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Course Overview (1)

•Linear Control (time domain)
•Introduction
•Dynamical Linear Systems
•Observability & Controllability
•PID Controllers
•Luenberger Observer

•Linear Control (frequency domain)
•From State-space to Transfer Function

•Classic Control Elements (Bode Diagram / Root Locus)
•Ctrl Lab (days 1,2)



Course Overview (2)

•Optimal Control and KF Estimation
•Optimal Control (LQR)
•Model Predictive Control
•Kalman Filtering

•Control Laboratory
•Matlab/Simulink
•Kalman Filtering and Optimal Control
•Cart-pole



Control Systems History

•Water Clock
•Alexandria
(Ctesibius, 3rd century BC)

•Centrifugal Governor
•Windmills
(C. Huygeens, 17th century)

•Steam Engine
(J. Watt, 1788)



Control Systems History

•First Automatic Transmission 
(Hydramatic, 1939)



Control Systems History

•Classical control theory
formalized from circuits theory

Tacoma Bridge Collapse

https://www.youtube.com/watch?v=XggxeuFDaDU


Linear Control (time domain)



Control Systems Fundamentals

REQUIRED
•Dynamical System MODEL
•Control Input (non-autonomous systems)
•Reference Signal
•
CHALLANGES
•Missing/Noisy Information
•Physical limitations



Past history (state) influences future output

● Continuous Time                     vs.              Discrete Time

● Autonomous                           vs.              Non-autonomous

• Linear                                          vs.              Non-linear

Dynamical Systems (1)



Dynamical Systems (2)

● SISO                                        vs.            MIMO

● Time Invariant vs. Time Variant

● Deterministic                          vs.            Non-Deterministic (Stochastic, noisy, etc.)



Dynamical Systems (3)

●LTI systems --- State-Space representation



Dynamical Systems (3)

● LTI systems --- State-Space representation

● Output response (continuous time)

● Output response (discrete time)

Free Response
(homogeneous
solution)

Effect of input

Stability condition (Hurwitz)



State-Space Realizations



LTI Systems Properties Discrete case

Reaching a state

“Observing” the initial state



LTI Systems Properties

Conditions for all LTI systems:

●Controllability

●Observability

Discrete case

Reaching a state

“Observing” the initial state



LTI Systems Properties

● Pair (A,B) is “Controllable”

● Pair (A,C) is “Observable”

● LTI System                            is a “minimal state-space realization” if it is both observable and 
controllable.

● Example:



non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.



non-LTI Systems (example)

Is the inverted pendulum (cartpole) controllable?

In non-linear systems Controllability and Observability Matrices represent LOCAL properties.



non-LTI Systems (example)

Linearization



Reference Tracking
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Given a reference trajectory r(t), design u(t) such that x(t) closely follows r(t)

Control objectives:
• Reject disturbances (if there is some perturbation in state, making it get back to initial state)
• Follow reference trajectories (if we want the system to have a certain !!"# )
• Make system follow some other “desired behavior”



Open-loop or feed-forward control
u Control action does not depend on plant output
u Cheaper, no sensors required. 
u Quality of control generally poor without human 

intervention

Open-loop vs. Closed-loop control
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Plant Controller
"($) &($) '($)

Plant Controller
"($) &($) '($)

∑
Feed-back control
u Controller adjusts controllable inputs in 

response to observed outputs
u Can respond better to variations in disturbances
u Performance depends on how well outputs can 

be sensed, and how quickly controller can track 
changes in output

Feed-back



Proportional Controller
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)($)
)̇ = ,) + .&& = /$(0 − ))

0($) &($)
∑+− Controller Plant

u Common objective: make plant state track the reference signal !(#)
u % = ' − ) is the error signal

u Closed-loop dynamics: +̇ = ,+ + ./! ! − + = , − ./! + + ./!!
u pick /! s.t. the composite system is asymptotically stable, i.e. pick /! such that eigenvalues of , − ./

have negative real-parts

reference signal
gain



u eigs , are values of λ that satisfy the equation det(, − 67) = 0
u Note eigs , = 6, 1 ⇒ unstable plant!

u Let / = =" =# . Then, , − ./ = 4 − 2=" 6 − 2=#
1 − =" 3 − =#

u eigs , − ./ satisfy equation 6# + 2=" + =# − 7 6 + 6 − 2=# = 0
� two distinct solutions 6", 6# if (6 − 6") (6 − 6#) = 6# + −6" − 6# 6 + 6"6#
� That means 2=" + =# − 7 = −6" − 6# and 6 − 2=# = 6"6#
� E.g. 6" = −1 and 6# = −2 gives =" = 4, =# = 2. Thus controller with / = 4 2 stabilizes the plant!

