
ì

FLUID DYNAMICS
Master Degree Programme in Physics - UNITS
Physics of the Earth and of the Environment

FABIO ROMANELLI
Department of Mathematics & Geosciences 

University of Trieste
romanel@units.it

https://moodle2.units.it/course/view.php?id=5449

Gravity (and Capillary)
waves

mailto:romanel@dst.units.it
mailto:romanel@dst.units.it
http://moodle2.units.it/course/view.php?id=2729
http://moodle2.units.it/course/view.php?id=2729


ì

Incompressible fluids
In many cases of the flow of fluids their density may be 

supposed invariable, i.e. constant throughout the volume 
and its motion and we speak of incompressible flow:

ρ = constant

Conservation of matter

The conditions under which the fluid can be considered incompressible 
are:

Euler equation

i.e.       

i.e.
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i.e. the time taken by a sound signal to traverse distances must be small 
compared with that during which flow changes appreciably

∇⋅V = 0

Δρ = ΔP
c2

≈ 1
c2

ρ ∂V
∂ t

λ
⎛
⎝⎜

⎞
⎠⎟
≈ 1
c2

ρV
τ
λ

⎛
⎝⎜

⎞
⎠⎟

∂ρ
∂ t

<< ρdiv(V )⇒ Δρ
τ

<< ρV
λ

V << c

∂V
∂ t

+ζ ×V = −∇ 1
2
V 2 + P

ρ
+ gz

⎛
⎝⎜

⎞
⎠⎟



ì

Incompressible & Irrotational flow

From Euler equations we have that only viscosity can generate vorticity 
if none exists initially.  And if the flow is irrotational rot(V)=0, and thus
V=grad(𝝓) and the flow is called potential.

Conservation of matter div (V)=0

Euler equation rot (V)=0

and we can separate the variables...

∇2(𝜙)=0

the potential has to satisfy Laplace equation:

and if it is also incompressible:
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Separation of variables + BC at bottom

Let us consider a velocity potential propagating along the x-axis and 
uniform in the y- direction: all quantities are independent of y. 

We shall seek a solution which is a simple periodic function of time 
and of the coordinate x, i.e. we put:

and if the liquid container has depth h, 
there the vertical flow has to be 0:

φ = F(z)cos(kx −ωt)
d 2F
dz2

− k 2F = 0 F(z) = Aekz + Be-kz⎡⎣ ⎤⎦then

vz =
dF
dz z=−h

= 0  ⇒   B = e-2kh A
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BC at bottom

and this leads to:

Thus, at the bottom (z=-h) the cosh(0)=1, while at top it is 
cosh(kh), thus F grows as z goes from bottom to top values. 

If the container is infinitely deep (h goes to infinity) we 
have that B has to be 0 and the potential as well is going to 0: 

F(z) = 2Ae-kh cosh k(z + h)⎡⎣ ⎤⎦

F(z) = Aekz
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Gravity waves

The free surface of a liquid in equilibrium in a 
gravitational field is a plane. 

If, under the action of some external perturbation, the 
surface is moved from its equilibrium position at some 
point, motion will occur in the liquid. 

This motion will be propagated over the whole surface 
in the form of waves, which are called gravity waves, 
since they are due to the action of the gravitational field. 

We shall here consider gravity waves in which the 
velocity of the moving fluid particles is so small that we 
may neglect the term (V•grad)V in comparison with ∂/∂t 
in Euler's equation. 
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Gravity waves
The physical significance of this is easily seen:

During a time interval of the order of the period, τ, of the oscillations of 
the fluid particles in the wave, these particles travel a distance of the order 
of the amplitude, a, of the wave. Their velocity V is therefore of the order 
of a/𝜏. It varies noticeably over time intervals of the order of τ and 

distances of the order of 𝜆 in the direction of propagation (where 𝜆 is the 
wavelength). Hence the time derivative of the velocity is of the order of    
V/𝜏, and the space derivatives are of the order of V/𝜆. 

