
Algorithms on Strings
Giulia Bernardini

giulia.bernardini@units.it

Fundamentals of algorithms

a.y. 2021/2022

mailto:giulia.bernardini@units.it

Basic definitions
An alphabet Σ is a set of symbols (a.k.a. letters). It can be both
finite or infinite: e.g., Σ={0,1}, Σ={a,…,z}, Σ= are all aceptable.

 
A string S[1...|S|] over Σ is a finite sequence of symbols from Σ;
|S| is the length of string S

Σ* denotes the set of all possible strings over Σ; Σk denotes all
possible strings of length k over Σ

ε denotes the empty string, which belongs to Σ* 

ℕ

Basic definitions
If x ∈ Σ* and y ∈ Σ*, then xy ∈ Σ* is their concatenation

Let z = xyw. Then:

• x is a prefix of z. If x z and x ε, the prefix is proper

• w is a suffix of z. If w z and w ε, the suffix is proper

• y is a substring of z. If y z and y ε, the substring is proper

For any 1 i j |S|, S[i..j] denotes the substring of length j-i+1
starting at position i of S

≠ ≠
≠ ≠

≠ ≠

≤ ≤ ≤

Basic definitions
Consider two strings, T[1..n] of length n and P[1..m] of length m n,
both over the finite alphabet Σ.

P occurs with shift s (equivalently, occurs at position s+1) in T if
0 s n-m and T[s+1..s+m]=P[1..m].

If P occurs with shift s in T, then we call s a valid shift; otherwise,
we call s an invalid shift.

We call text the longer string T; pattern the shorter string P

≤

≤ ≤

T

P

String-matching problem
The string-matching (a.k.a. pattern matching) problem is to find all
positions at which a pattern P occurs in a text T.

This problem is the core of a myriad of applications involving text
processing. Two prime areas in which algorithms on strings are
fundamental are data mining and bioinformatics.

Applications: string sanitization
Data mining = extracting and discovering patterns in large data sets

It often raises privacy concerns: private and sensitive information
can be mined from personal data, which often consists of strings:
e.g., analysing a sequence of locations visited by an individual can
expose visits to mental health clinics; a sequence of websites
visited by an individual may expose sexual and political
orientations…

Possible solutions to these problems are string sanitization
techniques: the sensitive information is encoded by a set of
patterns, which need to be concealed from a string. These
techniques often require efficient pattern patching.

https://en.wikipedia.org/wiki/Data_set

Applications: genome analysis
Human DNA can be modeled as a pair of strings over an alphabet
of four letters, called bases: {A,C,G,T}. Each of these strings has a
length of about 3 109.

The bases of DNA can be read using sequencers. No existing
sequencer can read all the bases of the genome in one go: they all
produce a set of fragments, called reads. The most widely used
sequencer, Illumina, produces reads of length aroud 100 bases.

Assembling the reads to reconstruct the whole genome is difficult…

⋅

Applications: genome analysis
Tecnologies to read fragments of the genome exist from the
Seventies: the “first generation” sequencers produced reads of
length about 1000 bases. But there existed no algorithms to arrange
these reads to reconstruct the human genome.

Applications: genome analysis
The Human Genome Project was launched in

1990 with a budget of $3 billion and the objective

of reconstructing the sequence of a whole human

genome within 15 years.

A 'rough draft' of the genome was finished in 2000,

especially thanks to the design of efficient string algorithms.

The first fairly complete version of the genome was released in
2003: it covered 92% of the genome with an accuracy over 99,99%.

The last 8% of the genome was reconstructed in January 2022.

Applications: genome analysis
So “de novo” assembly (i.e., to assembly reads without a reference
genome) is an extremely difficult task, and it costed billions of
dollars.

Since 2003, all newly sequenced human genomes are assembled
using the first sequenced genome as a reference. This task is much
easier, and involves mapping the reads to the reference. This
involves string-matching algorithms.

Sequencing technologies become faster and cheaper (sequencing a
genome now costs around 1000$), thus this procedure has become
very common.

Applications: genome analysis

Exact String Matching
Reference1: Part of chapter “String Matching”

of: Cormen, T. H., Leiserson, C. E., Rivest, R. L.,
& Stein, C. Introduction to algorithms. (Chapters

32.1 and 32.4 of the third edition)

Reference2: Chapter 2.2 of: Gusfield, D.

Algorithms on Strings, Trees and Sequences.

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences of P in T

≤

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T

≤

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T

≤

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T

OUTPUT: shift 2 (or position 3)

≤

The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T

OUTPUT: shift 2 (or position 3)

≤

The string-matching problem
The naive solution (compare the letters of P starting from each
possible position in T) requires O(nm) time.