Designing a pole placement controller
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!(#)
!̇ = 4 6

1 3 ! + 2
1 -- = .(/ − !)

/(#) -(#)
∑+− Controller Plant



Proportional Controller
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y(#)!̇ = 2! + 3-
4 = 5! + 6-- = .$(/ − 7)

/(#) -(#)
∑+− Controller Plant

reference signal
gain



Proportional Integral Derivative (PID) controllers

7(#)!̇ = 2! + 3-
7 = 5! + 6-

/(#) -(t)∑+−

Controller

Plant

/!B(t)

/$C
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&
B D ED

/'
EB(#)
E#

∑++
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eigs ) are values of λ that satisfy the equation det() − ./) = 0
Note eigs ) = 6, 1 ⇒ unstable plant!



Measuring control performance

Overshoot: The difference between the maximum value of the system

output and the desired reference value.

7 = 1 



Measuring control performance

7 = 1 

Rise time: The time difference between the initial time when the reference

signal changes and the time at which the output signal crosses the desired

reference value.



Measuring control performance

7 = 1 

Steady-state error: The difference between the steady-state value of 

the output signal and the value of the reference signal. 



Measuring control performance

7 = 1 

Settling time: The time difference between the initial time when the 

reference signal changes and the time at which the output signal reaches 

its steady-state value.



8! = 50 8! = 500 

Measuring control performance



P-only controller
�Compute error signal 9 = / − 4
�Proportional term .99: 

�#F proportional gain; 
�Feedback correction proportional to error

�Cons:
�If #F is small, error can be large! [undercompensation]
�If #F is large, 

�system may oscillate (i.e. unstable) [overcompensation]
�may not converge to set-point fast enough

�P-controller always has steady state error or offset error



Compute error signal ! = # − %
Integral term: &! ∫"

# ! ( )(
• !! integral gain; 
• Feedback action proportional to 

cumulative error over time
• If a small error persists, it will add up over time 

and push the system towards eliminating this 
error): eliminates offset/steady-state error

Disadvantages:
• Integral action by itself can increase instability
• Integrator term can accumulate error and suggest 

corrections that are not feasible for the actuators (integrator windup)
• Real systems “saturate” the integrator beyond a certain value

PI-controller



Integrator windup

PI-controller



Compute error signal ! = # − %
Derivative term &$!̇:

• !" derivative gain; 
• Feedback proportional to how fast 

the error is increasing/decreasing
Purpose:

• “Predictive” term, can reduce overshoot: 
if error is decreasing slowly, feedback is slower

• Can improve tolerance to disturbances

Disadvantages:
• Still cannot eliminate steady-state error
• High frequency disturbances can get amplified

PD-controller



PID-controller



May often use only PI or PD control
Many heuristics to tune PID controllers, i.e., find values of .$, .:, .;
Several recipes to tune, usually rely on designer expertise
E.g. Ziegler-Nichols method: increase .$ till system starts oscillating with period ; (say 
till .$ = .∗), then set .$ = 0.6.∗, .: = =.?@∗

A , .; = B
CD.

∗;
Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities
Work well with linear systems or for small perturbations,
For non-linear systems use “gain-scheduling”

• (i.e. using different /!, /$, /' gains in different operating regimes)

PID controller in practice
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Gain Scheduling Example
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Sensor/Observer

Calibration Routine Example

K_p = f_p (state, param_set)
K_i = f_i (state, param_set)
K_d = f_d (state, param_set)

loss = g(stability, risetime, overshoot, etc.)

while not (end condition):

loss = run_system (param_set)
optimization_step(param_set)

Used for NONLINEAR / unknown systems



Observation

R

R

• Problem:Control
⁃ design with

(partially) unknown state

• Solution:
⁃ Luenberger Observer

Obs



Luenberger Observer

●State-space representation

●

●Observer Error satisfies:

●Required: Observability, Controllability

●Pole Placement

Control design 
parameters

Overall system is stable 
iff both observer and
controller are stable



Example - DC Motor

State-space 
representation

b = 0.1  # friction coefficient ( Nm/(rad/sec) )
I = 0.01 # mechanical inertia (Kg*m^2)
k = 0.01 # motor torque constant (Nm/A)
R = 1    # armature resistance (Ohm)
L = 0.5  # armature inductance (H)


