Astrofisica Nucleare e Subnucleare "MeV" Astrophysics

INTEGRAL

INTEGRAL, the International Gamma-Ray Astrophysics Laboratory Fine spectroscopy (E/dE=500) and fine imaging (angular resolution of 12' FWHM) Energy range 15 keV to 10 MeV

plus simultaneous X-ray (3-35 keV) and optical (550 nm) monitoring capability Two main g-ray instruments: SPI (spectroscopy) and IBIS (imager)

http://integral.esa.int

INTEGRAL

Imager IBIS

Spectrometer SPI

INTEGRAL

On 15 April 2020 a short and strong gamma-ray burst (GRB) was detected by several Gamma-ray satellites, featuring a fast rise time followed by an order of magnitude weaker tail. Shortly before 8:42 UT, GRB200415A triggered the Russian High-Energy Neutron Detector aboard NASA's Mars Odyssey satellite; about 400 sec later the burst triggered the Russian Konus instrument aboard NASA's Wind satellite. Finally, 4.5 sec later, the signal reached the Earth environment and triggered INTEGRAL'S SPI and IBIS instruments, NASA's Fermi instruments and the Atmosphere-Space Interactions Monitor (ASIM) aboard the International Space Station (ISS). The light curve shown in the image is the burst as detected by the bottom layer of INTEGRAL/ISGRI, i.e., the PiCsIT instrument.

Taking advantage of the multiple detections from several spacecrafts orbiting in different parts of the Solar system, it was possible to locate the origin of the GRB emission within a narrow error box region: the radiation came from an extremely magnetized neutron star located in the neigh-boring galaxy NGC 253, know as the Sculptor galaxy. The background image shows an optical image of NGC 253, with a red dot indicating the origin of the burst.

This finding confirms that extremely powerful gamma-ray bursts are possibly generated by magnetars (neutron stars with extremely high magnetic fields of the order of 1014 to 1015 Gauss) in relatively close galaxies. During an active phase magnetars can emit random - milliseconds to several seconds long - hard-X-ray bursts, with peak luminosities of 1036 to 1043 erg per second, while giant flares, which are rare, emit at energies of about 1044 to 1046 erg. Such giant flares from other galaxies are detectable from instruments aboard satellites orbiting Earth or travelling in the Solar system.

A portion of the second-long initial pulse of a giant flare, similar to the one detected from the Sculptor galaxy, in some respect mimics short GRBs, which have recently been identified as the result from the merger of two neutron stars accompanied by gravitational-wave emission, i.e., GRB170817A and GW170817.

Accretion

Types of X-ray Binaries		
Group I	Group II	
Luminous (early,	Optically faint (blue)	
massive opt countpart)	opt counterpart	
(high-mass systems)	(low-mass systems)	
hard X-ray spectra	soft X-ray spectra	
(T>100 million K)	(T~30-80 million K)	
often pulsating	non-pulsating	
X-ray eclipses	no X-ray eclipses	
Galactic plane	Gal. Centre + bulge	
Population I	older, population II	

-

Detection of Gamma Radiation

The Compton Gamma Ray Observatory (CGRO) is a sophisticated satellite observatory dedicated to observing the high-energy Universe. It is the second in NASA's program of orbiting "Great Observatories", following the Hubble Space Telescope. While Hubble's instruments operate at visible and ultraviolet wavelengths, Compton carries a collection of four instruments which together can detect an unprecedented broad range of high-energy radiation called gamma rays. These instruments are the Burst And Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET).

Telescopi Compton

Two-level instruments: 1st level: the γ-ray Compton scatters off an electron in a liquid scintillator. The scattered photon enters into a 2nd level scintillator (Nal) and is absorbed. Phototubes can determine the interaction points at the two layers and record the amount of energy deposited in each layer.

It is possible to reconstruct the angle of incidence the photon made wrt the original direction using the Compton scattering law, linking this angle and the energy of the scattered photon (2nd level) and the scattering electron (1st level).

"Event circle" (ring on the sky), poor angular resolution (but multiple photons can help to reconstruct the position)

Energy:
$$\mathcal{E}_0 = \mathcal{E}_1 + T$$

Momentum:

$$\varepsilon_{0} = \varepsilon_{1} \cos \varphi + pc \cos \vartheta$$
$$\varepsilon_{1} \sin \varphi = pc \sin \vartheta$$

where
$$pc = \sqrt{T(T + 2m_0c^2)}$$

Compton Equation: 0

$$\cos\varphi = 1 - m_0 c^2 \left(\frac{1}{\varepsilon_1} - \frac{1}{\varepsilon_0}\right)$$

Coincidence Detector Schematics

Compton Polarimetry

Compton Polarimetry

Compton Polarimetry Compton Polarimetry

Polarization modulation factor

Minimum Detectable Polarization 3o

Klein-Nishina cross-section for linearly polarized photons:

$$\frac{d\sigma}{d\Omega} = \frac{r_0^2}{2} \left(\frac{E'}{E}\right)^2 \left[\frac{E'}{E} + \frac{E}{E'} - 2\sin^2\theta\cos^2\varphi\right]$$

$$MDP = \frac{4.29}{A.\varepsilon.\phi_s.Q_{100}} \sqrt{\frac{A.\varepsilon.(\phi_s + \phi_B)}{T}}$$

 ϕ_s - source flux

 $\phi_B-background\ flux$

 Q_{100} – polarimetric modulation factor for 100% radiation

 ϵ – detector double event efficiency

A - detector area

T – observation time

II background-1

- Il fondo di un telescopio X e gamma consiste dei segnali misurati dal rivelatore NON dovuti alla sorgente osservata
- Parametro fondamentale nel calcolo della sensibilità
- Difficilmente calcolabile con precisione PRIMA della operatività in orbita del telescopio:
 - Simulazioni MC
 - Valutazioni geometriche
 - Environment dello spacecraft
 - Orbita
 - Attività solare
 - Geometria dello strumento e del telescopio

