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What is a graph?
A graph (V,E) is a collection of vertices and edges:
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A graph (V,E) is a collection of vertices and edges:


V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)


E={ {a,b},{b,d},{d,d},{f,g} } is the set of edges
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What are graphs for?
In general, they represent relations between objects:


route systems


computer networks


dynamic systems


information flows


infectious diseases spread


dependency relations


… 



Undirected graphs have undirected edges: {a,b}={b,a}


V={a,b,c,d,e,f,g} is the set of vertices 


E={ {a,b},{b,d},{d,d},{f,g} } is the set of undirected edges
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Directed graphs have directed edges (aka arcs): (a,b) (b,a)


V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)


E={ (a,b),(b,d),(d,d),(f,g) } is the set of directed edges (arcs).  
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Directed graphs have directed edges (aka arcs): (a,b) (b,a)


V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)


E={ (a,b),(b,d),(d,d),(f,g) } is the set of directed edges (arcs). 
The head of an arc (a,b) is a, its tail is b.

≠

Types of graphs
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A walk of length n in G=(V,E) is a sequence of n edges e1e2…en 
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1; 
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that 
(vi,vi+1) E for all i=1…n


(b,d)(d,d)(d,c)(c,b)(b,a) b d d c b a is a walk of length 5 from b to a
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Walks, paths, cycles



A walk of length n in G=(V,E) is a sequence of n edges e1e2…en 
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1; 
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that 
(vi,vi+1) E for all i=1…n


A path is a walk that does not repeat any vertex


(b,d)(d,c)(c,a) b d c a is a path of length 3 from b to a
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Walks, paths, cycles
A walk of length n in G=(V,E) is a sequence of n edges e1e2…en 
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1; 
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that 
(vi,vi+1) E for all i=1…n


A path is a walk that does not repeat any vertex. A cycle is a 
closed path, s.t. the first and the last vertices are the same.


(b,d)(d,c)(c,b) b d c b is a cycle of length 3
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More definitions
An undirected graph G is connected if there is a path between 
any two vertices


A connected component of G is a maximal connected 
subgraph of G


Two vertices are adjacent if there is an edge linking the two


The undirected graph below is not connected. It rather has 
three connected components: C1={a,b,c,d}; C2={e}; C3={f,g}
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More definitions
A directed graph is strongly connected if there is a path between 
any two vertices. It is weakly connected if the underlying 
undirected graph is connected


Two vertices are in the same weakly connected component if 
they are connected by a path in the underlying unconnected 
graph


The directed graph below is not even weakly connected. It has 
three weakly connected components: C1={a,b,c,d}; C2={e}; 
C3={f,g}
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More definitions
A directed graph is strongly connected if there is a path between 
any two vertices. It is weakly connected if the underlying 
undirected graph is connected


Two vertices are in the same weakly connected component if 
they are connected by a path in the underlying unconnected 
graph


The directed graph below is weakly connected but not strongly 
connected: for example there is no path from a to b
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More definitions
A directed graph is strongly connected if there is a path between 
any two vertices. It is weakly connected if the underlying 
undirected graph is connected


Two vertices are in the same weakly connected component if 
they are connected by a path in the underlying unconnected 
graph


Is the graph below strongly connected?

f g



More definitions
A directed graph is strongly connected if there is a path between 
any two vertices. It is weakly connected if the underlying 
undirected graph is connected


Two vertices are in the same weakly connected component if 
they are connected by a path in the underlying unconnected 
graph


Is the graph below strongly connected?


NO: there is no path from g to f

f g



More definitions
A directed graph is strongly connected if there is a path between 
any two vertices. It is weakly connected if the underlying 
undirected graph is connected


Two vertices are in the same weakly connected component if 
they are connected by a path in the underlying unconnected 
graph


The directed graph below is strongly connected
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More definitions
An (un)directed graph is acyclic if it does not contain any cycle


The directed graph below is not acyclic: it contains cycles (d,d) 
and (b,d)(d,c)(c,b)
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More definitions
An (un)directed graph is acyclic if it does not contain any cycle


The directed graph below is acyclic: it does not contain any 
directed cycle
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More definitions
An (un)directed graph is acyclic if it does not contain any cycle


The undirected graph below is not acyclic: it contains an 
undirected cycle {b,d}{d,c}{c,a}{a,b}
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More definitions
An (un)directed graph is acyclic if it does not contain any cycle


Directed Acyclic Graphs are also known as DAGs and enjoy 
several properties. We will see one of them later.


