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Basic definitions
An alphabet Σ is a set of symbols (a.k.a. letters). It can be both 
finite or infinite: e.g., Σ={0,1}, Σ={a,…,z},  Σ=  are all aceptable.

 
A string S[1...|S|] over Σ is a finite sequence of symbols from Σ;    
|S| is the length of string S


Σ* denotes the set of all possible strings over Σ; Σk denotes all 
possible strings of length k over Σ


ε denotes the empty string, which belongs to Σ* 

ℕ



Basic definitions
If x ∈ Σ* and y ∈ Σ*, then xy ∈ Σ* is their concatenation 

Let z = xyw. Then:

• x is a prefix of z. If x z and x ε, the prefix is proper

• w is a suffix of z. If w z and w ε, the suffix is proper

• y is a substring of z. If y z and y ε, the substring is proper


For any 1  i  j  |S|, S[i..j] denotes the substring of length j-i+1 
starting at position i of S
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Basic definitions
Consider two strings, T[1..n] of length n and P[1..m] of length m n, 
both over the finite alphabet Σ.

P occurs with shift s (equivalently, occurs at position s+1) in T if           
0  s  n-m and T[s+1..s+m]=P[1..m].

If P occurs with shift s in T, then we call s a valid shift; otherwise, 
we call s an invalid shift. 


We call text the longer string T; pattern the shorter string P

≤
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String-matching problem
The string-matching (a.k.a. pattern matching) problem is to find all 
positions at which a pattern P occurs in a text T.

This problem is the core of a myriad of applications involving text 
processing. Two prime areas in which algorithms on strings are 
fundamental are data mining and bioinformatics.



Applications: string sanitization
Data mining = extracting and discovering patterns in large data sets


It often raises privacy concerns: private and sensitive information 
can be mined from personal data, which often consists of strings: 
e.g., analysing a sequence of locations visited by an individual can 
expose visits to mental health clinics; a sequence of websites 
visited by an individual may expose sexual and political 
orientations…


Possible solutions to these problems are string sanitization 
techniques: the sensitive information is encoded by a set of 
patterns, which need to be concealed from a string. These 
techniques often require efficient pattern patching.

https://en.wikipedia.org/wiki/Data_set


Applications: genome analysis
Human DNA can be modeled as a pair of strings over an alphabet 
of four letters, called bases: {A,C,G,T}. Each of these strings has a 
length of about 3 109.


The bases of DNA can be read using sequencers. No existing 
sequencer can read all the bases of the genome in one go: they all 
produce a set of fragments, called reads. The most widely used 
sequencer, Illumina, produces reads of length aroud 100 bases. 


Assembling the reads to reconstruct the whole genome is difficult… 

⋅



Applications: genome analysis
Tecnologies to read fragments of the genome exist from the 
Seventies: the “first generation” sequencers produced reads of 
length about 1000 bases. But there existed no algorithms to arrange 
these reads to reconstruct the human genome.




Applications: genome analysis
The Human Genome Project was launched in 

1990 with a budget of $3 billion and the objective

of reconstructing the sequence of a whole human

genome within 15 years.


A 'rough draft' of the genome was finished in 2000,

especially thanks to the design of efficient string algorithms. 

The first fairly complete version of the genome was released in 
2003: it covered 92% of the genome with an accuracy over 99,99%.


The last 8% of the genome was reconstructed in January 2022.



Applications: genome analysis
So “de novo” assembly (i.e., to assembly reads without a reference 
genome) is an extremely difficult task, and it costed billions of 
dollars.


Since 2003, all newly sequenced human genomes are assembled 
using the first sequenced genome as a reference. This task is much 
easier, and involves mapping the reads to the reference. This 
involves string-matching algorithms. 


Sequencing technologies become faster and cheaper (sequencing a 
genome now costs around 1000$), thus this procedure has become 
very common.



Applications: genome analysis



Exact String Matching
Reference1: Part of chapter “String Matching” 

of:  Cormen, T. H., Leiserson, C. E., Rivest, R. L., 
& Stein, C. Introduction to algorithms. (Chapters 

32.1 and 32.4 of the third edition)

Reference2: Chapter 2.2 of: Gusfield, D. 

Algorithms on Strings, Trees and Sequences.



The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences of P in T
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The string-matching problem
Input: a text T of length n and a pattern P of length m n

Output: all the occurrences (or valid shifts) of P in T


OUTPUT: shift 2 (or position 3)

≤



The string-matching problem
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The string-matching problem
The naive solution (compare the letters of P starting from each 
possible position in T) requires O(nm) time.