NAIVE_STRING_MATCHING(T,P)

sol emptylist;

for s=0 to |T|-|P|

i 1;

while i |P| and T[s+i]=P[i]

i i+1;

if i>|P|

sol.append(s);

return sol;

←

←
≤

←
O(|T|)O(|P|)

Towards a better solution
Our goal: designing an O(|T|+|P|)-time algorithm

General idea: to skip some comparisons (i.e., to make longer
shifts) by first spending a few time on learning the internal
structure of the pattern or the text (e.g., are there repeated
substrings? Which characters are in P?). This part of an algorithm
is called preprocessing.

Preprocessing the pattern
Given a position i in P, let πi be the length of the longest proper
suffix of P[1..i] that matches a prefix of P. For example:

P = ababaca

π3=1; π4=2; π5=3; π7=1

These values encapsulate knowledge about how the pattern
matches against shifts of itself. If q characters of P have matched
The text T at shift s, the next potentially valid shift is at s’=s+(q-πq).

Preprocessing the pattern
Given a position i in P, let πi be the length of the longest proper
suffix of P[1..i] that matches a prefix of P. For example:

P = ababaca

π3=1; π4=2; π5=3; π7=1

These values encapsulate knowledge about how the pattern
matches against shifts of itself. If q characters of P have matched
The text T at shift s, the next potentially valid shift is at s’=s+(q-πq).

Preprocessing the pattern
Overlapping-suffix Lemma. Let x,y,z be strings such that both x
and y are a suffix of z. Then, if (a) |x|<|y|, x is also a suffix of y;
if (b) |x|>|y|, y is also a suffix of x; if (c) |x|=|y|, then x=y.

Preprocessing the pattern
Overlapping-suffix Lemma. Let x,y,z be strings such that both x
and y are a suffix of z. Then, if (a) |x|<|y|, x is also a suffix of y;
if (b) |x|>|y|, y is also a suffix of x; if (c) |x|=|y|, then x=y.

(b)(a) (c)

Preprocessing the pattern
COMPUTE_PREFIX_FUNCTION(P)

π[1..|P|] emptyarray;

π[1] 0;

k 0;

for q=2 to |P|

while k>0 and P[k+1] P[q]

k π[k];

if P[k+1]=P[q]

k k+1;

π[q] k;

return π;

←
←

←

≠
←

←
←

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

k is increased at most once
for each iteration of the for
loop, thus the total increase
of k is at most |P|-1.

Each time we enter the for
loop, k<q; the for
increments q, so k<q holds
all the time. Then
instructions 2. and 9.
ensure that π[q]<q for all q
and thus k is always
decreased in the while loop.

π has no negative values,
so k is never negative.

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

• increase of k is at most |P|-1

• k is always decreased in the

while loop

• k is never negative

The total decrease in k from
the while loop is bounded
from above by the total
increase in k over all
iterations of the for loop,
which is |P|-1.

The running time of
COMPUTE_PREFIX(P) is
thus (|P|).
Θ

Preprocessing the pattern
Is COMPUTE_PREFIX a correct procedure?

Let Pi denote the prefix P[1..i]. We formally define the prefix
function π[q]=max{k : k<q and Pk is a suffix of Pq}. The iterate
prefix function is defined as π*[q]={π[q],π(2)[q],…,π(t)[q]}, where
π(i)[q]=π[π(i-1)[q]] and the sequence stops when reaching π(t)[q]=0.

Prefix-function iteration lemma. For any q=1,…,|P|, we have
π*[q]={k : k<q and Pk is a suffix of Pq}.

In other words, π*[q] contains the lengths of all prefixes of P that
match a suffix of Pq .

Here, π*[5]={3,1,0}

Preprocessing the pattern
Lemma. For q =1,2,…,|P|, if π[q]>0, then π[q]-1 π*[q-1]

Proof. Let r=π[q]>0, so that r<q (because it is the length of a
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is
a proper suffix of Pq-1 (by dropping the last character of Pr and Pq:
see the example below).

By the Prefix-function iteration lemma, r-1 π*[q-1]. Thus we have
that π[q]-1 = r-1 π*[q-1].

P = ababaca

P5 = ababa

∈

∈
∈

Preprocessing the pattern
Lemma. For q =1,2,…,|P|, if π[q]>0, then π[q]-1 π*[q-1]

Proof. Let r=π[q]>0, so that r<q (because it is the length of a
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is
a proper suffix of Pq-1 (by dropping the last character of Pr and Pq:
see the example below).

By the Prefix-function iteration lemma, r-1 π*[q-1]. Thus we have
that π[q]-1 = r-1 π*[q-1].

P = ababaca

P5 = ababa r=π[5]=3

∈

∈
∈

Preprocessing the pattern
Lemma. For q =1,2,…,|P|, if π[q]>0, then π[q]-1 π*[q-1]

Proof. Let r=π[q]>0, so that r<q (because it is the length of a
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is
a proper suffix of Pq-1 (by dropping the last character of Pr and Pq:
see the example below).