A graph G=(V,E) is sparse if |E|=O(|V|); is dense if |E|=O(|V|2)


The graph below is a sparse DAG

a

b

c

d e f g



More definitions
An (un)directed graph is acyclic if it does not contain any cycle


Directed Acyclic Graphs are also known as DAGs and enjoy 
several properties. We will see one of them later.


A graph G=(V,E) is sparse if |E|=O(|V|); is dense if |E|=O(|V|2)


The graph below is dense 
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Graph representations
Reference: Chapter “Elementary Graph 

Algorithms” of:  Cormen, T. H., Leiserson, C. E., 
Rivest, R. L., & Stein, C. Introduction to 

algorithms. (Chapter 22 of the third edition)



Representing graphs: adjacency lists
Adjacency lists are mostly used for sparse graphs


There is a linked list for each vertex v, containing all vertices 
adjacent to v
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Representing graphs: adjacency lists
Adjacency lists are mostly used for sparse graphs


There is a linked list for each vertex v, containing all vertices 
adjacent to v
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Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)


An adjacency matrix A has a row and a column for each vertex. 
A[i,j]=1 if (i,j)  E; A[i,j]=0 otherwise∈
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Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)


An adjacency matrix A has a row and a column for each vertex. 
A[i,j]=1 if (i,j)  E; A[i,j]=0 otherwise∈
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Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)


An adjacency matrix A has a row and a column for each vertex. 
A[i,j]=1 if (i,j)  E; A[i,j]=0 otherwise∈
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Algorithms on Graphs

Reference: Chapter “Elementary Graph 
Algorithms” of:  Cormen, T. H., Leiserson, C. E., 

Rivest, R. L., & Stein, C. Introduction to 
algorithms. (Chapter 22 of the third edition)



Graph traversals
The most fundamental task on a graph is to traverse it.


Graph traversal = visiting each vertex at least once


Two main ways of traversing both directed and undirected graphs:


1.Breadth-First Search (BFS)


2. Depth-First Search (DFS)



Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node
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Breadth-First Search
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node


White nodes have not been discovered yet; gray nodes have 
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node


White nodes have not been discovered yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too. 
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node


White nodes have not been discovered yet; gray nodes have 
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node


White nodes have not been discovered yet; gray nodes have 
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nodes have been discovered and their neighbours too. 

3

C

2 1

2

2

1

0 fs



Breadth-First Search
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node
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Breadth-First Search
The visiting order is related to the distance from a source node: 
the closer a node to the source, the sooner it will be visited


BFS produces a breadth-first tree: the tree consisting of the 
shortest paths from the source to any reachable node


White nodes have not been discovered yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too. 
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BFS: Pseudocode
BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices


for each u  V {s} 
u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s); 
while Q  

u dequeue(Q); 

for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v); 

u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation

Visit of the source

Visit of the other vertices



BFS: Complexity
BFS(G,s) - G is represented by the adjacency lists Adj[ ] of its vertices


for each u  V {s} 
u.color white;  
u.distance ; 

s.color gray;  
s.distance 0; 
Q ; 
enqueue(Q,s); 
while Q  

u dequeue(Q); 

for each v  Adj[u]

if v.color = white 

v.color gray;  
v.distance u.distance + 1; 
enqueue(Q,v); 

u.color black; 

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation: O(|V|)

Visit of the source: O(1)

Visit of the other vertices: 

each iteration of the for loop 
enqueues v  Adj[u] only if 

it is white, and it 
immediately turns its color 
to gray  each vertex is 
inserted in Q at most once.


