelling. Also,
the effect increases toward the equator (decreasing f = 2Ω sinϕ and increasing d). The di-
rection of the vertical velocity is upward in a cyclonic flow (counterclockwise in the Northern
Hemisphere) and downward in an anticyclonic flow (clockwise in the Northern Hemisphere).

In the Southern Hemisphere, where f < 0, the Ekman layer thickness dmust be redefined
with the absolute value of f : d =

√
2νE/|f |, but the previous rule remains: the vertical

velocity is upward in a cyclonic flow and downward in an anticyclonic flow. The difference
is that cyclonic flow is clockwise and anticyclonic flow is counterclockwise.

8.5 The Ekman layer over uneven terrain

It is noteworthy to explore how an irregular topographymay affect the structure of the Ekman
layer and, in particular, the magnitude of the vertical velocity in the interior. For this, consider
a horizontal geostrophic interior flow (ū, v̄), not necessarily spatially uniform, over an uneven
terrain of elevation z = b(x, y) above a horizontal reference level. To be faithful to our
restriction (Section 4.3) to geophysical flows much wider than they are thick, we shall assume
that the bottom slope (∂b/∂x, ∂b/∂y) is everywhere small (! 1). This is hardly a restriction
in most atmospheric and oceanic situations.

Our governing equations are again (8.20), coupled to the continuity equation (4.21d), but
the boundary conditions are now

Bottom (z = b) : u = 0, v = 0, w = 0, (8.28)
Toward the interior (z " d) : u = ū, v = v̄. (8.29)

The solution is the previous solution (8.23) with z replaced by z − b:

u = ū − e(b−z)/d

(
ū cos

z − b

d
+ v̄ sin

z − b

d

)
(8.30a)

v = v̄ + e(b−z)/d

(
ū sin

z − b

d
− v̄ cos

z − b

d

)
. (8.30b)

We note that the vertical thickness of the boundary layer is still measured by d =
√

2νE/f .
However, the boundary layer is now oblique, and its true thickness, measured perpendicularly
to the bottom, is slightly reduced by the cosine of the small bottom slope.

The vertical velocity is then determined from the continuity equation:



THE BOTTOM EKMAN LAYER OVER UNEVEN TERRAIN
• Computing vertical velocity from continuity eq.:

• …then we can integrate from 𝒛 = 𝒃,𝒘 = 𝟎 to 𝒛 → ∞,𝒘 = #𝒘 :

• The first component was found during the analysis of geostrophic
flow over irregular bottom, and it ensures no normal flow to the
bottom; the second is the Ekman pumping as in the flat bottom
case, which is not affected by the bottom slope
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∂w

∂z
= −

∂u

∂x
−

∂v

∂y

= e(b−z)/d

{(
∂v̄

∂x
−

∂ū

∂y

)
sin

z − b

d

+
1

d

∂b

∂x

[
(ū − v̄) cos

z − b

d
+ (ū + v̄) sin

z − b

d

]

+
1

d

∂b

∂y

[
(ū + v̄) cos

z − b

d
− (ū − v̄) sin

z − b

d

]}
,

where use has been made of the fact that the interior geostrophic flow has no divergence
[∂ū/∂x + ∂v̄/∂y = 0 – See (7.5) ]. A vertical integration from the bottom (z = b), where
the vertical velocity vanishes (w = 0 because u and v are also zero there) into the interior
(z → +∞) where the vertical velocity assumes a vertically uniform value (w = w̄), yields

w̄ =

(
ū
∂b

∂x
+ v̄

∂b

∂y

)
+

d

2

(
∂v̄

∂x
−

∂ū

∂y

)
. (8.31)

The interior vertical velocity thus consists of two parts: a component that ensures no normal
flow to the bottom [see (7.7)] and an Ekman-pumping contribution, as if the bottom were
horizontally flat [see (8.27)].