Cosmic Ray interactions and y-ray background

This COMPTEL image is taken at energy of **1.809** MeV, which corresponds to the gamma-ray line produced by the radioactive decay of the ²⁶Al isotope. ²⁶Al has a decay time of a million years, and is produced along with other elements in trace quantities at cosmic sites of **nucleosynthesis**. Therefore, the sky image in these gamma-rays integrates nucleosynthesis events over millions of years and shows the spatial distribution of these events. From the above image we learn that ²⁶Al-producing events are predominantly Galactic sources. Several localized regions appear prominent (Inner Galaxy, Cygnus, Vela), suggesting that massive stars (via their Wolf-Rayet winds and core-collapse supernovae) are the true sources. The insert shows the spectral information captured by COMPTEL. The ²⁶Al line at 1.809 MeV is clearly seen above the large instrumental background. COMPTEL is the first imaging instrument with a spatial resolution of roughly degrees, and thus made possible this all-sky survey of ²⁶Al radioactivity. The Galaxy is transparent to gamma-rays, therefore this image has, for the first time, shown us the locations of nucleosynthesis and **massive stars** throughout the Galaxy.

The COMPTEL 1 to 30 MeV all-sky map in continuum gamma radiation represents the results of the firstever survey of the sky at these energies. The concentration of the emission along the Galactic plane is the most striking aspect of the map. The plane stands out clearly against the rest of the sky indicating that most of the measured gamma-ray fluxes come from regions or objects inside the Galaxy. The dominant Galactic continuum emission seems to come from interstellar space and is visible as diffuse Galactic radiation. Superimposed on the large-scale Galactic emission are point-like sources (like Crab, Vela, Cyg X-1), but many of the Galactic point sources remain unidentified at this time. A significant contribution of unresolved point sources to the apparently diffuse Galactic emission cannot be excluded. At medium and high Galactic latitudes, a few of the gamma-ray blazars, discovered by EGRET, are visible in the COMPTEL map as well. Examples are 3C 273, 3C 279, and PKS 0528+134. The radio galaxy Cen A is also visible at MeV gamma rays. Some of the extragalactic objects detected by COMPTEL are not visible in this map, because they flare up only occasionally: on average they are too weak to be visible in this time-averaged all-sky map.

Intensity of gamma-ray emission from positron-electron annihilation in the plane of our Galaxy near the Galactic center. The emission is at 511 keV, which is the rest-mass energy of the electron and positron. The map is of a model that fits the OSSE 511 keV observations. OSSE has discovered that the radiation is mostly contained in a region of about 10 degrees diameter centered on the center of the Galaxy. The line plot superimposed on the map represents an OSSE observation of the 511 keV emission line.

On June 4, 1991, the OSSE instrument observed a bright high-energy flare from an intensely active region of the sun. The energy spectrum of the flare shown in this slide indicates that solar flares accelerate particles to extremely high energies causing interactions which produce nuclear emission lines from excited atomic nuclei of Fe, Mg, Ne, Si, C, O, and N, along with emission lines from the formation of deuterium by neutron capture (labeled "n" in the slide) and electronpositron annihilation (labeled "e+"). 27

Astrophysics of low/medium Energy γ - rays

The energy range from a few 100 keV to several 10 MeV is scaled by the electron rest mass $m_oc^2 = 0.511$ MeV

 <u>continuous γ-ray spectra</u> from sites of high-energy particle acceleration are mostly produced in e-m interactions:

Bremsstrahlung, inverse Compton scattering, Synchrotron Many of these sources have their maximum Luminosity at MeV energies

and by the nuclear energy levels

 Signatures of <u>cosmic radioactivity</u> through γ-ray lines: the direct observation of nucleosynthesis, i.e. the creation of the elements,

Sky Survey

Catalog of Gamma-Ray-Sources

Cosmic Accelerators:

Accretion on compact objects (relativistic jets):

AGN, µBlazars, Binaries

• Explosions and Shocks:

GRBs, SNRs, mass. stellar winds, ISM Novae, Supernovae

Rotation of NS: pulsars

electro-magnetic dissipation: solar flares

Origin and characteristics of astrophysically important γ -ray lines				
Isotope	Energy	† _{1/2}	origin	
⁵⁷ Ni	1378 keV	2.14 d	SN	
⁵⁶ Ni	812 keV	8.5 d	SN	
⁵⁶ Co	847 keV	111.5d	SN	
	1238 keV			
²² Na	1275 keV	3.8 yr	Novae	
⁴⁴ Ti	1157 keV	79 yr	SNR	
²⁶ Al	1809 keV	1Myr	AGB and massive stars (O & WR), Novae, core-collapse SNe	
¹² C*	4.4 MeV	prompt	cosmic ray induced ISM lines, flares	
¹⁶ O*	6.1 MeV			
e⁺, e⁻	511 keV		β^{+} activity, jet sources, PSR, Novae, flares etc.	
$n+p \rightarrow d$	2.21 MeV		flares, flare stars?	

Solar Flares lines

MEGA

MEGA is planned as a telescope for Medium Energy Gamma-Ray Astronomy in the energy range between 400 keV and 50 MeV. In this energy range MEGA exploits the two dominating interaction mechanisms for gamma rays: Compton scattering and Pair creation. MEGA has two detectors: A tracker, consisting of double-sided silicon strip detectors, and a calorimeter, consisting of highly segmented CsI(TI) bars. In the tracker the Compton and Pair interactions take place and the direction and energy of the participating electrons and positrons is measured. In the calorimeters the Compton scattered gamma rays are stopped and thus their energy and direction is determined.