Cost of the while loop: 


O =O(|E|)

∈

⟹

(∑
u∈V

|Adj[u] |)

O(1) O(|Adj[u]|)



BFS: Properties
Lemma 1. The time complexity of BFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Lemma 2. Let Q=[v1,…,vn] be the queue at any iteration of BFS. 
Then vi.distance vi+1.distance and vn.distance v1.distance+1, 
for all i=1,…,n-1 

Lemma 2 tells us that, at any iteration, if the head node of Q is 
at distance d from s, Q only contains nodes at distance d or 
d+1 from s; possible nodes at distance d+2 will be only 
enqueued after all nodes at distance d have been dequeued. 

Lemma 3. Let d(v,s) be the distance between v and s, for any    
v  V. Then:

(i) v.distance v is reachable from s

(ii) if v.distance v.distance = d(v,s)

≤ ≤

∈
≠ ∞ ⟺

≠ ∞ ⟹



BFS: Exercise
We said that BFS can produce a breadth-first tree (the tree 
consisting of the shortest paths from the source to any reachable 
node). More precisely, a breadth-first tree is defined as follows:


Definition 1. The root of the tree is the source s of BFS; its nodes are 
the nodes of G reachable from s; its edges are the edges of G 
traversed during BFS; the unique path from the root to a node v is 
the shortest path from s to v in G.


Exercise 1. Our pseudocode computes all the information needed to 
construct the breadth-first tree. Can you complement it so that it 
explicitly construct and output such tree?


Hint: it suffices to store the correct predecessor (ancestor in the tree) 
for each node. The BF tree consists of the red edges in our example.



Depth-First Search
DFS searches “deeper” in G whenever possible:


• It selects a source node s and follows a path from s as long as 
possible, by adding only non-visited nodes


• It repeats the same process on each of the branches deviating 
from the path of the previous step


• If some nodes remain non-visited, a node among them is 
selected as new source and the whole procedure is repeated 
until every node has been visited



Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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t=5Back edge: links a node with one of its ancestors in the DF forest



Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.


Again, white nodes have not been visited yet; gray nodes have 
been discovered but have undiscovered neighbours; black 
nodes have been discovered and their neighbours too.


DFS assigns two timestamps to each node v: v.d records 
when v becomes gray, v.f records when it becomes black.
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Depth-First Search
DFS produces a depth-first (DF) forest (a different tree for each 
source). Even for the same sources, this forest is not unique: it 
depends from the order in which the edges outgoing from each 
node are traversed. All the results are essentially equivalent.

The red edges are tree edges; the light blue edges are back 
edges, linking a node with one of its ancestors in the DF forest.

 

You can verify yourself that the result below is another possible 
outcome of DFS with the same two sources.
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DFS: Pseudocode
DFS(G) - G is represented by the adjacency lists Adj[ ] of its vertices


for each u  V 
u.color white; 

t 0;  
for each u  V 

if u.color = white 
DFS_visit(G,u)


DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v  Adj[u]


if  v.color = white 
DFS_visit(G,u); 


v.color black; 

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Initialisation

Start the search from

a new source

Visit the graph recursively



DFS: Complexity
DFS(G) - G is represented by the adjacency lists Adj[ ] of its vertices


for each u  V 
u.color white; 

t 0;  
for each u  V 

if u.color = white 
DFS_visit(G,u)


DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v  Adj[u]


if  v.color = white 
DFS_visit(G,u); 


v.color black; 

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Start the search from

a new source: this only

happens when a vertex 

is white  O(|V|) calls⟹

Visit the graph recursively:

this procedure is only called


on white vertices, which

are immediately painted gray 


 O =O(|E|)⟹ (∑
u∈V

|Adj[u] |)

Initialisation: O(|V|)



DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] =  and neither u is a descendant of v nor v 

is a descendant of u 
• [u.d,u.f] [v.d,v.f] and u is a descendant of v 
• [v.d,v.f] [u.d,u.f] and v is a descendant of u 

∈
∩ ∅

⊊
⊊
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DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Parenthesis Theorem. For any two nodes u,v V, either:

• [3,8] [9,14] =  and neither u is a descendant of v nor v is a 

descendant of u 
• [u.d,u.f] [v.d,v.f] and u is a descendant of v 
• [v.d,v.f] [u.d,u.f] and v is a descendant of u 