NAIVE_STRING_MATCHING(T,P)

sol emptylist;

for s=0 to |T|-|P|


i 1;

while i |P| and T[s+i]=P[i]


i i+1;

if i>|P|


sol.append(s);

return sol;

←

←
≤

←
O(|T|)O(|P|)



Towards a better solution
Our goal: designing an O(|T|+|P|)-time algorithm

General idea: to skip some comparisons (i.e., to make longer 
shifts) by first spending a few time on learning the internal 
structure of the pattern or the text (e.g., are there repeated 
substrings? Which characters are in P?). This part of an algorithm 
is called preprocessing. 



Preprocessing the pattern
Given a position i in P, let πi be the length of the longest proper 
suffix of P[1..i] that matches a prefix of P. For example:


P = ababaca

π3=1; π4=2; π5=3; π7=1


These values encapsulate knowledge about how the pattern 
matches against shifts of itself. If q characters of P have matched 
The text T at shift s, the next potentially valid shift is at s’=s+(q-πq).




Preprocessing the pattern
Given a position i in P, let πi be the length of the longest proper 
suffix of P[1..i] that matches a prefix of P. For example:


P = ababaca

π3=1; π4=2; π5=3; π7=1


These values encapsulate knowledge about how the pattern 
matches against shifts of itself. If q characters of P have matched 
The text T at shift s, the next potentially valid shift is at s’=s+(q-πq).




Preprocessing the pattern
Overlapping-suffix Lemma. Let x,y,z be strings such that both x 
and y are a suffix of z. Then, if (a) |x|<|y|, x is also a suffix of y;            
if (b) |x|>|y|, y is also a suffix of x; if (c) |x|=|y|, then x=y.



Preprocessing the pattern
Overlapping-suffix Lemma. Let x,y,z be strings such that both x 
and y are a suffix of z. Then, if (a) |x|<|y|, x is also a suffix of y;            
if (b) |x|>|y|, y is also a suffix of x; if (c) |x|=|y|, then x=y.

(b)(a) (c)



Preprocessing the pattern
COMPUTE_PREFIX_FUNCTION(P)

π[1..|P|] emptyarray;

π[1] 0; 

k 0;

for q=2 to |P|

while k>0 and P[k+1] P[q]


k π[k];

if P[k+1]=P[q]


k k+1;

π[q] k;


return π;

←
←

←
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Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

k is increased at most once 
for each iteration of the for 
loop, thus the total increase 
of k is at most |P|-1.


Each time we enter the for 
loop, k<q; the for 
increments q, so k<q holds 
all the time. Then 
instructions 2. and 9. 
ensure that π[q]<q for all q 
and thus k is always 
decreased in the while loop.


π has no negative values, 
so k is never negative.



Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

• increase of k is at most |P|-1

• k is always decreased in the 

while loop

• k is never negative


The total decrease in k from 
the while loop is bounded 
from above by the total 
increase in k over all 
iterations of the for loop, 
which is |P|-1. 


The running time of 
COMPUTE_PREFIX(P) is 
thus (|P|).
Θ



Preprocessing the pattern
Is COMPUTE_PREFIX a correct procedure?

Let Pi denote the prefix P[1..i]. We formally define the prefix 
function π[q]=max{k : k<q and Pk is a suffix of Pq}. The iterate 
prefix function is defined as π*[q]={π[q],π(2)[q],…,π(t)[q]}, where     
π(i)[q]=π[π(i-1)[q]] and the sequence stops when reaching π(t)[q]=0.


Prefix-function iteration lemma. For any q=1,…,|P|, we have 
π*[q]={k : k<q and Pk is a suffix of Pq}.

In other words, π*[q] contains the lengths of all prefixes of P that 
match a suffix of Pq .

Here, π*[5]={3,1,0}



Preprocessing the pattern
Lemma. For q =1,2,…,|P|, if π[q]>0, then π[q]-1  π*[q-1]

Proof. Let r=π[q]>0, so that r<q (because it is the length of a 
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is 
a proper suffix of Pq-1  (by dropping the last character of Pr and Pq: 
see the example below).

By the Prefix-function iteration lemma, r-1  π*[q-1]. Thus we have 
that π[q]-1 = r-1   π*[q-1].


P   = ababaca                  

P5 = ababa                 

∈

∈
∈
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Proof. Let r=π[q]>0, so that r<q (because it is the length of a 
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is 
a proper suffix of Pq-1 (by dropping the last character of Pr and Pq: 
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Preprocessing the pattern
Lemma. For q =1,2,…,|P|, if π[q]>0, then π[q]-1  π*[q-1]

Proof. Let r=π[q]>0, so that r<q (because it is the length of a 
proper suffix of the prefix of P of length q). Thus r-1<q-1 and Pr-1 is 
a proper suffix of Pq-1 (by dropping the last character of Pr and Pq: 
see the example below).

By the Prefix-function iteration lemma, r-1  π*[q-1]. Thus we have 
that π[q]-1 = r-1   π*[q-1].