Thus the 
condition 

is equivalent to 

i.e. the amplitude of the oscillations in the wave must be small 
compared with the wavelength

(V ⋅ grad)V << ∂V
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Small amplitude gravity waves

For waves whose amplitude of motion is smaller than the 
wavelength, all significant terms in the fluid equation  are gradients, and 
the Euler equation can be expressed as:

thus, in space:

and assuming a gravitational potential gz, we obtain:

grad(∂φ
∂t

+ P
ρ
+Φ) = 0

∂φ
∂t

+ P
ρ
+Φ = constant

P = −ρgz − ρ ∂φ
∂t



ì

Let us denote by f the z coordinate of a point on the surface;               
f is a function of x, y and t. 

In equilibrium f=0, so that f gives the vertical displacement of the 
surface in its oscillations. 

Let a constant pressure p0 act on the surface. Then we have at the 
surface:

The constant p0 can be eliminated by redefining the potential, 
adding to it a quantity independent of the coordinates. We then 
obtain the condition at the surface as: 

Gravity waves: BC at the top

p0 = −ρgf − ρ ∂φ
∂ t

gf + ∂φ
∂ t z= f

= 0
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Since the amplitude of the wave oscillations is small, the 
displacement f is small. Hence we can suppose, to the same degree 
of approximation, that the vertical component of the velocity of 
points on the surface is simply the time derivative of f: 

Since the oscillations are small, we can take the value of the 
derivatives at z=0 instead of z=f. Thus we have finally the following 
system of equations to determine the motion in a gravitational field: 

incompressibility

B.C.

Gravity waves: BC at the top
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Gravity waves: dispersion

the boundary at the top gives the dispersion relation for  
incompressible, irrotational, small amplitude “gravity” waves:

Deep water 
(kh goes to infinity)

F(z) = 2Ae-kh cosh k(z + h)⎡⎣ ⎤⎦From the expression

ω 2 = kg tanh(kh)⎡⎣ ⎤⎦
Shallow water 

(kh goes to zero)

ω 2 = k 2ghω 2 = kg

c = gh

u = ∂ω
∂k

= c = gh

c = g
k
= gλ

2π

u = ∂ω
∂ k

= 1
2
g
k
= 1
2
gλ
2π

= 1
2
c
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Gravity waves eigenvalues & eigenfunctions
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under the ocean with a fault orientation favorable
for tsunami excitation. Thus, tsunamis that in-
duce widespread damage number about one or
two per decade. Although one’s concepts might
be cast by rare “killer tsunamis”, many more be-
nign ones get lost in the shuffle. Today, ocean
bottom pressure sensors can detect a tsunami of a
few centimeters height even in the open sea. Be-
cause numerous, moderate (≈M6.5) earthquakes
can bear waves of this size, “baby” tsunamis oc-
cur several times per year. They pass by gener-
ally unnoticed, except by scientists. Perhaps
while swimming in the surf, the reader has al-
ready been in a tsunami! Whether killer waves or
ripples, tsunamis span three phases: generation,
propagation and shoaling. This article touches
gently on each.

II. Characteristics of Tsunamis

A. Tsunami Velocity, Wavelength, and Period
This article reviews classical tsunami theory.
Classical theory envisions a rigid seafloor over-
lain by an incompressible, homogeneous, and
non-viscous ocean subjected to a constant gravi-
tational field. Classical tsunami theory has been
investigated widely, and most of its predictions
change only slightly under relaxation of these
assumptions. This article draws upon linear the-
ory that also presumes that the ratio of wave am-
plitude to wavelength is much less than one. By
and large, linearity is violated only during the
final stage of wave breaking and perhaps, under
extreme nucleation conditions.

In classical theory, the phase c(ω), and group
u(ω) velocity of surface gravity waves on a flat
ocean of uniform depth h are

c( ) =
gh tanh[k( )h]

k( )h
    (1)

and

u( ) = c( )
1
2

+
k( )h

sinh[2k( )h]
 
  

 
     (2)

Here, g is the acceleration of gravity (9.8 m/s2)
and k(ω) is the wavenumber associated with a
sea wave of frequency ω. Wavenumber connects
to wavelength λ(ω) as λ(ω)=2π/k(ω). Wave-
number also satisfies the relation

2 = gk( )tanh[k( )h]    (3)

