
Graphs
Giulia Bernardini

giulia.bernardini@units.it

Fundamentals of algorithms

a.y. 2021/2022

mailto:giulia.bernardini@units.it

What is a graph?
A graph (V,E) is a collection of vertices and edges:

What is a graph?
A graph (V,E) is a collection of vertices and edges:

V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)

a

b

c

d e f g

A graph (V,E) is a collection of vertices and edges:

V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)

E={ {a,b},{b,d},{d,d},{f,g} } is the set of edges

What is a graph?

a

b

c

d e f g

What are graphs for?
In general, they represent relations between objects:

route systems

computer networks

dynamic systems

information flows

infectious diseases spread

dependency relations

…

Undirected graphs have undirected edges: {a,b}={b,a}

V={a,b,c,d,e,f,g} is the set of vertices

E={ {a,b},{b,d},{d,d},{f,g} } is the set of undirected edges

Types of graphs

a

b

c

d e f g

Directed graphs have directed edges (aka arcs): (a,b) (b,a)

V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)

E={ (a,b),(b,d),(d,d),(f,g) } is the set of directed edges (arcs).

≠

Types of graphs

a

b

c

d e f g

Directed graphs have directed edges (aka arcs): (a,b) (b,a)

V={a,b,c,d,e,f,g} is the set of vertices (aka nodes)

E={ (a,b),(b,d),(d,d),(f,g) } is the set of directed edges (arcs).
The head of an arc (a,b) is a, its tail is b.

≠

Types of graphs

a

b

c

d e f g

A walk of length n in G=(V,E) is a sequence of n edges e1e2…en
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1;
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that
(vi,vi+1) E for all i=1…n

(b,d)(d,d)(d,c)(c,b)(b,a) b d d c b a is a walk of length 5 from b to a

∈

↔

a

b

c

d e f g

Walks, paths, cycles

A walk of length n in G=(V,E) is a sequence of n edges e1e2…en
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1;
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that
(vi,vi+1) E for all i=1…n

A path is a walk that does not repeat any vertex

(b,d)(d,c)(c,a) b d c a is a path of length 3 from b to a

∈

↔

a

b

c

d e f g

Walks, paths, cycles

Walks, paths, cycles
A walk of length n in G=(V,E) is a sequence of n edges e1e2…en
such that the head of ei is equal to the tail of ei+1, for all i=1…n-1;
equivalently, it is a sequence of n+1 vertices v1v2…vn+1 such that
(vi,vi+1) E for all i=1…n

A path is a walk that does not repeat any vertex. A cycle is a
closed path, s.t. the first and the last vertices are the same.

(b,d)(d,c)(c,b) b d c b is a cycle of length 3

∈

↔

a

b

c

d e f g

More definitions
An undirected graph G is connected if there is a path between
any two vertices

A connected component of G is a maximal connected
subgraph of G

Two vertices are adjacent if there is an edge linking the two

The undirected graph below is not connected. It rather has
three connected components: C1={a,b,c,d}; C2={e}; C3={f,g}

a

b

c

d e f g

More definitions
A directed graph is strongly connected if there is a path between
any two vertices. It is weakly connected if the underlying
undirected graph is connected

Two vertices are in the same weakly connected component if
they are connected by a path in the underlying unconnected
graph

The directed graph below is not even weakly connected. It has
three weakly connected components: C1={a,b,c,d}; C2={e};
C3={f,g}

a

b

c

d e f g

More definitions
A directed graph is strongly connected if there is a path between
any two vertices. It is weakly connected if the underlying
undirected graph is connected

Two vertices are in the same weakly connected component if
they are connected by a path in the underlying unconnected
graph

The directed graph below is weakly connected but not strongly
connected: for example there is no path from a to b

a

b

c

d

More definitions
A directed graph is strongly connected if there is a path between
any two vertices. It is weakly connected if the underlying
undirected graph is connected

Two vertices are in the same weakly connected component if
they are connected by a path in the underlying unconnected
graph

Is the graph below strongly connected?

f g

More definitions
A directed graph is strongly connected if there is a path between
any two vertices. It is weakly connected if the underlying
undirected graph is connected

Two vertices are in the same weakly connected component if
they are connected by a path in the underlying unconnected
graph

Is the graph below strongly connected?