P   = ababaca                  

P5 = ababa                   r=π[5]=3

P4 = abab                     r-1=π[5]-1=2 

P2 = ab                         P2 is equal to a suffix of Pq-1 = P4

∈

∈
∈



Preprocessing the pattern
Lemma 1. For q =1,2,…,|P|, if π[q]>0, then π[q]-1  π*[q-1]


Let Eq-1 = {k ∈ π*[q-1] : P[k+1]=P[q]} : these are all k<q-1 s.t. Pk is 
equal to a suffix of Pq-1 and Pk+1 is equal to a suffix of Pq. It holds 
the following corollary of Lemma 1.


  0    if Eq-1 

π[q] =


  1+max{k∈Eq-1}    otherwise


We use this relation and the two lemmas to prove the correctness 
of COMPUTE_PREFIX.

∈
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Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

At the start of each iteration 
of the for loop we have 
k=π[q-1] (by initialisation and 
line 9). Lines 5-8 adjust k so 
that it becomes the correct 
value of π[q].


The while loop of lines 5–6 
searches through all values  
k ∈ π*[q-1] until it finds a 
value of k for which 
P[k+1]=P[q].


At that point, k is the largest 
value in the set Eq-1, so that 
we can set π[q] to k+1.



Preprocessing the pattern
COMPUTE_PREFIX(P)        


1. π[1..|P|] emptyarray;

2. π[1] 0; 

3. k 0;

4. for q=2 to |P|


5. while k>0 and P[k+1] P[q]

6. k π[k];


7. if P[k+1]=P[q]

8. k k+1;


9. π[q] k;

10. return π;

←
←

←

≠
←

←
←

If the while loop cannot find 
a k ∈ π*[q-1] such that 
P[k+1]=P[q], then k equals 0 
at the end of the loop. 


If P[1]=P[q], then we should 
set both k and π[q] to 1; 
otherwise we should leave k 
alone and set π[q] to 0. 


Lines 7–9 set k and π[q] 
correctly in either case. 




The Knuth-Morris-Pratt algorithm
The KMP algorithm exploits the prefix function to skip 
unnecessary shifts.

KMP(T,P)


1. π COMPUTE_PREFIX(P);

2. q 0;                  //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T| 


 5. while q>0 and P[q+1] T[i]

6. q π[q];                          //next character does not match


7. if P[q+1]=T[i]

8. q q+1;                          //next character matches


9. if q=|P|

10. sol.append(i-|P|)

11. q π[q];                           //look for the next match

←
←

←

≠
←

←

←



The Knuth-Morris-Pratt algorithm
The time complexity of KMP is (|P|+|T|). The analysis of the 
algorithm is entirely analogous to the one of COMPUTE_PREFIX.

KMP(T,P)


1. π COMPUTE_PREFIX(P);

2. q 0;                  //q stores the number of matched chars of P

3. sol emptylist;

4. for i = 1,…,|T| 


 5. while q>0 and P[q+1] T[i]

6. q π[q];                          //next character does not match


7. if P[q+1]=T[i]

8. q q+1;                          //next character matches


9. if q=|P|

10. sol.append(i-|P|)

11. q π[q];                           //look for the next match

Θ

←
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The Boyer-Moore algorithm
Boyer-Moore is the practical method of choice for exact matching: 
it typically examines less than |P|+|T| characters, so it has an 
expectes sublinear running time and a linear worst-case time.


It uses three clever ideas:

1. The characters of the pattern are scanned from right to left

2. It uses the bad character shift rule

3. It uses the good suffix shift rule



Right-to-left scan
The characters of the pattern are scanned from right to left; then 
the pattern is shifted to the right, like in KMP and in the naive 
algorithm.


T= xpbctbxabpqxctbpq


P=     tpabxab



Right-to-left scan
The characters of the pattern are scanned from right to left; then 
the pattern is shifted to the right, like in KMP and in the naive 
algorithm.


T= xpbctbxabpqxctbpq


P=     tpabxab



Right-to-left scan
The characters of the pattern are scanned from right to left; then 
the pattern is shifted to the right, like in KMP and in the naive 
algorithm.


T= xpbctbxabpqxctbpq


P=     tpabxab



Right-to-left scan
The characters of the pattern are scanned from right to left; then 
the pattern is shifted to the right, like in KMP and in the naive 
algorithm.


T= xpbctbxabpqxctbpq


P=     tpabxab



Right-to-left scan
The characters of the pattern are scanned from right to left; then 
the pattern is shifted to the right, like in KMP and in the naive 
algorithm.


T= xpbctbxabpqxctbpq


P=     tpabxab
x



If t = P[i .. |P |] = T[i + j .. |P | + j ] and P [i − 1]  T [i + j − 1] then find, 
if it exists, the rightmost copy t’ of t in P such that the character to 
the left of t’ in P differs from the character to the left of t.

Shift P to the right so that t’ is below t in T.