The vanishing of the flow component perpendicular to the bottom must be met by the
inviscid dynamics of the interior, giving rise to the first contribution to w̄. The role of the
boundary layer is to bring the tangential velocity to zero at the bottom. This explains the
second contribution to w̄. Note that the Ekman pumping is not affected by the bottom slope.

The preceding solution can also be applied to the lower portion of the atmospheric bound-
ary layer. This was first done by Akerblom (1908), and matching between the logarithmic
layer close to the ground (Section 8.1.1) with the Ekman layer further aloft was performed
by Van Dyke (1975). Oftentimes, however, the lower atmosphere is in a stable (stratified)
or unstable (convecting) state, and the neutral state during which Ekman dynamics prevail is
more the exception than the rule.

8.6 The surface Ekman layer
An Ekman layer occurs not only along bottom surfaces but wherever there is a horizontal
frictional stress. This is the case, for example, along the ocean surface, where waters are
subject to a wind stress. In fact, this is precisely the situation first examined by Vagn Walfrid
Ekman3. Fridtjof Nansen4 had noticed during his cruises to northern latitudes that icebergs
drift not downwind but systematically at some angle to the right of the wind. Ekman, his
student at the time, reasoned that the cause of this bias was the earth’s rotation and subse-
quently developed the mathematical representation that now bears his name. The solution

3See biography at the end of this chapter.
4Fridtjof Nansen (1861–1930), Norwegian oceanographer famous for his Arctic expeditions and Nobel Peace

Prize laureate (1922).
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where use has been made of the fact that the interior geostrophic flow has no divergence
[∂ū/∂x + ∂v̄/∂y = 0 – See (7.5) ]. A vertical integration from the bottom (z = b), where
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The interior vertical velocity thus consists of two parts: a component that ensures no normal
flow to the bottom [see (7.7)] and an Ekman-pumping contribution, as if the bottom were
horizontally flat [see (8.27)].

The vanishing of the flow component perpendicular to the bottom must be met by the
inviscid dynamics of the interior, giving rise to the first contribution to w̄. The role of the
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THE SURFACE EKMAN LAYER
• The frictional stress against the flow is exerted by the WIND

STRESS (historically, the 1st problem investigated by Ekman)

• Hypotheses:
– Interior flow is uniform and geostrophic: 𝑹𝒐𝑻 ≪ 𝟏 𝒂𝒏𝒅 𝑹𝒐 ≪ 𝟏

– Homogeneous fluid: 𝛒𝟎 = 𝒄𝒐𝒔𝒕 𝒂𝒏𝒅 𝛒# = 𝟎

– Presence of wind stress: 𝝉 = 𝝉𝒙, 𝝉𝒚

• Primitive equations + BCs:

• Solutions:
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was originally published in his 1902 doctoral thesis and again, in a more complete article,
three years later (Ekman, 1905). In a subsequent article (Ekman, 1906), he mentioned the
relevance of his theory to the lower atmosphere, where the wind approaches a geostrophic
value with increasing height.

z

z = 0

Ekman
layer

Interior (u, v) = (ū, v̄)

d
(u, v)

Sea surface
Wind stress

Figure 8-6 The surface Ekman layer generated by a wind stress on the ocean.

Let us consider the situation depicted in Figure 8-6, where an ocean region with interior
flow field (ū, v̄) is subjected to a wind stress (τx, τy) along its surface. Again, assuming
steady conditions, a homogeneous fluid, and a geostrophic interior, we obtain the following
equations and boundary conditions for the flow field (u, v) in the surface Ekman layer:

− f (v − v̄) = νE
∂2u

∂z2
(8.32a)

+ f (u − ū) = νE
∂2v

∂z2
(8.32b)

Surface (z = 0) : ρ0νE
∂u

∂z
= τx, ρ0νE

∂v

∂z
= τy (8.32c)

Toward interior (z → −∞) : u = ū, v = v̄. (8.32d)
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Figure 8-7 Structure of the surface Ekman layer. The figure is drawn for the Northern Hemisphere
(f > 0), and the deflection is to the right of the surface stress. The reverse holds for the Southern
Hemisphere.