MEGA-detector

https://www2011.mpe.mpg.de/gamma/instruments/mega/www/mega.html

MEGA

https://www2011.mpe.mpg.de/gamma/instruments/mega/www/mega.html

ACT project

	ACT Science Requirements		
	Energy Range	0.2 - 30 MeV Compton mode	
	Energy Resolution	< 10keV FWHM @ 1 MeV	
	Field of View	> 4 steradian	
•	Angular Resolution	1 deg	
- 1. 	Source Localization	5 arcmin for bright sources	
	Line Sensitivity in 1.0E6 sec	1.0E-7 ph/(cm2s) (narrow) 5.0E-7 ph/(cm2s) (broad)	
	Continuum Sensitivity	1.0E-5 ph/(cm2sMeV) @.0.5 MeV	
	Polarization Sensitivity	1%, 2.0E-3 ph/(cm2sMeV) 10%, 2.0E-4 ph/(cm2sMeV)	

These science requirements are expected to translate to an instrument with effective area on the order of 1000-3000 cm2, a position resolution in the detectors of 1mm3, energy resolution of 1% (0.5-2.0 MeV) or better, and possibly recoil electron tracking capabilities for electron energies < 0.5 MeV. The concept study will look at a variety of possible detector technologies for implementing such a Compton telescope. Candidate detectors include, but are not limited to, CZT strip detectors, Si strip detectors, Ge strip detectors, liquid Xe, and gaseous Xe (or Ar) microwell detectors.

https://arxiv.org/abs/astro-ph/0608532

The baseline instrument (pictured above) is built from thick Silicon(Li) detectors, and measures roughly 1 m x 1 m in frontal area. The individual detectors are ~7 mm thick, and measure 10 x 10 cm in area using technology in crystal growth and lithium drifted silicon, or Si(Li). Detectors are assembled in tower structures, each containing a small 4x4 array of detectors and stacked 24 layers deep. Readout electronics for the detectors are distributed along the four side walls of each tower.

New MeV concepts

Na Goo	National Aeronautics and Space Administration Goddard Space Flight Center			physics Science Division • Sci	ences and Exploration
Home	Registration	Directions/Hotel	Program	Participants	

Future Space-based Gamma-ray Observatories

March 24-25, 2016 Goddard Space Flight Center Building 34, Rooms W150 & W120A/B

The medium energy γ -ray band accessible from space contains a wealth of scientific promise from the study of γ -ray bursts and active galaxies, dark matter annihilation and decay, particle acceleration and cosmic ray production in Galactic and extragalactic sources, cosmic ray interactions in the Milky Way, rotation powered pulsars and magnetars, acceleration processes in the Sun and more. Our appetite for this science has been whetted by many recent exciting results from Fermi (at higher energies) and NuSTAR (at lower energies) and is based on studies of the MeV sky by CGRO/COMPTEL and INTEGRAL. Progress in this exciting field has been limited largely by the challenges of building sufficiently capable instruments to detect these γ rays as they interact by Compton scattering and pair production. The detailed scientific questions within these areas are addressed by a range of different performance optimizations such as flux and polarization sensitivity, angular and energy resolution, photon counting statistics, background rejection, and field of view. Different technical and hardware approaches result in different optimization of these performance parameters.

We will meet March 24-25 at Goddard Space Flight Center in Greenbelt, MD to discuss the Science Drivers for new space-based gamma-ray missions, as well as technologies and instruments concepts for new gamma-ray experiments. This workshop is a continuation of the discussions from the previous Future Gamma-ray workshop.

http://asd.gsfc.nasa.gov/conferences/fgo2/

e-ASTROGÁM

at the heart of the extreme Universe

http://eastrogam.iaps.inaf.it

An observatory for gamma rays. In the MeV/GeV domain

Lead proposer: A. De Angelis Co-lead proposer: V. Tatischeff

The MeV/GeV domain

- Worst covered part of the electromagnetic spectrum (only a few tens of steady sources detected so far between 0.2 and 30 MeV)
- Many objects have their peak emissivity in this range (GRBs, blazars, pulsars...)
- Binding energies of atomic nuclei fall in this range, which therefore is as important for HE astronomy as optical astronomy is for phenomena related to atomic physics

SPI gamma-ray observations of SN2014 J

Core science motivations for a γ -ray mission in the MeV/GeV

- 1. Processes at the heart of the extreme Universe (AGNs, GRBs, microquasars): prospects for the Astronomy of the 2030s
- 2. The origin and impact of high-energy particles on galaxy evolution, from cosmic rays to antimatter

3. Nucleosynthesis and the chemical enrichment of our Galaxy

42

e-ASTROGAM: γ-ray astronomy in context

eLISA - Gravitational waves

New Astronomies: gravitational waves neutrinos

Km3Net/IceCube-Gen2 - v

 e-ASTROGAM will be a sensitive, wide-field γ-ray space observatory operating at the same time as facilities like SKA and CTA, as well as eLISA and neutrino detectors, to get a coherent picture of the transient sky and the sources of gravitational waves and high-energy neutrinos

e-ASTROGAM scientific requirements

- 44
- Achieve a sensitivity better than that of INTEGRAL/CGRO/ COMPTEL by a factor of 20 - 50 - 100 in the range 0.2 - 30 MeV
- 2. Fully exploit gamma-ray polarization for both transient and steady sources
- Improve significantly the angular resolution (to reach, e.g., ~ 10' at 1 GeV)
- 4. Achieve a very large field of view (~ 2.5 sr) \Rightarrow efficient monitoring of the γ -ray sky
- 5. Enable sub-milisecond trigger and alert capability for transients

How to measure gamma rays in the MeV-GeV?