NO: there is no path from g to f

f g

More definitions
A directed graph is strongly connected if there is a path between
any two vertices. It is weakly connected if the underlying
undirected graph is connected

Two vertices are in the same weakly connected component if
they are connected by a path in the underlying unconnected
graph

The directed graph below is strongly connected

a

b

c

d

More definitions
An (un)directed graph is acyclic if it does not contain any cycle

The directed graph below is not acyclic: it contains cycles (d,d)
and (b,d)(d,c)(c,b)

a

b

c

d e f g

More definitions
An (un)directed graph is acyclic if it does not contain any cycle

The directed graph below is acyclic: it does not contain any
directed cycle

a

b

c

d e f g

More definitions
An (un)directed graph is acyclic if it does not contain any cycle

The undirected graph below is not acyclic: it contains an
undirected cycle {b,d}{d,c}{c,a}{a,b}

a

b

c

d e f g

More definitions
An (un)directed graph is acyclic if it does not contain any cycle

Directed Acyclic Graphs are also known as DAGs and enjoy
several properties. We will see one of them later.

A graph G=(V,E) is sparse if |E|=O(|V|); is dense if |E|=O(|V|2)

The graph below is a sparse DAG

a

b

c

d e f g

More definitions
An (un)directed graph is acyclic if it does not contain any cycle

Directed Acyclic Graphs are also known as DAGs and enjoy
several properties. We will see one of them later.

A graph G=(V,E) is sparse if |E|=O(|V|); is dense if |E|=O(|V|2)

The graph below is dense

a

b

c

d

Graph representations
Reference: Chapter “Elementary Graph

Algorithms” of: Cormen, T. H., Leiserson, C. E.,
Rivest, R. L., & Stein, C. Introduction to

algorithms. (Chapter 22 of the third edition)

Representing graphs: adjacency lists
Adjacency lists are mostly used for sparse graphs

There is a linked list for each vertex v, containing all vertices
adjacent to v

a

b

c

d

a

b

c

d d

b

a

c

d

Representing graphs: adjacency lists
Adjacency lists are mostly used for sparse graphs

There is a linked list for each vertex v, containing all vertices
adjacent to v

a

b

c

d

a

b

c

d d

b

a

c

d

Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)

An adjacency matrix A has a row and a column for each vertex.
A[i,j]=1 if (i,j) E; A[i,j]=0 otherwise∈

a

b

c

d

0

1

0

0

a

b

c

d

0

0

1

0

0

0

0

1

0

1

0

1

a b c d

Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)

An adjacency matrix A has a row and a column for each vertex.
A[i,j]=1 if (i,j) E; A[i,j]=0 otherwise∈

a

b

c

d

0

0

0

a

b

c

d

0

0

1

0

0

0

0

1

0

0

1

1

a b c d

1 Outgoing
from b

Representing graphs: adjacency matrix
Adjacency matrices are mostly used for dense graphs G=(V,E)

An adjacency matrix A has a row and a column for each vertex.
A[i,j]=1 if (i,j) E; A[i,j]=0 otherwise∈

a

b

c

d

0

0

0

a

b

c

d

0

0

0

0

0

0

1

0

0

1

1

a b c d

1 Outgoing
from b

Incoming
to b

1

Algorithms on Graphs

Reference: Chapter “Elementary Graph
Algorithms” of: Cormen, T. H., Leiserson, C. E.,

Rivest, R. L., & Stein, C. Introduction to
algorithms. (Chapter 22 of the third edition)

Graph traversals
The most fundamental task on a graph is to traverse it.