If t’ does not exist, shift the left end of P past the left end of t in T by 
the least amount so that a prefix of P matches a suffix of t in T.

If no such shift is possible, then shift P |P| positions to the right.

If an occurrence of P is found, then shift P by the least amount so 
that a proper prefix of P matches a suffix of the occurrence of P.


≠

The good suffix rule



If t = P[i .. |P |] = T[i + j .. |P | + j ] and P [i − 1]  T [i + j − 1] then find, 
if it exists, the rightmost copy t’ of t in P such that the character to 
the left of t’ in P differs from the character to the left of t.

Shift P to the right so that t’ is below t in T.

If t’ does not exist, shift the left end of P past the left end of t in T by 
the least amount so that a prefix of P matches a suffix of t in T.

If no such shift is possible, then shift P |P| positions to the right.

If an occurrence of P is found, then shift P by the least amount so 
that a proper prefix of P matches a suffix of the occurrence of P.


Preprocessing P for the good suffix rule requires O(|P|) time.


≠

The good suffix rule



Suppose that the last |P|-i characters of P matched the 
corresponding characters of T, up to position k+1 in T. If P[i] T[k],


T=babcabcaab


  P=cabab

≠

The bad character shift rule

x



Suppose that the last |P|-i characters of P matched the 
corresponding characters of T, up to position k+1 in T. If P[i] T[k], 
let j be the rightmost occurrence in P of character T[k] (j=0 if it does 
not occur anywhere in P). If j<i, shift P i-j positions to the right, so 
that T[k] and P[j] are aligned (if j>0) or P starts after T[k] (if j=0). 

If j>i, shift P one position to the right.


T=babcabcaab


  P=cabab


      P=cabab

≠

The bad character shift rule



Let Σ be the alphabet of T (note that we can assume |Σ| |T|).


• Initialise an array of zeroes R of length |Σ| |T|

• For each i=1,…,|P|, R[P[i]] i

• At the end, R[x] contains the rightmost position of P where 

character x occurs; or 0 if x does not occur in P.

• This preprocessing requires (|Σ|+|P|) time

≤

≤
←

Θ

Preprocessing P for the bad character rule



• Start from the leftmost alignment of P in T and start matching the 
characters of P backwards (right-to-left)


• If a mismatch is found, select the largest shift between the one 
given by the good suffix rule and the one of the bad character rule


• If an occurrence of P is found, output the occurrence and shift P 
according to the good suffix rule.


• The worst-case running time of this algorithm is (|P||T|), but it has 
expected sublinear time. By adding one extra rule, it is possible to 
obtain an O(|P|+|T|)-time algorithm.

Θ

The Boyer-Moore algorithm



When P does not occur in T (or it only has a constant number of 
occurrences), the running time of Boyer-Moore is O(|P|+|T|) time: the 
nasty case is when there are many occurrences of P.

The Galil rule addresses this case and makes it possible to achieve          
O(|T|+|P|) worst-case running time .


This rule is concerned with the comparisons that need to be done 
after an occurrence of P in T has been found. It exploits the 
possible repetitive nature of the pattern to skip useless 
comparisons after a full matching of P.


The period of a string S is the smallest p s.t. S[i]=S[i+p] for all 
i=1,…,|S|-p. E.g., the period of S=abababababa is p=2. The period 
of S=abcdab is p=4. The period of S=abcdefg is p=7.

The Boyer-Moore-Galil algorithm



The Galil rule is as follows.

Let k be the period of P. When a match of P has been found, shift it 
by k positions to the right. Then there is an occurrence at this new 
position of T if and only if the last k characters of P match the 
corresponding characters of T.


T = ababaabcaabb


P = ababa                           k=2


    P = ababa


Only do the last two comparisons. Each time this rule is applied, it 
avoids |P|-k comparisons.

The Boyer-Moore-Galil algorithm



What would the good suffix rule and the bad character rule do after 
finding an occurrence of a pattern with period k?

• The good suffix rule would shift P by k positions to the right and 

then compare all the |P| characters starting from the end of P

• The bad character rule does not apply to matches

• Using the Galil rule we spare |P|-k comparisons


Intuitively, this is enough to prove worst-case linear time because a 
pattern can have many occurrences in T only if they largely overlap 
between them; and this happens only if the pattern has a small 
period.

The Boyer-Moore-Galil algorithm



• Both use a sliding window of the same length as the pattern. The 
window delimits a factor of the text to be examined, and slides 
along the text from left to right. Not all existing pattern matching 
algorithms use this framework.


Comparison between Knuth-Morris-Pratt  
and Boyer-Moore-Galil

KMP

• (|P|+|T|) worst-case running 

time

• P is scanned from left to right

Θ
BMG


• O(|P|+|T|) worst-case running 
time; sublinear expected time


• P is scanned from right to left