- Tracker Double sided Si strip detectors (DSSDs) for excellent spectral resolution and fine 3-D position resolution (1m², 500 μm thick, 0.3 Xo in total)
- Calorimeter High-Z material for an efficient absorption of the scattered photon ⇒ CsI(TI) scintillation crystals readout by Si drift detectors or photomultipliers for best energy resolution. 8 cm (4.3 Xo)
- Anticoincidence detector to veto charged-particle induced background ⇒ plastic scintillators readout by Si photomultipliers

Detection of (sub)MeV-GeV gamma-rays

- Compton regime
 - Require excellent 3D-point resolution and energy resolution
 - Event reconstruction with 2 points and 2 energy measurements!
- Pair regime
 - Tracking resolution is most important
 - Dominated by Multiple Scattering effect
 - Main concern is detector layer thickness
- Difficult to be truly optimal in both regimes across the gap with one detector

$$\sigma_{\theta} = \frac{13.6}{\beta p} z \sqrt{\frac{x}{x_0}} \left[1 + 0.038 \ln\left(\frac{x}{x_0}\right) \right] \qquad \text{p in MeV}$$

e-ASTROGAM: the payload

- Tracker: 56 layers of 4 times 5×5 DSSDs (5 600 in total) of 500 μm thickness and 240 μm pitch
- DSSDs bonded strip to strip to form 5×5 ladders
- Light and stiff mechanical structure
- Ultra low-noise front end electronics

- Calorimeter: 33 856 CsI(TI) bars coupled at both ends to low-noise Silicon Drift Detectors
- ACD: segmented plastic scintillators coupled to SiPM by optical fibers
- Heritage: AGILE, Fermi/LAT, AMS-02, INTEGRAL, LHC/ ALICE...

e-ASTROGAM: silicon tracker

- 4 towers, 56 layers of 5×5 double sided Si strip detectors each (5600 DSSDs)
 - Each DSSD has a total area of $9.5 \times 9.5 \text{ cm}^2$, a thickness of 500 μ m and pitch of 240 μ m (384 strips per side)
 - The DSSDs are wire bonded strip to strip to form 5×5 2-D ladders
- Spacing of the Si layers: 10 mm
 - Each layer held by a very light mechanical
 - two frames sandwiching the Si detectors
- DSSD strips connected to ASICs through a pitch adapter
 - 26 880 IDeF-X ASICs (32 channels each)
 - 860160 electronic channels
 - 12 IDeF-X ASICs each side
 - The analog output signals of IDeF-X will be converted to digital signals with the OWB-1 ADC
 - 5 OWB-1 ADCs each side
- Power budget = 688 W (800 mW/channel)

e-ASTROGAM: calorimeter

- Pixelated detector made of 33 856 CsI(Tl) scintillator bars of 8 cm length and 5×5 mm² cross section, glued at both ends to low-noise Silicon Drift Detectors (SDDs)
- Calorimeter formed by the assembly of 529 (23×23) modules
- Heritage: INTEGRAL/PICsIT, AGILE, Fermi/LAT, LHC/ALICE
 - FEE ASIC: modified version of the ultra low-noise VEGA ASIC (INFN)

e-ASTROGAM: anticoincidence system

- Upper-AC system formed by large panels of plastic scintillators covering 5 faces of the instrument (6 plastic tiles per lateral side and 9 tiles for the top = 33 tiles total)
- Wavelength shifting optical fibers buried in trenches convey the scintillation light to Si photomultipliers
- The SiPM signals are readout by the spacequalified VATA64 ASICs from Ideas[©]
- Heritage: Fermi/LAT, AGILE

E ACidetect

50

- **Time-of-Flight** system formed by two scintillator layers separated by 50 cm below the instrument to reject the particle background from the platform
- Heritage: AMS, PAMELA

e-ASTROGAM mission profile

- Orbit Equatorial (inclination *i* < 2.5°, eccentricity *e* < 0.01) low-Earth orbit (altitude in the range 550 600 km)
- Launcher Ariane 6.2
- Satellite communication
 - ESA ground station at Kourou
 - + ASI Malindi station (Kenya)
- Data transmission via X-band (available downlink of 8.5 MHz)
- Observation modes (i) zenithpointing sky-scanning mode, (ii) nearly inertial pointing, and (iii) fast repointing to avoid the Earth in the field of view
- In-orbit operation 3 years duration
 + provisions for a 2+ year extension

The e-ASTROGAM Collaboration

~350 collaborators from institutions in 19 countries with an official endorsement

The e-ASTROGAM Collaboration

Principal investigator: Alessandro De Angelis, INFN/INAF Padova, U. Udine, Italy; LIP/IST, Portugal **Co-PI:** Vincent Tatischeff – CSNSM Paris, France

INFN, INAF, U. Padova, U. & Polit. Bari, U. Roma Tor Vergata, U. Siena, U. Udine, U. Trieste CSNSM, APC, CEA/Irfu, IPNO, LLR, CENBG, LUPM, IRAP * U. Mainz, KIT/IPE, U. Tübingen, U. Erlangen, RWTH Aachen, U. Potsdam, U. Würzburg, MPE DPNC UniGe, ISDC, Univ. Geneva, PSI ICE (CSIC-IEEC), IMB-CNM (CSIC), IFAE-BIST, Univ. Barcelona, CLPU & Univ. Salamanca KTH and Univ. Stockholm ۲ Czech Technical Univ., Prague; University of Coimbra, LIP and IST Lisboa, Univ.Sofia DTU Copenhagen Univ. College Dublin, Dublin City Univ. Space Research Center of PAS Warsaw • NASA GSFC, NRL, Clemson Univ., Washington Univ., Yale Univ., Univ. Maryland, UC Berkeley loffe Institute, St. Petersburg

University of Tokyo

CBPF Rio de Janeiro

Science with e-ASTROGAM

See <u>https://arxiv.org/abs/1611.02232</u> (Exp. Astronomy) and <u>https://arxiv.org/abs/1711.01265</u> (JHEAP)