Figure 1. (top panel) Phase velocity c(ω) (solid lines) and
group velocity u(ω) (dashed lines) of tsunami waves on a
flat earth covered by oceans of 1, 2, 4 and 6 km depth.
(bottom panel) Wavelength associated with each wave
period. The ’tsunami window’ is marked.
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lipses can be thought of as tracing the path of a
water particle as a wave of frequency ω passes.
At 1500s period (left, Fig. 2), the tsunami has a
wavelength of λ=297km and it acts like a long
wave. The vertical displacement peaks at the
ocean surface and drops to zero at the seafloor.
The horizontal displacement is constant through
the ocean column and exceeds the vertical com-
ponent by more than a factor of ten. Every meter
of visible vertical motion in a tsunami of this

frequency involves ≈10m of “invisible” hori-
zontal motion. Because the eigenfunctions of
long waves reach to the seafloor, the velocity of
long waves are sensitive to ocean depth (see top
left-hand side of Fig. 1). As the wave period
slips to 150s (middle Fig. 2), λ decreases to
26km -- a length comparable to the ocean depth.
Long wave characteristics begin to break down,
and horizontal and vertical motions more closely
agree in amplitude. At 50s period (right, Fig. 2)
the waves completely transition to deep water
behavior. Water particles move in circles that
decay exponentially from the surface. The eigen-

functions of short waves do not reach to the sea-
floor, so the velocities of short waves are inde-
pendent of ocean depth (see right hand side of
Fig. 1, top). The failure of short waves (λ<<h) to
“feel” the seafloor also means that they can not
be excited by deformations of it. This is the
physical basis for the short wavelength bound on
the tsunami window that I mentioned above.

III. Excitation of Tsunamis

Suppose that the seafloor at points r0 uplifts in-
stantaneously by an amount uz

bot (r0) at time τ(r0).
Under classical tsunami theory in a uniform
ocean of depth h, this sea bottom disturbance
produces surface tsunami waveforms (vertical
component) at observation point r=x ˆ x +y ˆ y  and
time t of

uz
surf (r,t) = Re dk ei [k •r− ( k ) t ]

4 2 cosh(kh)
F(k)

k
∫

with

F(k) = dr0 uz
bot (r0 )e

r0

∫
−i[ k •r0 − (k) ( r0 )]

   (5a,b)

with k=|k|, and 2(k) = gktanh(kh). The inte-
grals in (5) cover all wavenumber space and lo-
cations r0 where the seafloor disturbance
uz

bot (r0)≠0.

Equation (5a) looks scary but it has three identi-
fiable pieces:
    a) The F(k) term is the wavenumber spectrum
of the seafloor uplift. This number relates to the
amplitude, spatial, and temporal distribution of
the uplift. Tsunami trains (5a) are dominated by
wavenumbers in the span where F(k) is greatest.

Figure 2 . Tsunami eigenfunctions in a 4 km deep ocean
at periods 1500, 150 and 50s. Vertical displacements at
the ocean surface has been normalized to 1 m in each
case.
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Gravity waves in deep water

The velocity distribution in the moving liquid is found by simply 
taking the space derivatives the velocity potential: 

We see that the velocity diminishes exponentially as we go into the 
liquid. At any given point in space (i.e. for given x, z) the velocity vector 
rotates uniformly in the xz-plane, its magnitude remaining constant. 

Let us also determine the paths of fluid particles in the wave. We 
temporarily denote by x, z the coordinates of a moving fluid particle 
(and not of a point fixed in space), and by x0, z0 the values of x and z at 
the equilibrium position of the particle. Then Vx = dx/dt, Vz = dz/dt, and 
on the right-hand side  we may approximate by writing x0, z0 in place of 
x, z, since the oscillations are small. 

Vx = −Akekz sin(kx −ωt)   Vz = Ake
kz cos(kx −ωt)
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Gravity waves in deep water
An integration with respect to time then gives:

Thus the fluid particles describe circles about the points (x0, z0) with 
a radius which diminishes exponentially with increasing depth. 

x − x0 = −A k
ω
ekz0 cos(kx0 −ωt)   z − z0 = −A k

ω
ekz0 sin(kx0 −ωt)
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Long Gravity waves

Having considered gravity waves whose length is small 
compared with the depth of the liquid, let us now discuss the 
opposite limiting case of waves whose length is large compared 
with the depth. These are called long waves. 