The solution to this problem is

u = ū +

√
2

ρ0fd
ez/d

[
τx cos

(z

d
−

π

4

)
− τy sin

(z

d
−

π

4

)]
(8.33a)

v = v̄ +

√
2

ρ0fd
ez/d

[
τx sin

(z

d
−

π

4

)
+ τy cos

(z

d
−

π

4

)]
, (8.33b)

in which we note that the departure from the interior flow (ū, v̄) is exclusively due to the wind
stress. In other words, it does not depend on the interior flow. Moreover, this wind-driven
flow component is inversely proportional to the Ekman-layer depth, d, and may be very large.
Physically, if the fluid is almost inviscid (small νE , hence short d), a moderate surface stress
can generate large drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has components given
by

U =

∫ 0

−∞
(u − ū) dz =

1

ρ0f
τy (8.34a)

V =

∫ 0

−∞
(v − v̄) dz =

−1

ρ0f
τx. (8.34b)

Surprisingly, it is oriented perpendicular to the wind stress (Figure 8-7), to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere. This fact explains why
icebergs, which float mostly underwater, systematically drift to the right of the wind in the
North Atlantic, as observed by Fridtjof Nansen.



THE SURFACE EKMAN LAYER
• The solution has a wind-driven component fully related to the wind

stress 𝝉, independent by the interior flow but dependent on 𝟏/𝒅 ⇒
the wind-driven component can be very large if 𝒅 is very small (for
example with almost inviscid flow with 𝝊𝑬 very small), and even a
moderate wind stress may generate a large wind-driven component



THE SURFACE EKMAN LAYER
• The wind-driven (Ekman) transport in the SEL has components […]:
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in which we note that the departure from the interior flow (ū, v̄) is exclusively due to the wind
stress. In other words, it does not depend on the interior flow. Moreover, this wind-driven
flow component is inversely proportional to the Ekman-layer depth, d, and may be very large.
Physically, if the fluid is almost inviscid (small νE , hence short d), a moderate surface stress
can generate large drift velocities.

The wind-driven horizontal transport in the surface Ekman layer has components given
by
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V =
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(v − v̄) dz =
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Surprisingly, it is oriented perpendicular to the wind stress (Figure 8-7), to the right in the
Northern Hemisphere and to the left in the Southern Hemisphere. This fact explains why
icebergs, which float mostly underwater, systematically drift to the right of the wind in the
North Atlantic, as observed by Fridtjof Nansen.

f > 0



THE SURFACE EKMAN LAYER
• The Ekman transport is perpendicular to the wind stress, to the

right in the N. Hemisphere, to the left in the S. Hemisphere,
explaining why icebergs, mostly floating underwater, drift to the
right of the wind as observed by Fridtjof Nansen

• The surface velocity 𝒖𝟎 = 𝒖 𝐳 = 𝟎 has an angle of 𝟒𝟓° with 𝝉 […]

f > 0

Nansen contemplating ice

Nansen’s funky icebergs
Nansen noticed icebergs moving 

20˚ - 40˚ to right of wind direction

https://people.ucsc.edu/~mdmccar/migrated/ocea1/01_Public/l
ectures/lect_notes_2/14_SURF_Ocean_Circ_12Fall.pdf

https://people.ucsc.edu/~mdmccar/migrated/ocea1/01_Public/lectures/lect_notes_2/14_SURF_Ocean_Circ_12Fall.pdf


THE SURFACE EKMAN LAYER
• Compute the divergence of the Ekman transport (as done for BEL):

• The divergence is totally independent by 𝝊𝑬 and is entirely
dependent on 𝝉 : 𝛁 H 𝑼 ∝ 𝛁×𝝉|𝒛 → 𝒘𝒊𝒏𝒅 − 𝒔𝒕𝒓𝒆𝒔𝒔 𝒄𝒖𝒓𝒍