Science with e-ASTROGAM

A space mission for MeV-GeV gamma-ray astrophysics

Kiv:1711:01265v3

A. De Angelis et al.

A. De Angelis*,^{1,2,3,4} V. Tatischeff*,⁵ I. A. Grenier*,⁶ J. McEnery*,⁷ M. Mallamaci*,¹ M. Tavani,^{8,9,10} U. Oberlack,¹¹ L. Hanlon,¹² R. Walter,¹³ A. Argan,¹⁴ P. Von Ballmoos,¹⁵ A. Bulgarelli,¹⁶ A. Bykov,¹⁷ M. Hernanz,¹⁸ C. Kanbach, ¹⁹ I. Kurvetl, ²⁰ M. Pearce, ²¹ A. Zdziarski, ²² J. Connad, ²³ G. Chisellini, ²⁴ A. Harding, ⁷ J. Isera, ²⁵ M. Leising, ²⁶ F. Longo, ²¹, ²⁶ G. Madejski, ²⁶ M. Martinez, ³⁰ M. N. Mazztotta, ²¹ J. M. Paredes, ²⁷ M. Pohl, ²⁸ R. Rando, ^{7, 24} M. Razzano, ^{35, 36} A. Aboudan, ^{34, 2} M. Ackermann, ³⁷ A. Addazi, ³⁸ M. Ajello, ²⁶ C. Albertus, ³⁹ J. M. Álvarez, 40 G. Ambrost, 41 S. Antón, 42, 43 L. A. Antonelli, 44 A. Babie, 45 B. Balbussinov, 1 M. Balbo, 13 L. Baldini,^{45,36} S. Balman,⁴⁶ C. Bambi,^{38,47} U. Barres de Almeida,⁴⁸ J. A. Barrio,⁴⁹ R. Bartels,⁵⁰ D. Bastieri,^{44,1,51} L. Baduni, "C. S. Balindi," C. Balindi, "C. D. Bartes de Aniseda, "J. A. Barto," F. Bartos, "D. Barto," K. Bartos, "D. Bastelli, "A transmission of the Bernard, "D. Bernardin, "A transmission of the Bernardin, "B transmission," B transmission, "B transmission," A transmission of the Bernardin, "A transmission of the Bernardin, "A transmission of the Bernardin, "B transmission," A transmission of the Bernardin, "A transmission of the Bernardin, "B transmission," A transmission of the Bernardin, "B transmission," A transmission, "B transmission," A transmission, "B transmission, "B transmission," A transmission, "B transmission," A transmission, "B transmission," A transmission, "B transmission, "B transmission," B transmission, "B transmission, "B transmission," B transmission, "B transmission, "B transmission," B transmission, "B transmission," A transmission, "B transmission, "B transmission," B transmission, "B transmissio M. Cermeño,³⁹ A. Chen,⁷¹ C. C Cheung,⁷² E. Churazov,^{73,74} S. Ciprini,^{44,41} A. Coc,⁵ S. Colafrancesco,⁷¹ A. Coleiro,75,76 W. Collmar,77 P. Coppi,78 R. Curado da Silva,79 S. Cutini,44,41 F. D'Ammando,80 B. De Lotto,⁸¹ D. de Martino,⁸² A. De Rosa,⁸ M. Del Santo,⁸³ L. Delgado,¹⁸ R. Dtehl,⁷⁷ S. Dtetrich,⁸⁴ A. D. Dolgov, ^{5,5} & A. Dominguez,⁶ D. Dominis Prester,¹⁰ T. Donarumna,⁸ D. Dorner,¹⁸ M. Doro,^{1,34}
M. Dutra,⁴⁰ D. Elsaesser,⁵⁰ M. Fabrizio,^{44,91} A. Fernández-Barral,¹ V. Foretul,¹⁶ L. Foffano,^{34,1} V. Formato,⁴¹ N. Fornengo, ^{65, 66} L. Foschini, ²⁴ A. Franceschini, ³⁴ A. Franckowski, ³⁷ S. Funk, ⁵² F. Fuschino, ¹⁶ D. Gaggero, ⁵⁰ C. Galanti, ²⁴ F. Cargano, ^{31, 57} D. Gasparrini, ^{44, 41} R. Gehrz, ⁵³ P. Giammaria, ³¹ N. Giglietto, ^{57, 31} P. Goormi, ⁶⁴ F. Clordano,³¹ M. Ciroletti,⁸⁰ G. Chirlanda,^{24,95} N. Codinovie,⁹⁶ C. Coutfies,⁹⁷ J. E. Crove,⁹⁸ C. Hamadache,⁵ D. H. Hartmann,²⁰ M. Hayashida,⁹⁹ A. Hryczuk,⁶⁴ P. Jean,¹⁵ T. Johnson,¹⁰⁰ J. José,¹⁰¹ S. Kaufmann,¹⁰² B. Khelhft¹⁰³ J. Kiener⁵ J. Knödlæcker,¹⁵ M. Kole,¹³ J. Kopp,¹⁰⁴ V. Kozhuharov,²⁰ C. Labanti,¹⁶ S. Lalkovski,²⁰ P. Laurent,¹⁰⁵ O. Limoustn,¹⁰⁶ M. Linares,³⁰¹ E. Lindfors,¹⁰⁷ M. Lindner,⁶¹ J. Liu,²⁰⁸ S. Lombardt,^{44, 91} F. Loparco,^{31, 57} R. López-Coto,¹ M. López Moya,⁴⁹ B. Lott,¹⁰⁵ P. Lubrano,⁴¹ D. Malyshev,¹¹⁰ N. Mankuzhtytl,¹¹¹ K. Mannheim,⁸⁸ M. J. Marcha,¹¹² A. Marcianò,³⁸ B. Marcote,¹¹³ M. Mariotti,¹ M. Marisaldi,¹¹⁴ S. McBreen,¹² S. Mereghetti,69 A. Merle,115 R. Mignani,116,117 G. Minervini,8 A. Moiseev,118 A. Morselli,10 F. Moura,79 K. Nakazawa, 119 L. Nava, 24, 28, 120 D. Nieto, 49 M. Orienti, 80 M. Orio, 121, 2 E. Orlando, 29 P. Orleanski, 122 S. Palano, 2 R. Paoleut, ³⁵ A. Papitto, ³¹ M. Pasquato, ² R. Patricelli, ^{123, 35} M. Á. Pérez-Carcía, ³³ M. Perste, ¹²⁰ C. Piano, ⁸
 A. Paoletti, ³⁵ A. Papitto, ³¹ M. Pasquato, ² R. Patricelli, ^{123, 35} M. Á. Pérez-Carcía, ³³ M. Perste, ¹²⁰ C. Piano, ⁸
 A. Pichel, ¹²⁴ M. Pimenta, ⁴ C. Pittori, ^{44,91} T. Porter, ⁷² J. Poutanen, ¹⁰⁷ E. Prandini, ^{34,1} N. Prantizos, ¹²⁵
 N. Produit, ¹³ S. Profumo, ¹²⁶ F. S. Queiroz, ¹³⁷ S. Rainó, ^{31,57} A. Raklev, ⁶⁴ M. Regis, ^{65,66} I. Reichardt, ¹²⁸
 Y. Rephaelt, ^{123,130} J. Rico, ³⁰ W. Rodejohann, ⁶³ G. Rodriguez Fernandez, ¹⁰ M. Roneadelli, ¹³¹ L. Roso, ¹³²
 A. Rovero, ¹³² R. Ruffini, ¹³² G. Sala, ¹⁰¹ M. A. Sánchez-Conde, ¹³⁴ A. Santangelo, ¹³⁵ P. Saz Parkinson, ^{136,137}
 T. Sbarrato, ⁶⁵ A. Shearer, ¹³⁸ R. Shellard, ⁴⁶ K. Shori, ⁵⁰ T. Siegeri, ¹⁷ C. Siquera, ^{63,139} P. Spinelli, ³¹ A. Stanerra, ¹⁴⁰ S. Starrfield,141 A. Strong,77 I. Strümke,142 F. Tavecehio,24 R. Taverna,34 T. Terzté,87 D. J. Thompson,7 O. Tibolla,¹⁰² D. F. Torres,¹⁴³, ¹⁴⁴, ¹⁴⁵ R. Turolla,³⁴ A. Ulyanov,¹² A. Urst,⁸ A. Vaechi,⁸¹ J. Van den Abeele,⁵⁴ G. Vankova-Kiriloval,⁵⁶ C. Venter,⁵⁸ F. Verrechia,⁴⁴,⁹¹ P. Vincern,¹⁴⁸ X. Wang,¹⁴⁷ C. Weniger,⁵⁰ X. Wu,¹³ G. Zaharijaă,¹⁴⁸ L. Zampieri,² S. Zane,¹⁴⁹ S. Zimmer,¹⁵⁰ A. Zoglauer,¹⁵¹ and the e-ASTROCAM collaboration