By the Prefix-function iteration lemma, r-1 π*[q-1]. Thus we have
that π[q]-1 = r-1 π*[q-1].

P = ababaca

P5 = ababa r=π[5]=3

P4 = abab r-1=π[5]-1=2

P2 = ab P2 is equal to a suffix of Pq-1 = P4

∈

∈
∈

Preprocessing the pattern
Lemma 1. For q =1,2,…,|P|, if π[q]>0, then π[q]-1 π*[q-1]

Let Eq-1 = {k ∈ π*[q-1] : P[k+1]=P[q]} : these are all k<q-1 s.t. Pk is
equal to a suffix of Pq-1 and Pk+1 is equal to a suffix of Pq. It holds
the following corollary of Lemma 1.

 0 if Eq-1

π[q] =

 1+max{k∈Eq-1} otherwise

We use this relation and the two lemmas to prove the correctness
of COMPUTE_PREFIX.

∈

= ∅

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

At the start of each iteration
of the for loop we have
k=π[q-1] (by initialisation and
line 9). Lines 5-8 adjust k so
that it becomes the correct
value of π[q].

The while loop of lines 5–6
searches through all values
k ∈ π*[q-1] until it finds a
value of k for which
P[k+1]=P[q].

At that point, k is the largest
value in the set Eq-1, so that
we can set π[q] to k+1.

Preprocessing the pattern
COMPUTE_PREFIX(P)

1. π[1..|P|] emptyarray;

2. π[1] 0;

3. k 0;

4. for q=2 to |P|

5. while k>0 and P[k+1] P[q]

6. k π[k];

7. if P[k+1]=P[q]

8. k k+1;

9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

If the while loop cannot find
a k ∈ π*[q-1] such that
P[k+1]=P[q], then k equals 0
at the end of the loop.

If P[1]=P[q], then we should
set both k and π[q] to 1;
otherwise we should leave k
alone and set π[q] to 0.

Lines 7–9 set k and π[q]
correctly in either case.

The Knuth-Morris-Pratt algorithm
The KMP algorithm exploits the prefix function to skip
unnecessary shifts.

KMP(T,P)

1. π COMPUTE_PREFIX(P);

2. q 0; //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T|

 5. while q>0 and P[q+1] T[i]

6. q π[q]; //next character does not match

7. if P[q+1]=T[i]

8. q q+1; //next character matches

9. if q=|P|

10. sol.append(i-|P|)

11. q π[q]; //look for the next match

←
←

←

≠
←

←

←

The Knuth-Morris-Pratt algorithm
The time complexity of KMP is (|P|+|T|). The analysis of the
algorithm is entirely analogous to the one of COMPUTE_PREFIX.

KMP(T,P)

1. π COMPUTE_PREFIX(P);

2. q 0; //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T|

 5. while q>0 and P[q+1] T[i]

6. q π[q]; //next character does not match

7. if P[q+1]=T[i]

8. q q+1; //next character matches

9. if q=|P|

10. sol.append(i-|P|)

11. q π[q]; //look for the next match

Θ

←
←

←

≠
←

←

←

The Boyer-Moore algorithm
Boyer-Moore is the practical method of choice for exact matching:
it typically examines less than |P|+|T| characters, so it has an
expectes sublinear running time and a linear worst-case time.

It uses three clever ideas:

1. The characters of the pattern are scanned from right to left

2. It uses the bad character shift rule

3. It uses the good suffix shift rule

Right-to-left scan
The characters of the pattern are scanned from right to left; then
the pattern is shifted to the right, like in KMP and in the naive
algorithm.

T= xpbctbxabpqxctbpq

P= tpabxab

Right-to-left scan
The characters of the pattern are scanned from right to left; then
the pattern is shifted to the right, like in KMP and in the naive
algorithm.

T= xpbctbxabpqxctbpq

P= tpabxab

Right-to-left scan
The characters of the pattern are scanned from right to left; then
the pattern is shifted to the right, like in KMP and in the naive
algorithm.

T= xpbctbxabpqxctbpq

P= tpabxab

Right-to-left scan
The characters of the pattern are scanned from right to left; then
the pattern is shifted to the right, like in KMP and in the naive
algorithm.

T= xpbctbxabpqxctbpq

P= tpabxab

Right-to-left scan
The characters of the pattern are scanned from right to left; then
the pattern is shifted to the right, like in KMP and in the naive
algorithm.

T= xpbctbxabpqxctbpq

P= tpabxab
x

If t = P[i .. |P |] = T[i + j .. |P | + j] and P [i − 1] T [i + j − 1] then find,
if it exists, the rightmost copy t’ of t in P such that the character to
the left of t’ in P differs from the character to the left of t.