Graph traversal = visiting each vertex at least once

Two main ways of traversing both directed and undirected graphs:

1.Breadth-First Search (BFS)

2. Depth-First Search (DFS)

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet;

b

C

d e

f

g

f

f fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

b

C

d e

f

g

f

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours;

b

C

d 1

f

g

f

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

d 1

f

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

f

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

2

g

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

b

C

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

C

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 fs

Breadth-First Search
The visiting order is related to the distance from a source node:
the closer a node to the source, the sooner it will be visited

BFS produces a breadth-first tree: the tree consisting of the
shortest paths from the source to any reachable node

White nodes have not been discovered yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

3

3

2 1

2

2

1

0 f Not reachable from ss

BFS: Pseudocode
BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}
u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);

while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation

Visit of the source

Visit of the other vertices

BFS: Complexity
BFS(G,s) - G is represented by the adjacency lists Adj[] of its vertices

for each u V {s}
u.color white;
u.distance ;

s.color gray;
s.distance 0;
Q ;
enqueue(Q,s);

while Q

u dequeue(Q);

for each v Adj[u]

if v.color = white

v.color gray;
v.distance u.distance + 1;
enqueue(Q,v);

u.color black;

⋅
∈ ∖
←

←∞
←

←
←∅

≠ ∅
←

∈

←
←

←

Initialisation: O(|V|)

Visit of the source: O(1)

Visit of the other vertices:

each iteration of the for loop
enqueues v Adj[u] only if

it is white, and it
immediately turns its color
to gray each vertex is
inserted in Q at most once.

Cost of the while loop:

O =O(|E|)

∈

⟹

(∑
u∈V

|Adj[u] |)

O(1) O(|Adj[u]|)

BFS: Properties
Lemma 1. The time complexity of BFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Lemma 2. Let Q=[v1,…,vn] be the queue at any iteration of BFS.
Then vi.distance vi+1.distance and vn.distance v1.distance+1,
for all i=1,…,n-1

Lemma 2 tells us that, at any iteration, if the head node of Q is
at distance d from s, Q only contains nodes at distance d or
d+1 from s; possible nodes at distance d+2 will be only
enqueued after all nodes at distance d have been dequeued.

Lemma 3. Let d(v,s) be the distance between v and s, for any
v V. Then:

(i) v.distance v is reachable from s

(ii) if v.distance v.distance = d(v,s)

≤ ≤

∈
≠ ∞ ⟺

≠ ∞ ⟹

BFS: Exercise
We said that BFS can produce a breadth-first tree (the tree
consisting of the shortest paths from the source to any reachable
node). More precisely, a breadth-first tree is defined as follows:

Definition 1. The root of the tree is the source s of BFS; its nodes are
the nodes of G reachable from s; its edges are the edges of G
traversed during BFS; the unique path from the root to a node v is
the shortest path from s to v in G.

Exercise 1. Our pseudocode computes all the information needed to
construct the breadth-first tree. Can you complement it so that it
explicitly construct and output such tree?

Hint: it suffices to store the correct predecessor (ancestor in the tree)
for each node. The BF tree consists of the red edges in our example.

Depth-First Search
DFS searches “deeper” in G whenever possible:

• It selects a source node s and follows a path from s as long as
possible, by adding only non-visited nodes

• It repeats the same process on each of the branches deviating
from the path of the previous step

• If some nodes remain non-visited, a node among them is
selected as new source and the whole procedure is repeated
until every node has been visited

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d e

f

g

f

fs

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d e

f

g

f

fs1/?

t=1

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

d

f

g

f

fs1/?

2/?

t=2

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

b

C

f

g

f

fs1/?

2/?3/?

t=3

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

C

f

g

f

fs1/?

2/?3/?

4/?

t=4

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

C

f

g

f

fs1/?

2/?3/?

4/5

t=5Back edge: links a node with one of its ancestors in the DF forest

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/?

4/5

6/?

t=6

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/?

4/5

6/7

t=7

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

f

fs1/?

2/?3/8

4/5

6/7

t=8

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

f

g

fs1/?