• On f-plane: 𝛁 H 𝑼 = 𝟏
𝝆𝟎𝒇

𝛁×𝝉|𝒛

• IF 𝛁×𝝉|𝒛 ≠ 𝟎 the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior (as in BEL)
[…] :

• def. EKMAN PUMPING: #𝒘 = 𝒘𝑬𝒌 =
𝟏
𝝆𝟎
𝛁× 𝝉

𝒇
|𝒛

• Ekman pumping on f-plane: 𝒘𝑬𝒌 =
𝟏
𝝆𝟎𝒇

𝛁×𝝉|𝒛
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Figure 8-5 Divergence in the bottom Ekman layer and compensating downwelling in the interior.
Such a situation arises in the presence of an anticyclonic gyre in the interior, as depicted by the large
horizontal arrows. Similarly, interior cyclonic motion causes convergence in the Ekman layer and
upwelling in the interior.

Since this transport is not necessarily parallel to the interior flow, it is likely to have a non-zero
divergence. Indeed,

∂U
∂x

+
∂V
∂y

=

∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz = −

d

2

(
∂v̄

∂x
−

∂ū

∂y

)

= −
d

2ρ0f
∇2p̄. (8.25)

The flow in the boundary layer converges or diverges if the interior flow has a relative
vorticity. The situation is depicted in Figure 8-5. The question is: From where does the fluid
come, or where does it go, to meet this convergence or divergence? Because of the presence
of a solid bottom, the only possibility is that it be supplied from the interior by means of a
vertical velocity. But, remember (Section 7.1) that geostrophic flows must be characterized
by

∂w̄

∂z
= 0, (8.26)

that is, the vertical velocity must occur throughout the depth of the fluid. Of course, since
the divergence of the flow in the Ekman layer is proportional to the Ekman depth, d, which is
very small, this vertical velocity is weak.

The vertical velocity in the interior, called Ekman pumping, can be evaluated by a vertical
integration of the continuity equation (4.21d), using w(z = 0) = 0 and w(z → ∞) = w̄:

w̄ = −
∫ ∞

0

(
∂u

∂x
+

∂v

∂y

)
dz =

d

2

(
∂v̄

∂x
−

∂ū

∂y

)

=
d

2ρ0f
∇2p̄ =

1

ρ0

√
νE

2f3
∇2p̄. (8.27)
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Figure 8-8 Ekman pumping in an ocean subject to sheared winds (case of Northern Hemisphere).

As for the bottom Ekman layer, let us determine the divergence of the flow, integrated
over the boundary layer:

∫ 0

−∞

(
∂u

∂x
+

∂v

∂y

)
dz =

1

ρ0

[
∂
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(
τy

f
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∂

∂y

(
τx

f

)]
. (8.35)

At constant f , the contribution is entirely due to the wind stress since the interior geostrophic
flow is nondivergent. It is proportional to the wind-stress curl and, most importantly, it is
independent of the value of the viscosity. It can be shown furthermore that this property
continues to hold even when the turbulent eddy viscosity varies spatially (see Analytical
Problem 8-7).

If the wind stress has a non-zero curl, the divergence of the Ekman transport must be
provided by a vertical velocity throughout the interior. A vertical integration of the continuity
equation, (4.21d), across the Ekman layer with w(z = 0) and w(z → −∞) = w̄ yields

w̄ = +

∫ 0

−∞

(
∂u

∂x
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∂v

∂y

)
dz

=
1

ρ0

[
∂
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(
τy

f

)
−

∂

∂y

(
τx

f

)]
= wEk.

(8.36)

This vertical velocity is called Ekman pumping. In the Northern Hemisphere (f > 0), a
clockwise wind pattern (negative curl) generates a downwelling (Figure 8-8a), whereas a
counterclockwise wind pattern causes upwelling (Figure 8-8b). The directions are opposite
in the Southern Hemisphere. Ekman pumping is a very effective mechanism by which winds
drive subsurface ocean currents (Pedlosky, 1996; see also Chapter 20).