White Book published in arXiv/JHEAP Wide interest from the scientific community

e-ASTROGAM: performance assessment

- - e-ASTROGAM performance evaluated with MEGAlib (Zoglauer et al. 2006) and Bogemms (Bulgarelli et al. 2012) – both tools based on Geant4 – and a detailed numerical mass model of the gamma-ray instrument

Angular resolution

Gamma-ray energy (MeV)

Key instrument characteristics: a summary

- Best PSF in MeV-GeV
 - Resolve sources
- Calorimetric measurements of MeV lines with high resolution:
 - Positron detection (511 keV line)
 - Measurements of isotopic contents, with highest sensitivity
 - Hadronic collisions of LECR with molecular clouds
- Capability of measuring polarization (marks Compton interactions at the sources and magnetic fields)
- SED resolution in the GeV range: allows to reconstruct the "pion bump", characteristic of the decay $\pi^{o} \rightarrow \gamma \gamma$ and thus an indicator of hadronic processes

e-ASTROGAM core science topic #1

At the heart of the extreme Universe

- Launch of ultra-relativistic jets in GRBs? Ejecta composition, energy dissipation site, radiation processes?
- Can short-duration GRBs be unequivocally associated to gravitational wave signals?
- How does the accretion disk/jet transition occur around supermassive black holes in AGN?
- Are BL Lac blazars sources of UHECRs and high-energy neutrinos?

With its wide field of view, unprecedented sensitivity over a large spectral band, and exceptional capacity for polarimetry, e-ASTROGAM will give access to a variety of extreme transient phenomena

Figure 5: SED from a collection of different spectral states of the FSRQ 3C 279 showing a dramatic gamma-ray flaring activity, including the minute-timescale episode detected by Fermi in June 2015 [13]. The purple solid line is the 3σ e-ASTROGAM sensitivity calculated for a 50 ks exposure.

Cyanus X-3

10⁰

Relativistic jets; flares

10²

10³

10⁴

10⁵

10¹

E [MeV]

"flaring" spectrum, AGILE (7 episodes 8-day integration)

"hypersoft" spectrum (PCA, HEXTE)

e-ASTROGAM sensitivity (8 days)

hadronic model

leptonic model

MeV blazars; cosmology at z up to 4.5

Gamma-ray bursts; the new Astronomy

- Threshold at 30 keV using the Calorimeter
- 200 GRB/year detected
 - Localized within 0.1-1 deg, and the information can be processed onboard
 - 42 GRBs/year with a detectable polarization fraction of 20%;
- Possible detection of electromagnetic counterparts of impulsive GW events
 - MeV likely to be the threshold (Patricelli et al. 2016)
 - Possible associations GRB/GW
- MeV good target also for the counterparts of neutrino bursts

Gamma-ray polarization

- γ-ray polarization in objects emitting jets (GRBs, Blazars, X-ray binaries) or with strong magnetic field (pulsars, magnetars) ⇒ magnetization and content (hadrons, leptons, Poynting flux) of the outflows + radiation processes
- γ-ray polarization from cosmological sources (GRBs, Blazars) ⇒ fundamental questions of physics related to Lorentz Invariance Violation (vacuum birefringence)
- e-ASTROGAM will measure the γ-ray polarization of ~ 200 GRBs per year (promising candidates for highly γ-ray polarized sources)

e-ASTROGAM core science topic #2

Origin & impact of HE particles on Galaxy evolution: CR, antimatter, ...