3/8

4/5

6/7

t=9

9/?

2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

g

fs1/?

3/8

4/5

6/7

t=10

9/? 10/?

2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=11

9/? 10/?

11/?2/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=12

9/? 10/?

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=13

9/? 10/13

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=14

9/14 10/13

11/122/?

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/?

3/8

4/5

6/7

t=15

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

fs1/16

3/8

4/5

6/7

t=16

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

s

3/8

4/5

6/7

t=17

17/?1/16

9/14 10/13

11/122/15

Depth-First Search
Much like BFS, DFS colors the nodes of G during the visit.

Again, white nodes have not been visited yet; gray nodes have
been discovered but have undiscovered neighbours; black
nodes have been discovered and their neighbours too.

DFS assigns two timestamps to each node v: v.d records
when v becomes gray, v.f records when it becomes black.

s

3/8

4/5

6/7

t=18

17/181/16

9/14 10/13

11/122/15

Depth-First Search
DFS produces a depth-first (DF) forest (a different tree for each
source). Even for the same sources, this forest is not unique: it
depends from the order in which the edges outgoing from each
node are traversed. All the results are essentially equivalent.

The red edges are tree edges; the light blue edges are back
edges, linking a node with one of its ancestors in the DF forest.

You can verify yourself that the result below is another possible
outcome of DFS with the same two sources.

1/16

7/148/13

11/12

9/10

2/15 5/6

3/4

17/18

DFS: Pseudocode
DFS(G) - G is represented by the adjacency lists Adj[] of its vertices

for each u V
u.color white;

t 0;
for each u V

if u.color = white

DFS_visit(G,u)

DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v Adj[u]

if v.color = white

DFS_visit(G,u);

v.color black;

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Initialisation

Start the search from

a new source

Visit the graph recursively

DFS: Complexity
DFS(G) - G is represented by the adjacency lists Adj[] of its vertices

for each u V
u.color white;

t 0;
for each u V

if u.color = white

DFS_visit(G,u)

DFS_visit(G,u)

t t+1;

u.d t;

u.color gray;

for each v Adj[u]

if v.color = white

DFS_visit(G,u);

v.color black;

t t+1;

u.f t;

⋅
∈

←
←

∈

←
←

←
∈

←
←

←

Start the search from

a new source: this only

happens when a vertex

is white O(|V|) calls⟹

Visit the graph recursively:

this procedure is only called

on white vertices, which

are immediately painted gray

 O =O(|E|)⟹ (∑
u∈V

|Adj[u] |)

Initialisation: O(|V|)

DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] = and neither u is a descendant of v nor v

is a descendant of u
• [u.d,u.f] [v.d,v.f] and u is a descendant of v
• [v.d,v.f] [u.d,u.f] and v is a descendant of u

∈
∩ ∅

⊊
⊊

s

3/8

4/5

6/7 17/181/16

9/14 10/13

11/122/15

DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Parenthesis Theorem. For any two nodes u,v V, either:

• [3,8] [9,14] = and neither u is a descendant of v nor v is a

descendant of u
• [u.d,u.f] [v.d,v.f] and u is a descendant of v
• [v.d,v.f] [u.d,u.f] and v is a descendant of u

∈
∩ ∅

⊊
⊊

s

3/8

4/5

6/7 17/18

u

v

1/16

9/14 10/13

11/122/15

DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] = and neither u is a descendant of v nor v

is a descendant of u
• [10,13] [9,14] and u is a descendant of v
• [v.d,v.f] [u.d,u.f] and v is a descendant of u

∈
∩ ∅

⊊
⊊

s

3/8

4/5

6/7 17/18

uv

1/16

9/14 10/13

11/122/15

DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] = and neither u is a descendant of v nor v

is a descendant of u
• [u.d,u.f] [v.d,v.f] and u is a descendant of v
• [v.d,v.f] [u.d,u.f] and v is a descendant of u

White-Path Theorem. For any two nodes u,v V, u is a
descendant of v at time v.d-1 there exists a path of white
nodes from v to u.