8.7 The Ekman layer in real geophysical flows
The preceding models of bottom and surface Ekman layers are highly idealized, and we
do not expect their solutions to match actual atmospheric and oceanic observations closely
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f > 0

THE SURFACE EKMAN LAYER
• Ekman pumping on f-plane: 𝒘𝑬𝒌 = 𝛁 H 𝑼 = 𝟏

𝝆𝟎𝒇
𝛁×𝝉|𝒛 ≶ 𝟎

• Ekman pumping: a very effective mechanism to drive subsurface
ocean currents through the action of winds

𝒘𝑬𝒌 = 𝛁 2 𝑼 =
𝟏
𝝆𝟎𝒇

𝛁×𝝉|𝒛 < 𝟎

Clockwise wind pattern

Convergence in SEL

Downwelling

𝒘𝑬𝒌 = 𝛁 2 𝑼 =
𝟏
𝝆𝟎𝒇

𝛁×𝝉|𝒛 > 𝟎

Anticlockwise wind pattern

Divergence in SEL

Upwelling



Effect of upwelling on biogochemistry in 
the Mediterranean Sea

North-Western Med Sea is an area of upwelling
and high productivity due to Ekman pumping

SATELLITE



Effect of upwelling on biogochemistry in 
the Mediterranean Sea

MODEL

North-Western Med Sea is an area of upwelling
and high productivity due to Ekman pumping



THE EKMAN LAYER IN REAL GEOPHYSICAL FLOWS
• Real geophysical flows are characterized by turbulence and

stratification ⇒ observations cannot match the highly idealized
models of BEL and SEL

• GFD flows have 𝑹𝒆 ≫ 𝟏 ⇒ we can replace 𝝊 with 𝝊𝑬 to account for
the enhanced momentum transfer in a turbulent flow

• Ekman layers are SHEAR FLOWS and turbulence is not
homogenous, increasing with the shear and suppressed close to
the boundary where size of turbulent eddies is limited ⇒ a general
theory of turbulence does not exist, as a minimum 𝝊𝑬 = 𝝊𝑬(𝒛) but
observations do not agree with simple models

• The angle between near-boundary velocity / surface velocity and
interior in BEL / SEL is < 𝟒𝟓° ranging 𝟓° ÷ 𝟐𝟎°

• Eddy viscosity scales with friction velocity 𝒖∗ = 𝝉 /𝝆𝟎 and 𝒅 as
mixing length (the size of the most turbulent eddies): 𝝊𝑬~ 𝒖∗𝒅

• Ekman depth scales with 𝒅~ 𝝊𝑬/𝒇~ 𝒖∗𝒅 /𝒇 ⇒ 𝒅~ 𝒖∗/𝒇

• Empirically: 𝒅 = 𝟎. 𝟒 𝒖∗/𝒇



THE EKMAN LAYER IN REAL GEOPHYSICAL FLOWS
• Real geophysical flows are characterized by vertical density

stratification 𝝆 = 𝝆(𝒛) : the gradual change of density with 𝒛 hinders
vertical movements ⇒ reduction of vertical mixing of momentum by
turbulence and decoupling motions at separate levels

• Stratification reduces the Ekman depth and increases the veering of
the velocity vector with 𝒛

• Surface atmospheric layer during daytime over land and above
warm currents at sea is frequently in a state of CONVECTION due
to the heating from below: the Ekman dynamics is related to
convective motions, driven both by the geostrophic flow aloft and
by the intensity of the surface heat flux ⇒ Atmospheric Boundary
Layer (ABL)

• Ekman depth scales with 𝒅 = 𝟏.𝟑 𝒖∗

𝒇 𝟏2𝑵
𝟐

𝒇𝟐

𝟏/𝟒



One of the few cases when obs à theory

=> surface current



observations: angle u0 and uINT < 45º



BAROTROPIC WAVES
• Another possible simplification of the governing eqs. of GFD is to LINEARIZE 

the eqs. à restrictions must be imposed on the flows

• Coriolis terms are linear à no need to simplify

• Advection terms are non-linear à need to be simplified (Ro = 3
45
≪ 𝟏)

• à relatively weak flows (small U)

• à relatively large scales (large L)

• à in LAB: fast rotation rates (large Ω)

• Local time rate of velocity change is linear à no need to simplify (Ro6 =
7
46
~ 𝟏)

• à consider slow flow fields under rotation that evolve relatively fast = rapidly 
moving disturbances do not require large velocities = information (or energy) may 
travel faster then material particles à the flow is a WAVE FIELD !

