
A digression on amortised analysis
Giulia Bernardini

giulia.bernardini@units.it

Reference: Part of chapter “Amortized Analysis

” of: Cormen, T. H., Leiserson, C. E., Rivest, R. L., &
Stein, C. Introduction to algorithms. (Chapter 17.1 of the

third edition)

mailto:giulia.bernardini@units.it

Amortised analysis
In an amortised analysis, we average the time required to perform
a sequence of operations over all the operations performed.

With amortised analysis, we can show that the average cost of an
operation over a sequence of operations is small, even though a
single operation within the sequence might be expensive.

Probability is not involved; an amortised analysis guarantees the
average performance of each operation in the worst case.

Amortised analysis via aggregate analysis
In aggregate analysis, we show that for all n, a sequence of n
operations takes worst-case time T(n) in total.

In the worst case, the average cost (or amortised cost) per
operation is therefore T(n)/n.

We describe this technique with an example.

Consider a stack S with the usual operations PUSH(S,x), POP(S),
and an additional operation MPOP(S,k) which pops k objects from
S, or the whole stack if it contains less then k objects.

The cost of MPOP is linear in the number of objects popped, that
is, min{k,|S|}, as it can be implemented by making subsequent
calls to POP(S).

Amortised analysis via aggregate analysis
What is the total cost of a sequence of n calls to PUSH, POP and
MPOP on an initially empty stack S?

The worst-case cost of a MPOP operation in the sequence is O(n),
since the size of S is at most n.

Thus the cost of any operation in the sequence is O(n), and since
there are n of them, the worst-case cost is O(n2).

This analysis considers each operation individually and is not tight.

Amortised analysis via aggregate analysis
Although a single MPOP operation can be expensive, any
sequence of n PUSH, POP, and MPOP operations on an initially
empty stack can cost at most O(n).

The reason is that we can pop an object from the stack only if we
have pushed it before. Since we can push at most n objects, we
cannot pop more than n of them, thus the total cost of POP and
MPOP operations is O(n).

The average cost of an operation in the worst case is O(n)/n=O(1).
Thus all three stack operations have an amortized cost of O(1).