∈
∩ ∅

⊊
⊊

∈
⟺

DFS: Properties
Lemma 4. The time complexity of DFS is O(|V|+|E|) (linear in the
size of the adjacency-list representation of G)

Parenthesis Theorem. For any two nodes u,v V, either:

• [u.d,u.f] [v.d,v.f] = and neither u is a descendant of v nor v

is a descendant of u
• [u.d,u.f] [v.d,v.f] and u is a descendant of v
• [v.d,v.f] [u.d,u.f] and v is a descendant of u

White-Path Theorem. For any two nodes u,v V, u is a
descendant of v at time v.d-1 there exists a path of white
nodes from v to u.

Observation 5. In DFS, when we explore an edge (u,v), this is a
tree edge if v is white; it is a back edge if v is gray.

∈
∩ ∅

⊊
⊊

∈
⟺

DFS: Exercises
Observation. The parenthesis theorem tells us that the intervals
determined by the discovery and finishing time of every vertex
are either nested or disjoint. If we represent the discovery of a
vertex u with a left parenthesis “(u” and its finishing with a right
parenthesis “u)”, then the sequence of discoveries and
finishings makes an expression whose parentheses are properly
nested. Inspect the graph below and its expression:

Exercise 2. Can you find the right parentheses expression for
the examples of DFS we have seen?

2/7

3/4

5/6

1/8

uv

x

y
Expression: (u (v (y y) (x x) v) u)

Time: 1 2 3 4 5 6 7 8

DFS: Exercises
Exercise 3. Can you rewrite the pseudocode for DFS using a
stack to avoid recursion?

Exercise 4. DFS can be used to identify the connected
components of a graph. Can you modify the pseudocode so
that it assigns to every vertex v a label v.cc between 1 and k,
where k is the number of connected components, such that
v.cc = u.cc if and only if u and v are in the same connected
component?

An application: Topological Sort
Important property of directed acyclic graphs (DAGs): they
admit a topological sort.

A topological sort of a graph is an ordering of its vertices such
that if the graph has an edge (u,v) then u comes before v in the
ordering.

It is useful, for examples, in cases where DAGs indicate
precedences among events.

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

1/8

2/5

3/4

6/7

9/10

13/14

17/18

12/15

11/16

TopologicalSort(G)

DFS(G);

 sorted w.r.t finishing time

TopOrder empty_stack;

for

TopOrder.push();

return TopOrder;

Ṽ[1,…, |V |] ← V
←

i = 1… |V |
Ṽ[i]

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

1/8

2/5

3/4

6/7

9/10

13/14

17/18

12/15

11/16

3/42/56/7

9/10

13/1412/1511/1617/18

1/8

TopologicalSort(G)

DFS(G);

 sorted w.r.t finishing time

TopOrder empty_stack;

for

TopOrder.push();

return TopOrder;

Ṽ[1,…, |V |] ← V
←

i = 1… |V |
Ṽ[i]

2/3

An application: Topological Sort

An edge (u,v) indicates that item u must be worn before item v.

TopologicalSort(G)

DFS(G);

 sorted w.r.t finishing time

TopOrder empty_stack;

for

TopOrder.push();

return TopOrder;

Ṽ[1,…, |V |] ← V
←

i = 1… |V |
Ṽ[i]

15/18

16/17

6/7

5/8

11/12

2/3

13/14

4/9

1/10

6/716/17 5/8

11/12

4/91/1013/14

15/18

Correctness of Topological Sort
Lemma 6. A directed graph G is acyclic DFS(G) yields no
back edges

Theorem 7. Algorithm TopologicalSort is correct.

Proof (sketch). It suffices to show that for two distinct vertices
u,v V, if G contains an edge from u to v, then v.f < u.f.
It is easy to prove it by using Lemma 6 and Observation 5:
consider an edge (u,v) explored by DFS(G) and consider all
possible cases for the color of v.

⟺

∈