- Origin of the **Fermi Bubbles** and of the **511 keV emission** from the Galaxy's bulge? Are these linked to a past activity of the central **supermassive black hole**? What is causing the **GeV excess** emission from the center region?
- With a sensitivity and an angular resolution in the MeV GeV range significantly improved over previous missions, e-ASTROGAM will enable a detailed spectro-imaging of the various high-energy components

Cosmic rays in the Inner Galaxy; acceleration in SNRs

Antimatter and Dark Matter

- Unique sensitivity to the 511-keV line
- Sensitivity to many classical positron sources: can constrain the contribution from nearby pulsars in the positron excess seen by PAMELA/AMS-02
- The MeV region is the missing ingredient to determine the photon background from the Inner Galaxy: clarify if there is a photon excess (which might be due to DM, new particles)
- The MeV region is where the bulk of photons from WIMPs below 100 GeV is expected
- In some models, MeV dark matter
 - Plus Axions, ALPs:
 - Sensitivity to photons emitted by SNRs (Meyer et al. 2016)
 - Sensitivity to photon/ALP oscillations (Roncadelli et al. 2011; Hooper et al. 2009)

e-ASTROGAM core science topic #3

Supernovae, nucleosynthesis, and Galactic chemical evolution

- How do thermonuclear and core-collapse SNe explode? How are cosmic isotopes created in stars and distributed in the interstellar medium?
- With a remarkable improvement in γ-ray line sensitivity over previous missions, e-ASTROGAM

should allow us to finally understand the progenitor system(s) and explosion mechanism(s) of **Type Ia SNe** (⁵⁶Ni, ⁵⁶Co), the dynamics of **core collapse** in massive star explosions (⁵⁶Co, ⁵⁷Co), and the history of **recent SNe** in the Milky Way (⁴⁴Ti, ⁶⁰Fe...)

e-ASTROGAM Observatory science

- e-ASTROGAM pointings first focused on core science topics. However a very large number of sources will be detected and monitored.
 - Thousabds of sources both Galactic and extragalactic, many new detections. Therefore, a very large community of astronomical users will benefit from e-ASTROGAM data available for multifrequency studies through GI programme managed by ESA.
- Phenomena and sources
 - characterized by rapid and very rapid variability timescales (sub-second, second, minutes, hours): GRB, AGN flares, ...
 - steady
 - unexpected

Type	3 yr	New sources
Total	3000 - 4000	~ 1800 (including GRBs)
Galactic	~ 1000	~ 400
MeV blazars	~ 350	~ 350
GeV blazars	1000 - 1500	~ 350
Other AGN $(<10 \text{ MeV})$	70-100	35-50
Supernovae	10 - 15	10-15
Novae	4-6	4-6
GRBs	~ 600	~ 600

e-ASTROGAM discovery space

• Over 3/4 of the sources from the 3rd *Fermi*-LAT Catalog (3FGL), 2415 sources over 3033, have power-law spectra ($E_{\gamma} > 100$ MeV) steeper than E_{γ}^{-2} , implying that their peak energy output is below 100 MeV

- These includes more than 1200 (candidate) blazars (mostly FSRQ), about 150 pulsars, and nearly 900 unassociated sources
- Most of these sources will be detected by e-ASTROGAM

⇒ large discovery space for new sources and source classes

e-ASTROGAM Observatory science

- Diffuse Galactic gamma-ray background
- Pulsars and millisecond pulsars both isolated and in binaries, whose (pulsed or unpulsed) emission will be observable in a spectral range rich in information to discriminate between different particle acceleration models
- PWNe, for which e-ASTROGAM will obtain crucial data on particle acceleration and propagation
- Magnetars
- Galactic compact binaries, including NS and BHs whose spectral transitions and outbursts will be monitored
- Interstellar shocks
- Propagation over cosmological distances (LIV, ALPs, ...)
- Novae
- Solar flares and terrestrial gamma-ray flashes

First e-ASTROGAM Science Workshop

- Padova, Feb 28 (start at 13h30)/ Mar 1-2 (end on Mar 2 at 14h)
- Setup a team for a white book (possibly w/ AMEGO)
 Contributed talks & posters on multimessenger astrophysics welcome
 Google "agenda infn e-ASTROGAM workshop"

****** ****** *****************

Second e-ASTROGAM Science Workshop

2nd e-ASTROGAM Workshop, joint to AMEGO Workshop: towards a White Book on MeV Gamma-ray Astrophysics

chaired by Alessandro De Angelis (PD), Riccardo Rando (PD), Julie Mc Enery (NASA Goddard)

from Friday, 13 October 2017 at **10:45** to Saturday, 14 October 2017 at **16:45** (Europe/Rome) at **Munich (Ambiance Rivoli Hotel)** Albert-Roßhaupter-Straße 22

Description This scientific workshop, open to contributions, continues the discussion on the e-ASTROGAM (and AMEGO) science: exploration of the Universe in the MeV domain. After the 1st workshop held in Padova in February 2017, we aim at finalizing our "White Book" on the opportunities of astronomy, astrophysics and astroparticle physics from observations of cosmic gamma rays in the MeV domain.

Map Satellite Map Satellite MulbertShoFen-Am HART Gröbenzell Mubrerdorning MaxvorsStaDT Gräfelfing Gräfelfing Planegg Neuried Gräfelfing Gräfelfing Musch StaDT Planegg Neuried Gräfelfing Gräfelfing Musch StaDT Musch StaD

More documentation is available at the homepage http://eastrogam.iaps.inaf.it

The conference fee covers breaks and renting the room and the facilities. 30 rooms are pre-booked at the hotel at a preferential rate (specify eASTROGAM in the reservation).

