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Incompressible fluids

@In many cases of the flow of fluids their density may be
supposed invariable, i.e. constant throughout the volume p = constant
and its motion and we speak of incompressible flow:

@ Conservation of matter V. V=0

@Euler equation id | ;XV=—V lVZ | i -8z
ot 2 p

®The conditions under which the fluid can be considered incompressible
are:
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i.e. the time taken by a sound signal to traverse distances must be small
compared with that during which flow changes appreciably



Incompressible & Irrotational flow

®From Euler equations we have that only viscosity can generate vorticity
if none exists initially. And if the flow is irrotational rot(V)=0, and thus

V=grad(¢) and the flow is called potential.

@Euler equation rot (V)=0

and if it is also incompressible:

®Conservation of matter div (V)=0

the potential has to satisfy Laplace equation:

vé(¢)=0

and we can separate the variables...



Separation of variables + BC at bottom

®Let us consider a velocity potential propagating along the x-axis and
uniform in the y- direction: all quantities are independent of y.

®We shall seek a solution which is a simple periodic function of time
and of the coordinate x, i.e. we put:

¢ = F(z)cos(kx — wt)

2
then d kzF:() = F(Z)Z[AekZ-I-Be_kZ]
dz’

and if the liquid container has depth h,
there the vertical flow has to be O:

vzd—F =0 = B=¢e"4

© dz

z=—h



BC at bottom

and this leads to:

F(z)=24e" cosh| k(z+h) |

® Thus, at the bottom (z=-h) the cosh(0)=1, while at top it is
cosh(kh), thus F grows as z goes from bottom to top values.

® If the container is infinitely deep (h goes to infinity) we
have that B has to be 0 and the potential as well is going to O:

F(z)= Aée"



Gravity waves

@®The free surface of a liquid in equilibrium in a
gravitational field is a plane.

@If, under the action of some external perturbation, the
surface is moved from its equilibrium position at some
point, motion will occur in the liquid.

®This motion will be propagated over the whole surface
in the form of waves, which are called gravity waves,
since they are due to the action of the gravitational field.

®We shall here consider gravity waves in which the
velocity of the moving fluid particles is so small that we

may neglect the term (Vegrad)V in comparison with d/0t
in Euler's equation.



Gravity waves

The physical significance of this is easily seen:

®During a time interval of the order of the period, T, of the oscillations of
the fluid particles in the wave, these particles travel a distance of the order
of the amplitude, a, of the wave. Their velocity V is therefore of the order

of a/z. It varies noticeably over time intervals of the order of T and

distances of the order of 4 in the direction of propagation (where A is the

wavelength). Hence the time derivative of the velocity is of the order of
Viz,and the space derivatives are of the order of V/A.

Thus the AV
condition (V ' gmd)V << E

2
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i.e. the amplitude of the oscillations in the wave must be small
compared with the wavelength



Small amplitude gravity waves

®For waves whose amplitude of motion is smaller than the
wavelength, all significant terms in the fluid equation are gradients, and
the Euler equation can be expressed as:

a¢ P

grad ( D) =0
@thus, in space:
8¢ F - ® = constant
o p

@®and assuming a gravitational potential gz, we obtain:

¢

F=pgz- ot



Gravity waves: BC at the top

® Let us denote by f the z coordinate of a point on the surface;
f is a function of x,y and t.

® In equilibrium =0, so that f gives the vertical displacement of the
surface in its oscillations.

® Let a constant pressure po act on the surface.Then we have at the
surface:
P

p():_pgjf_pg

® The constant po can be eliminated by redefining the potential,
adding to it a quantity independent of the coordinates.VVe then
obtain the condition at the surface as:

o+2 =0

ot Z:f




Gravity waves: BC at the top

®Since the amplitude of the wave oscillations is small, the
displacement f is small. Hence we can suppose, to the same degree
of approximation, that the vertical component of the velocity of
points on the surface is simply the time derivative of f:

ol df (156
V.=77 &= B 2
0z i ot \ 8 ot ),
®Since the oscillations are small, we can take the value of the
derivatives at z=0 instead of z=f. Thus we have finally the following

system of equations to determine the motion in a gravitational field:

A¢ — O ®incompressibility
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Gravity waves: dispersion

From the expression F(z)=2A4e™ C()Sh[k(z + h)]

the boundary at the top gives the dispersion relation for
incompressible, irrotational, small amplitude “gravity” waves:

= kg| tanh(kh)

Deep water Shallow water
(kh goes to infinity) (kh goes to zero)
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Gravity waves eigenvalues & eigenfunctions
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Gravity waves in deep water

®The velocity distribution in the moving liquid is found by simply
taking the space derivatives the velocity potential:

V = — Ake" sin(kx — wt) V. = Ake" cos(kx — wt)

®We see that the velocity diminishes exponentially as we go into the
liquid. At any given point in space (i.e. for given X, z) the velocity vector
rotates uniformly in the xz-plane, its magnitude remaining constant.

®Let us also determine the paths of fluid particles in the wave.We
temporarily denote by x, z the coordinates of a moving fluid particle
(and not of a point fixed in space), and by xo, zo the values of x and z at
the equilibrium position of the particle. Then Vy = dx/dt, V; = dz/dt, and
on the right-hand side we may approximate by writing xo, zo in place of
X, Z, since the oscillations are small.