∈
∩ ∅

⊊
⊊
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DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] =  and neither u is a descendant of v nor v 

is a descendant of u 
• [10,13] [9,14] and u is a descendant of v 
• [v.d,v.f] [u.d,u.f] and v is a descendant of u 

∈
∩ ∅

⊊
⊊

s

3/8

4/5

6/7 17/18

uv

1/16

9/14 10/13

11/122/15



DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] =  and neither u is a descendant of v nor v 

is a descendant of u 
• [u.d,u.f] [v.d,v.f] and u is a descendant of v 
• [v.d,v.f] [u.d,u.f] and v is a descendant of u 

White-Path Theorem. For any two nodes u,v V, u is a 
descendant of v  at time v.d-1 there exists a path of white 
nodes from v to u.

∈
∩ ∅

⊊
⊊

∈
⟺



DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the 
size of the adjacency-list representation of G)


Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] =  and neither u is a descendant of v nor v 

is a descendant of u 
• [u.d,u.f] [v.d,v.f] and u is a descendant of v 
• [v.d,v.f] [u.d,u.f] and v is a descendant of u 

White-Path Theorem. For any two nodes u,v V, u is a 
descendant of v  at time v.d-1 there exists a path of white 
nodes from v to u.


Observation 5. In DFS, when we explore an edge (u,v), this is a 
tree edge if v is white; it is a back edge if v is gray.

∈
∩ ∅

⊊
⊊

∈
⟺



DFS: Exercises
Observation. The parenthesis theorem tells us that the intervals 
determined by the discovery and finishing time of every vertex 
are either nested or disjoint. If we represent the discovery of a 
vertex u with a left parenthesis “(u” and its finishing with a right 
parenthesis “u)”, then the sequence of discoveries and 
finishings makes an expression whose parentheses are properly 
nested. Inspect the graph below and its expression:


Exercise 2. Can you find the right parentheses expression for 
the examples of DFS we have seen?

2/7

3/4

5/6

1/8

uv

x

y
Expression: (u (v (y y) (x x) v) u)

Time: 1  2  3  4  5  6  7  8



DFS: Exercises
Exercise 3. Can you rewrite the pseudocode for DFS using a 
stack to avoid recursion?


Exercise 4. DFS can be used to identify the connected 
components of a graph. Can you modify the pseudocode so 
that it assigns to every vertex v a label v.cc between 1 and k, 
where k is the number of connected components, such that 
v.cc = u.cc if and only if u and v are in the same connected 
component?




An application: Topological Sort
Important property of directed acyclic graphs (DAGs): they 
admit a topological sort. 


A topological sort of a graph is an ordering of its vertices such 
that if the graph has an edge (u,v) then u comes before v in the 
ordering.


It is useful, for examples, in cases where DAGs indicate 
precedences among events.



An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.



An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.
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TopologicalSort(G)

DFS(G);


 sorted w.r.t finishing time

TopOrder empty_stack;

for  

TopOrder.push( );

return TopOrder;

Ṽ[1,…, |V | ] ← V
←

i = 1… |V |
Ṽ[i]



An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.
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1/8

TopologicalSort(G)

DFS(G);


 sorted w.r.t finishing time

TopOrder empty_stack;

for  

TopOrder.push( );

return TopOrder;

Ṽ[1,…, |V | ] ← V
←

i = 1… |V |
Ṽ[i]
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An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

TopologicalSort(G)

DFS(G);


 sorted w.r.t finishing time

TopOrder empty_stack;

for  

TopOrder.push( );

return TopOrder;

Ṽ[1,…, |V | ] ← V
←

i = 1… |V |
Ṽ[i]
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Correctness of Topological Sort
Lemma 6. A directed graph G is acyclic DFS(G) yields no 
back edges


Theorem 7. Algorithm TopologicalSort is correct. 

Proof (sketch). It suffices to show that for two distinct vertices 
u,v V, if G contains an edge from u to v, then v.f < u.f.              
It is easy to prove it by using Lemma 6 and Observation 5: 
consider an edge (u,v) explored by DFS(G) and consider all 
possible cases for the color of v.


⟺

∈