Let us examine the propagation of long waves in a channel that 
is supposed to be along the x-axis, and of infinite length. The 
cross-section of the channel may have any shape, and may vary 
along its length. We denote the cross-sectional area of the liquid 
in the channel by S = S(x,t). The depth and width of the channel 
are supposed small in comparison with the wavelength. 

We shall here consider longitudinal waves, in which the liquid 
moves along the channel. In such waves the velocity component 
vx along the channel is large compared with the components vy, 
vz. We denote vx by v simply, and omit small terms. 
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Long Gravity waves

From Euler and Continuity equations for a channel with a constant 
cross section S0, and height b, one can obtain: 

This is called a wave equation and corresponds to the propagation of 
waves with a velocity c(u) which is independent of frequency and is :

∂ 2 f
∂ t2

−
gS0
b

∂ 2 f
∂ x2

= 0

c = u =
gS0
b

≈ gh
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Surface tension
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Surface tension

and in the incompressible case...

Molecules have a tendency to be drawn into the interior of a liquid to the greatest 
extent possible, leaving a minimum of surface area. 

Because a sphere has a smaller ratio of surface area to volume than any other 
three-dimensional figure, free-falling liquids tend for form spherical drops.
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Measurement of surface tension

a

b

F

The work done to pull a thin film of fluid has to be equal to the 
increase in energy: Fdx=2σadx
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Capillary waves

When the surface of a liquid is curved, the surface 
tension is acting as a restoring force
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New BC at top
The condition that requires to be modified is the free-surface 

dynamic boundary condition: in the presence of surface tension, the 
gauge pressure on the free surface will be nonzero and will be 
balanced by surface tension. After linearization, the new term, 
dependent of the radius of curvature at the surface, will be:

leading to the new dispersion relation:

that shows that surface tension is more significant for 
large k, i.e. wavelengths smaller than the capillary length (σ/ρg)1/2, 

that is 2-3 mm for water!

ω 2 = kg + k 3σ
ρ

⎛
⎝⎜

⎞
⎠⎟
tanh(kh)

gf + σ
ρ
∂2φ
∂x2

z= f

+ ∂φ
∂t z= f

= 0
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Gravity capillary waves dispersion

neglecting gravity in deep water

C
p

2

K min

g/k

C
p

2

min

K

sk/ρ

sk/ρg/k +

Fig 6-2. Effects of gravity and surface tension on wave speed in deep water

One can check that the kmin corresponds to a minimum of Cp. The Cp min can now be computed

by substituting kmin in the expression for Cp:

C2
p min = 2

√

sg/ρ

In the case of clear air-water interface, s= 0.073 [N/m]. Assuming ρ to be 1000 [kg/m3] and g to

me 9.8 [m/s2], we observe that the minimum wave speed on water is 0.23 [m/s]! If waves are found

to propagate at a lower speed, it would mean that either the water density is different from 1000

[kg/m3] or that the surface is contaminated making s ̸= 0.073 [N/m].

Propagation of Deep-Water Capillary wave

Next, let us consider the case of purely capillary waves on deep water; ie, waves satisfying kh ≤ π

and sk3/ρ >> gk. In this case, the dispersion relation reduces to

σ2 =
sk3

ρ

The wave (phase) speed for the wave is

Cp ≡ σ/k =
√

sk/ρ

while the group speed is

Cg ≡
dσ

dk
=

3

2

√

sk/ρ

In other words, interestingly, the group speed is greater than the phase speed in the case of deep-

water capillary waves. You may recall that in the case of deep-water gravity waves Cg = Cp/2.