• à WAVES supported by inviscid, homogeneous fluid in rotation

• Velocity scale: “celerity” C = 89:;<=>? >@A?B?8 CD ;E? :9F=<G
=@H9=<G ?A@GI;9@= ;9H?

= 5
6
~ 𝐿𝛺 ≫ 𝑈



BAROTROPIC WAVES
• slow flow fields under rotation that evolve relatively fast = rapidly moving 

disturbances do not require large velocities = information (or energy) may travel 
faster then material particles

• NOTE: look Appendix B of Cushman to review wave dynamics (already done in 
the first part of the course)

https://www.gemini.edu/media/pr_images/pondwaves-noleaves.jpg



BAROTROPIC WAVES
System governing the linear wave dynamics of an inviscid, 
homogeneous, shallow-water fluid in rotation (for f > 0) => 
start from the shallow-water model excluding advection

ℎ(𝑥, 𝑦, 𝑡) = 𝜂 𝑥, 𝑦, 𝑡 + 𝐻(𝑥, 𝑦)

X X
XX



BAROTROPIC WAVES
System governing the linear wave dynamics of an inviscid, 
homogeneous, shallow-water fluid in rotation (for f > 0) => 
if 𝑯 𝒙, 𝒚 = 𝒄𝒐𝒔𝒕 [flat bottom] and through the scale 
analysis we obtain a linearized form of the continuity
equation which brings to small amplitude waves […]



KELVIN WAVE 1
A traveling disturbance requiring a lateral boundary
layer as a support: u = v = 0 at x = 0 (coastline)

Lord Kelvin’s hypothesis was that u = 0 in the whole
domain

From the previous equations […] :
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Solution: 
[…]

Wave equation => propagation of 1-d non-dispersive waves => speed of surface gravity waves
in non-rotating shallow waters

Rossby radius of 
deformation



KELVIN WAVE 2

R R



POINCARE’ WAVES 1
Keep u ≠ 0 in the whole domain

The system has to be solved entirely à all coeffs. are 
constant and a Fourier-like solution can be set:
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Dispersion relation […] :

solution:
à steady geostrophic flow

à superinertial travelling waves (PW)
and cases […]: f = 0, HF, LF with

J
K
= 1 + 𝑅L𝑘L



POINCARE’ WAVES 2

The solution of KW as ω/f = kyR can be found with Fourier-like solution in the eqs. for KW with ei(ky+ωt)

1 ≤
𝜔
𝑓
≤ 𝑅𝑘



POINCARE’ WAVES 2

The solution of KW as ω/f = kyR can be found with Fourier-like solution in the eqs. for KW with ei(ky+ωt)

λ >> R λ << R

ω = 0 geostrophy

ω = f inertial osc.

Rotation effect decreases

too fast and short 
to feel rotation
(gravity waves)

HFLF

1 ≤
𝜔
𝑓
≤ 𝑅𝑘



PLANETARY or ROSSBY WAVES 1

PLANETARY NUMBER
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KW and PW are relatively fast waves (𝜔 ≥ 𝑓): do 
exist other slower waves (𝜔 ≪ 𝑓), associated with 
evolution of disturbances in the geostrophic flow?