Participants Solen Balman; Juan Abel Barrio; Denis Bernard; Martina Cardillo; Paolo Cumani; Alessandro De Angelis; Domitilla de Martino; Alberto Dominguez; Yongwei DONG; Michele Doro; Fabio Gargano; J. Eric Grove; Elizabeth Hays; Margarita Hernanz; Jordi Isern; Stefan Lalkovski; Manuela Mallamaci; Dmitry Malyshev; Karl Mannheim; Ajello Marco; Manel Martinez; Mario Nicola Mazziotta; Roberto Mignani; Alexander Moiseev; Aldo Morselli; Uwe Oberlack; Josep M. Paredes; Carlotta Pittori; Martin Pohl; Riccardo Rando; Javier Rico; Pablo Saz Parkinson; Andy Strong; Vincent Tatischeff; Marco Tavani; Roberto Turolla; Roland Walter; Silvia Zane; Andrzej Zdziarski

https://agenda.infn.it/conferenceDisplay.py?confld=13913

All Sky - ASTROGAM We were encouraged by several space agencies (ASI and CNES in particular)

~8 times smaller than e-ASTROGAM (30cm x 30cm x 25 Si planes on either side of the CAL; CAL is 5 cm deep; 80 kg; to be placed in L2). Monitoring instrument for the MM era

All Sky - ASTROGAM

What can the instrument cannot do?

- Unfortunately, too small for effectively mapping.
 - increase in sensitivity is just ~5-10 wrt COMPTEL
 - Anyway, the most sensitive instrument in the MeV domain

AMEGO, the All-sky Medium Energy Gamma-ray Observatory, is an Astrophysics Probe mission concept designed to explore the MeV sky.

AMEGO

AMEGO AMEGO Science Understanding Extreme Environments

Astrophysical Jets

Understand the formation, evolution, and acceleration mechanisms in astrophysical jets

Compact Objects

Identify the physical processes in the extreme conditions around compact objects

Dark Matter Test models that predict dark matter signals in the MeV band

MeV Spectroscopy

Measure the properties of element formation in dynamic systems

AMEGO

Element Formation in Dynamic Systems

Nuclear lines explore Galactic chemical evolution and sites of explosive element synthesis (SNe)

- Electron-positron annihilation radiation
 - -e⁺ + e⁻ -> 2g (0.511 MeV)
- Nucleosynthesis
 - -Giants, CCSNe (²⁶Al)
 - –Supernovae (⁵⁶Ni, ⁵⁷Ni,⁴⁴Ti)
 - -ISM (²⁶Al, ⁶⁰Fe)
- Cosmic-ray induced lines
 - -Sun
 - -ISM

56Ni: 158 keV 812 keV (6 d) 56Co: 847 keV, 1238 keV (77 d) 57Co: 122 keV (270 d) 44Ti: 1.157 MeV (78 yr) 26Al: 1.809 MeV (0.7 Myr) 60Fe: 1.173, 1.332 MeV (2.6 Myr)

AMEGO: All-sky Medium Energy Gamma-ray Observatory

Tracker

Incoming photon undergoes pair production or Compton scattering. Measure energy and track of electrons and positrons

- 60 layer DSSD, spaced 1 cm
- Strip pitch 0.5mm

CZT Calorimeter

Measures location and energy of Compton scattered photons, and head of the shower for pair evens

Array of 0.6x0.6 x 2cm vertical CdZnTe bars

Csl Calorimeter

Extends upper energy range

6 planes of 1.5cm x 1.5 cm CsI (Tl) bars

Instrument concept:

- Maximized performance in 1 MeV 100 MeV range, with full range 0.2 MeV 10 GeV
- Simplicity, long-term (~10 years) reliability, max use of already space-qualified technology
- Sensitive to both y-ray interactions: pair production and Compton scattering
- Minimized amount of passive elements in detecting zone of the instrument (no passive y-ray converters as in LAT)
- Use fine segmentation of all detecting elements to provide the best particle tracking and event identification

AMEGO Instrument Summary

Energy Range	300 keV -> 10 GeV
Angular resolution	3° (3 MeV), 6° (10 MeV), 2° (100 MeV)
Energy resolution	<1% (< 1 MeV), 1-5% (1-100 MeV), ~10% 91 GeV)
Field of View	2.5 sr (20% of the sky)
Line sensitivity	<6x10 ⁻⁶ ph cm ⁻² s ⁻¹ for the 1.8 MeV ²⁶ Al line in a 1- year scanning observation
Polarization sensitivity	<20% MDP for a source 1% the Crab flux, observed for 10 ⁶ s
Continuum sensitivity (MeV cm ⁻² s ⁻¹)	3x10 ⁻⁶ (1 MeV), 2x10 ⁻⁶ (10 MeV), 8x10 ⁻⁷ (100 MeV)

AMEGO

AMEGO Capabilities

Summary

- The almost unexplored MeV / GeV gamma-ray band is one of the richest energy domains of astrophysics
- ASTROGAM/AMEGO will fill the gap and they will be essential observatories to study the extreme transient sky in the era of astronomy's new messengers
- ASTROGAM/AMEGO payloads are innovative in many respects, but the technology is ready

AMEGO-X

About AMEGO-X

AMEGO-X, the All-sky Medium-Energy Gamma-ray Observatory eXplorer, is a multimessenger astronomy mission concept proposed to the 2021 MIDEX Announcement of Opportunity, to be launched no later than Dec. 2028.

Multimessenger astrophysics (*New Messengers New Physics*) is a priority theme of the Astro2020 Decadal Survey report, and the highest priority for space missions on small and medium scale platforms. This science is poised to revolutionize our understanding of the extreme universe. Data from AMEGO-X will answer the following questions pertaining to all cosmic messengers:

- Do supermassive black holes accelerate cosmic rays and produce neutrinos?
- How do binary neutron star mergers produce relativistic jets and what is the structure of those jets?
- Where are the cosmic rays accelerated in our Galaxy?

To answer these questions, AMEGO-X will be sensitive to gamma-ray photons in the energy range from about 100 keV to 1 GeV and transient events down to about 25 keV. During its three-year baseline mission, AMEGO-X will observe nearly the entire sky every two orbits, building up a sensitive all-sky map of gamma-ray sources and emission. Want to learn more? Check out the list of publications or see when and where to find us at upcoming conferences.

https://asd.gsfc.nasa.gov/amego-x/index.html

AMEGO-X

Multimessenger Astrophysics

AMEGO-X

Continuum Astrophysics

\mathcal{O} Observing cosmic nuclei through γ ray spectroscopy

Russbach school 2019

Instruments, Lessons & Puzzles