Gravity waves in deep water

@An integration with respect to time then gives:

k kz, k kz, _:
x—xoz—AEe cos(kx, — wt) Z—ZOI—AEQ sin(kx, — @t)

@ Thus the fluid particles describe circles about the points (xo, zo) with
a radius which diminishes exponentially with increasing depth.

b, Aussoll



Long Gravity waves

®Having considered gravity waves whose length is small
compared with the depth of the liquid, let us now discuss the
opposite limiting case of waves whose length is large compared
with the depth. These are called long waves.

®Let us examine the propagation of long waves in a channel that
is supposed to be along the x-axis, and of infinite length. The
cross-section of the channel may have any shape, and may vary
along its length.We denote the cross-sectional area of the liquid
in the channel by S = S(x,t). The depth and width of the channel
are supposed small in comparison with the wavelength.

®We shall here consider longitudinal waves, in which the liquid

moves along the channel. In such waves the velocity component
vx along the channel is large compared with the components vy,
vz.We denote vx by v simply, and omit small terms.



Long Gravity waves

® From Euler and Continuity equations for a channel with a constant
cross section So, and height b, one can obtain:

Jdf g5, df
_ —
ot° b Jx*

@This is called a wave equation and corresponds to the propagation of
waves with a velocity c(u) which is independent of frequency and is :

C‘:M:\gSO z\@

b

wave phase :t1/T= 0.000




Surface tension




Surface tension

Surface Interior

®Molecules have a tendency to be drawn into the interior of a liquid to the greatest
extent possible, leaving a minimum of surface area.

®Because a sphere has a smaller ratio of surface area to volume than any other
three-dimensional figure, free-falling liquids tend for form spherical drops.



Measurement of surface tension

F

®The work done to pull a thin film of fluid has to be equal to the
increase in energy: Fdx=20adx
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Capillary waves
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®  When the surface of a liquid is curved, the surface
tension is acting as a restoring force



New BC at top

®The condition that requires to be modified is the free-surface
dynamic boundary condition: in the presence of surface tension, the
gauge pressure on the free surface will be nonzero and will be
balanced by surface tension. After linearization, the new term,
dependent of the radius of curvature at the surface, will be:

2
gf - 0 9 f | o =0
P 0x — ot | _
leading to the new dispersion relation:
( o)
0> =| kg + k= |tanh(kh)

that shows that surface tension is more significant for

large k, i.e. wavelengths smaller than the capillary length (o/pg)'/2
that is 2-3 mm for water!

A J



Gravity capillary waves dispersion
( o
o’ =| kg + k> — |tanh(kh)
\ P

neglecting gravity in deep water

G 2 4
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that shows that there is | g/k
anomalous dispersion |

> K

and the kmin =(pg/0)'’2, associated to a wavelength of 1.73 cm for the water, corresponds
to a minimum for phase velocity (23.2 cm/s).

® Capillary waves on water have usually wavelengths less than 4mm
and frequencies higher than 70Hz, thus easily excited by a tuning fork



Continuity Equation

® General differential form: p is the density of a quantity q, j is the
flux of g, 0 is the generation of q per unit volume per unit time

@In fluid dynamics, the continuity equation states that, in any
steady state process, the rate at which mass enters a system is
equal to the rate at which mass leaves the system:

i{t’ - div(pV) =0
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Transport Equation

® The convection—diffusion equation is a combination of the

diffusion and convection (ac
physical phenomena where

vection) equations, and describes

particles, energy, or other physical

quantities are transferred inside a physical system due to two
processes: advection and diffusion.

i{; Fdiv( ] —

Dgrad(p))=o0

® It can be derived in a straightforward way from the continuity
equation, which states that the rate of change for a scalar
quantity in a differential control volume is given by flow and
diffusion into and out of that part of the system along with
any generation or consumption inside the control volume
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Continuity and Heat Equation

@®Conservation of energy says that energy cannot be created or
destroyed: there is a continuity equation for energy U, is heat per
unit volume, and its flow:

U=pC T
JU
ot

®When heat flows inside a solid, the continuity equation can be
combined with Fourier's law, where k is thermal diffusivity (W/(m K))

O=—k grad(T)

div(Q)=0


https://en.wikipedia.org/wiki/Conservation_of_energy
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Continuity and Heat Equation

®When heat flows inside a solid, the continuity equation can be
combined with Fourier's law to arrive at the heat equation,

defining @ (m2/s) the heat diffusivity:

o __k A(T):BT oA(T) =0

dt pC, ot

®The equation of heat flow may also have source terms:
Although energy cannot be created or destroyed, heat can be
created from other types of energy, for example via friction or

joule heating:
dT
ot

oA(T)=0
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Continuity and Moment Equation

@®Other than advecting momentum, the only other way to
change the momentum in our representative volume is to exert
forces on it. These forces come in two flavors: stress that acts on

the surface of the volume (flux of force) and body forces (acting
as a source of momentum):

V)
ot

div(pVV) = div(t)+ grad( po)

or

NV
P ot

| p(V-gmd)V =div(T)+ pg



Navier-Stokes & Transport equations

® Coupled description, necessary for studies of convection
inside the Earth at long time scales:

® advective ® diffusion like ® buoyancy
inertial term viscosity term gravity term

d : p(V-gmd)V =NAV — grad(P)— pgoT

ot

Io,

8—T=aA(T)—div(VT) | H

a f C @ internal
® conductive ®advective P heating term
term term
when the mass density difference is caused by 3
temperature difference, Rayleigh number (Ra) is, the Ra — A,O [ g

ratio of the time scale for diffusive thermal transport n o
to the time scale for convective thermal transport