Shift P to the right so that t’ is below t in T.

If t’ does not exist, shift the left end of P past the left end of t in T by
the least amount so that a prefix of P matches a suffix of t in T.

If no such shift is possible, then shift P |P| positions to the right.

If an occurrence of P is found, then shift P by the least amount so
that a proper prefix of P matches a suffix of the occurrence of P.

≠

The good suffix rule

If t = P[i .. |P |] = T[i + j .. |P | + j] and P [i − 1] T [i + j − 1] then find,
if it exists, the rightmost copy t’ of t in P such that the character to
the left of t’ in P differs from the character to the left of t.

Shift P to the right so that t’ is below t in T.

If t’ does not exist, shift the left end of P past the left end of t in T by
the least amount so that a prefix of P matches a suffix of t in T.

If no such shift is possible, then shift P |P| positions to the right.

If an occurrence of P is found, then shift P by the least amount so
that a proper prefix of P matches a suffix of the occurrence of P.

Preprocessing P for the good suffix rule requires O(|P|) time.

≠

The good suffix rule

Suppose that the last |P|-i characters of P matched the
corresponding characters of T, up to position k+1 in T. If P[i] T[k],

T=babcabcaab

 P=cabab

≠

The bad character shift rule

x

Suppose that the last |P|-i characters of P matched the
corresponding characters of T, up to position k+1 in T. If P[i] T[k],
let j be the rightmost occurrence in P of character T[k] (j=0 if it does
not occur anywhere in P). If j<i, shift P i-j positions to the right, so
that T[k] and P[j] are aligned (if j>0) or P starts after T[k] (if j=0).

If j>i, shift P one position to the right.

T=babcabcaab

 P=cabab

 P=cabab

≠

The bad character shift rule

Let Σ be the alphabet of T (note that we can assume |Σ| |T|).

• Initialise an array of zeroes R of length |Σ| |T|

• For each i=1,…,|P|, R[P[i]] i

• At the end, R[x] contains the rightmost position of P where

character x occurs; or 0 if x does not occur in P.

• This preprocessing requires (|Σ|+|P|) time

≤

≤
←

Θ

Preprocessing P for the bad character rule

• Start from the leftmost alignment of P in T and start matching the
characters of P backwards (right-to-left)

• If a mismatch is found, select the largest shift between the one
given by the good suffix rule and the one of the bad character rule

• If an occurrence of P is found, output the occurrence and shift P
according to the good suffix rule.

• The worst-case running time of this algorithm is (|P||T|), but it has
expected sublinear time. By adding one extra rule, it is possible to
obtain an O(|P|+|T|)-time algorithm.

Θ

The Boyer-Moore algorithm

When P does not occur in T (or it only has a constant number of
occurrences), the running time of Boyer-Moore is O(|P|+|T|) time: the
nasty case is when there are many occurrences of P.

The Galil rule addresses this case and makes it possible to achieve
O(|T|+|P|) worst-case running time .

This rule is concerned with the comparisons that need to be done
after an occurrence of P in T has been found. It exploits the
possible repetitive nature of the pattern to skip useless
comparisons after a full matching of P.

The period of a string S is the smallest p s.t. S[i]=S[i+p] for all
i=1,…,|S|-p. E.g., the period of S=abababababa is p=2. The period
of S=abcdab is p=4. The period of S=abcdefg is p=7.

The Boyer-Moore-Galil algorithm

The Galil rule is as follows.

Let k be the period of P. When a match of P has been found, shift it
by k positions to the right. Then there is an occurrence at this new
position of T if and only if the last k characters of P match the
corresponding characters of T.

T = ababaabcaabb

P = ababa k=2

 P = ababa

Only do the last two comparisons. Each time this rule is applied, it
avoids |P|-k comparisons.

The Boyer-Moore-Galil algorithm

What would the good suffix rule and the bad character rule do after
finding an occurrence of a pattern with period k?

• The good suffix rule would shift P by k positions to the right and

then compare all the |P| characters starting from the end of P

• The bad character rule does not apply to matches

• Using the Galil rule we spare |P|-k comparisons

Intuitively, this is enough to prove worst-case linear time because a
pattern can have many occurrences in T only if they largely overlap
between them; and this happens only if the pattern has a small
period.

The Boyer-Moore-Galil algorithm

• Both use a sliding window of the same length as the pattern. The
window delimits a factor of the text to be examined, and slides
along the text from left to right. Not all existing pattern matching
algorithms use this framework.

Comparison between Knuth-Morris-Pratt
and Boyer-Moore-Galil

KMP

• (|P|+|T|) worst-case running

time

• P is scanned from left to right

Θ
BMG

• O(|P|+|T|) worst-case running
time; sublinear expected time

• P is scanned from right to left