Coriolis parameter:

Taylor expansion around a reference latitude φ0:

BETA PARAMETER

The system for the β-plane has “large” and “small” terms à […] retaining the 
large ones we obtain the geostrophic flow (ug,vg 1st-approx solution)

φ0



PLANETARY or ROSSBY WAVES 2
solving the system with (ug,vg) we obtain: velocity = geostr + ageostr

[…] and then including (u,v)

in the continuity equation:

Using a Fourier-like solution for η we have the dispersion relation: 

• For both cases of LW and SW: 
𝜔 ≪ 𝑓+ subinertial wave

• 𝑐, = 𝑐, 𝑘 dispersive wave

• 𝑐, =
-
."
< 0 westward 

propagation

• 𝑐/ =
0-
0."

, 0-
0.#

is westward 

for LW and eastward for SW



PLANETARY or ROSSBY WAVES 3
• Rewriting the dispersion relation we

obtain eq. for circles in 𝑘, , 𝑘1 at
constant 𝜔: 𝜔2 < 𝜔3 < 𝜔4 < 𝜔56,
[…]

• 𝜔56, =
7$8
3

max frequency



TOPOGRAPHIC WAVES 1

PLANETARY NUMBER

Perturbing effect is small and 
associated with weak bottom 
irregularity (not uncommon in the 
GFD phenomena…)

BETA PARAMETER

The system has “large” and “small” terms which scale as RoT: retaining
the large ones we obtain the geostrophic flow (ug,vg 1st-approx solution)
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kyR

kxR

ω = 0

-1
ω3

ω2

ω1

0 ≤ ω1 ≤ ω2 ≤ ω3 ≤ β0R/2

Direction of
propagation

Group
velocity

Figure 9-5 Geometric representation
of the planetary-wave dispersion rela-
tion. Each circle corresponds to a fixed
frequency, with frequency increasing
with decreasing radius. The group ve-
locity of the (kx, ky) wave is a vector
perpendicular to the circle at point (kx,
ky) and directed toward its center.

the wave process in its simplest form, we limit ourselves here to the case of a weak and
uniform bottom slope. We also return to the use of a constant Coriolis parameter. This latter
choice allows us to choose convenient directions for the reference axes, and, in anticipation
of an analogy with planetary waves, we align the y–axis with the direction of the topographic
gradient. We thus express the depth of the fluid at rest as:

H = H0 + α0y, (9.34)

whereH0 is a mean reference depth and α0 is the bottom slope, which is required to be gentle
so that

α =
α0L

H0
" 1, (9.35)

where L is the horizontal length scale of the motion. The topographic parameter α plays a
role similar to the planetary number, defined in (9.20).

The bottom slope gives rise to new terms in the continuity equation. Starting with the
continuity equation (7.14) for shallow water and expressing the instantaneous fluid layer
depth as (Figure 9-6)

h(x, y, t) = H0 + α0y + η(x, y, t), (9.36)

we obtain

∂η

∂t
+

(
u
∂η

∂x
+ v

∂η

∂y

)
+ (H0 + α0y)

(
∂u

∂x
+

∂v

∂y

)

+ η

(
∂u

∂x
+

∂v

∂y

)
+ α0v = 0.

Once again, we strike out the nonlinear terms by invoking a very small Rossby number (much
smaller than the temporal Rossby number) for the sake of linear dynamics. The term α0y can



TOPOGRAPHIC WAVES 2
solving the system with (ug,vg) we obtain: velocity = geostr + ageostr

[…] and then including (u,v)

in the continuity equation:

Using a Fourier-like solution for η we have the dispersion relation:

• Phase speed cx has the same sign as α0 à TW propagate in the Northern
Hemisphere with the shallower side on their right

• For both cases of LW and SW: 𝜔 ≪ 𝑓 subinertial wave

• Since RW always propagate westward = with north on their right, analogy with RW 
is: “shallow-north” and “deep-south”

• Similar considerations as RW to obtain 𝜔H<M =
N0F
LKO

max frequency



ANALOGY BETWEEN PLANETARY AND TOPOGRAPHIC WAVES

Potential vorticity on β-plane and sloping bottom:  

Taylor expansion:

=> gradient of potential vorticity