32

σ

and the kmin =(ρg/σ)1/2, associated to a wavelength of 1.73 cm for the water, corresponds 
to a minimum for phase velocity (23.2 cm/s).

that shows that there is 
anomalous dispersion

Capillary waves on water have usually wavelengths less than 4mm 
and frequencies higher than 70Hz, thus easily excited by a tuning fork

ω 2 = kg + k 3σ
ρ

⎛
⎝⎜

⎞
⎠⎟
tanh(kh)

ω 2 = k 3σ
ρ

c = σ
ρ
k u = ∂ω

∂ k
= 3
2
c

σ
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Continuity Equation

General differential form: ρ is the density of a quantity q, j is the 
flux of q, σ is the generation of q per unit volume per unit time

In fluid dynamics, the continuity equation states that, in any 
steady state process, the rate at which mass enters a system is 
equal to the rate at which mass leaves the system:

∂ρ
∂ t

+ div(ρV ) = 0

∂ρ
∂ t

+ div( j) =σ

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Steady_state
https://en.wikipedia.org/wiki/Steady_state
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Transport Equation

The convection–diffusion equation is a combination of the 
diffusion and convection (advection) equations, and describes 
physical phenomena where particles, energy, or other physical 
quantities are transferred inside a physical system due to two 
processes: advection and diffusion.

It can be derived in a straightforward way from the continuity 
equation, which states that the rate of change for a scalar 
quantity in a differential control volume is given by flow and 
diffusion into and out of that part of the system along with 
any generation or consumption inside the control volume

∂ρ
∂ t

+ div( j − Dgrad(ρ)) =σ

https://en.wikipedia.org/wiki/Continuity_equation#Differential_form
https://en.wikipedia.org/wiki/Continuity_equation#Differential_form
https://en.wikipedia.org/wiki/Continuity_equation#Differential_form
https://en.wikipedia.org/wiki/Continuity_equation#Differential_form
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Scalar_(physics)
https://en.wikipedia.org/wiki/Differential_(infinitesimal)
https://en.wikipedia.org/wiki/Differential_(infinitesimal)
https://en.wikipedia.org/wiki/Control_volume
https://en.wikipedia.org/wiki/Control_volume
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Continuity and Heat Equation

Conservation of energy says that energy cannot be created or 
destroyed: there is a continuity equation for energy U, is heat per 
unit volume, and its flow:

When heat flows inside a solid, the continuity equation can be 
combined with Fourier's law, where k is thermal diffusivity (W/(m K))

U = ρCpT

∂U
∂ t

+ div(Q) = 0

Q = −k  grad(T )

https://en.wikipedia.org/wiki/Conservation_of_energy
https://en.wikipedia.org/wiki/Conservation_of_energy
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When heat flows inside a solid, the continuity equation can be 
combined with Fourier's law to arrive at the heat equation, 
defining 𝛼 (m2/s) the heat diffusivity:

The equation of heat flow may also have source terms: 
Although energy cannot be created or destroyed, heat can be 
created from other types of energy, for example via friction or 
joule heating:

∂T
∂ t

− k
ρCp

Δ(T ) = ∂T
∂ t

−αΔ(T ) = 0

∂T
∂ t

−αΔ(T ) =σ

Continuity and Heat Equation

https://en.wikipedia.org/wiki/Heat_equation
https://en.wikipedia.org/wiki/Heat_equation
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Continuity and Moment Equation

Other than advecting momentum, the only other way to 
change the momentum in our representative volume is to exert 
forces on it. These forces come in two flavors: stress that acts on 
the surface of the volume (flux of force) and body forces (acting 
as a source of momentum): 

∂ ρV( )
∂ t

+ div(ρVV ) = div(τ )+ grad(ρφ)

or

ρ ∂V
∂ t

+ ρ V i grad( )V = div(τ )+ ρg
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Navier-Stokes & Transport equations

advective  
inertial term

diffusion like 
viscosity term

buoyancy   
gravity term

advective 
term

conductive 
term

Coupled description, necessary for studies of convection 
inside the Earth at long time scales:

ρ ∂V
∂ t

+ ρ V i grad( )V =ηΔV − grad(P)− ρgαT  

∂T
∂ t

=αΔ(T )− div(VT )+ H
Cp

when the mass density difference is caused by 
temperature difference, Rayleigh number (Ra) is, the 
ratio of the time scale for diffusive thermal transport 
to the time scale for convective thermal transport

internal 
heating term

Ra = Δρ  l3g 
η  α


