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From pattern to text preprocessing
Both the Knuth-Morris-Pratt and the Boyer-Moore-Galil algorithms 
have a worst-case optimal running time, and Boyer-Moore-Galil in 
particular has even a sublinear expected running time.

Both these methods work by preprocessing the pattern. Many 
real-world applications, though, require to search for multiple 
patterns in the same text.



From pattern to text preprocessing
Both the Knuth-Morris-Pratt and the Boyer-Moore-Galil algorithms 
have a worst-case optimal running time, and Boyer-Moore-Galil in 
particular has even a sublinear expected running time.

Both these methods work by preprocessing the pattern, thus their 
running time can be split  Many real-world applications require to 
search for multiple patterns in the same text. This is known as the 
multiple pattern matching problem.


Input: a text T and a set of k patterns P1,…,Pk


Output: all occurrences of each of the k patterns in T



From pattern to text preprocessing
Solving the multiple pattern matching problem by applying KMP 
or Boyer-Moore-Galil to each pattern individually would require 
preprocessing each of them and then scanning the text once for 
each of them: thus O( ) time overall.


The text is the same for all pattern, so why should we read all its 
characters k times?


k

∑
i=1

|Pk | + k |T |



From pattern to text preprocessing
The general idea is to preprocess the text instead of the patterns.

The problem of preprocessing a text to allow efficient multiple 
pattern matching is called text indexing.

The fundamental data structure for text indexing is the suffix tree.



Suffix Trees
Reference: Chapter 5 of: Gusfield, D. Algorithms 

on Strings, Trees and Sequences.



Tries
A simple but powerful data structure for a set of strings is the trie. 
It is a rooted tree with the following properties:

• Edges are labelled with symbols from an alphabet Σ


• For every node v, the edges from v to its children have different 
labels 


Each node represents the string obtained by concatenating the 
symbols on the path from the root to that node. 

The trie for a string set R, denoted by trie(R), is the smallest trie 
that has nodes representing all the strings in R. The nodes 
representing strings in R may be marked. 



Tries: an example
Let R={pot, potato, pottery, tattoo, tempo}

Trie(R) is represented below. Black nodes mark the end of the 
strings in R.



Tries: an example
Let R={pot, potato, pottery, tattoo, tempo}

Trie(R) is represented below. Black nodes mark the end of the 
strings in R. A compacted trie has edges labelled by strings 
instead of letters, and no nodes with just one child.



Definition of Suffix Tree
Consider a text T=T[1..n] and denote by Ti the suffix T[i..n]. 

Furthermore, for any set C [1,…,n], we write TC={Ti : i C}.

The suffix tree of T is the compact trie of T[1,…,n], that is, the 
compact trie of all its suffixes.


⊆ ∈



Definition of Suffix Tree
Let T=mississippi. Its suffix tree is pictured below. The number in 
a node represents the starting position in T of the suffix 
represented by the node.


Note that node 11 is not a leaf. This happens because suffix “i” is 
also the prefix of some other suffix (for example “ippi”)



Definition of Suffix Tree
For constructing the suffix tree, it is desirable that all the terminal 
nodes are leaves. That’s why it is standard to add an extra letter $
Σ at the end of the string, and to construct the suffix tree of this 

extended string. The suffix tree of T=mississippi$ is
∉

i
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Definition of Suffix Tree
The suffix tree of T supports fast exact string matching on T, 
because a pattern P has an occurrence in T starting at position i if 
and only if P is a prefix of Ti.

For example, pattern P=sissi occurs in T=mississippi at position 4, 
and it is also a prefix of the suffix T4=T[4..11].

The label of a path from the root to any point in the suffix tree is 
the concatenation, in order, of the strings labelling the edges in 
the path. The path label of a node u of the suffix tree is the label of 
the path from the root to u.

The key observation is that the paths starting from the root 
represent all the prefixes of the suffixes of T.



Definition of Suffix Tree
In the suffix tree of T=mississippi$, for example, follow the path 
from the root to the red node, with path label “ssi”. Pattern “ssi” 
occurs in T at positions 3 and 6, as a prefix of suffixes T3 and T6. 
Note that these are exactly the labels of the leaves below the path.

i
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Use of the Suffix Tree
Given a text T, a pattern P to be searched in T and the suffix tree of 
T, to find all the occurrences of P in T it suffices to match the 
characters of P starting from the root of T, until either:

1. P is exhausted. Then all the occurrences of P in T are identified 

by the leaves descending from the point where the last 
character of P was matched.


2. No more matches are possible and P is not exhausted. Then P 
does not occur anywhere in T.


In both cases, the problem is solved by matching O(|P|) characters 
and by visiting a subtree with a number of leaves equal to the 
number of occurrences of P in T, denoted by occ, which can be 
done in O(occ) time. Thus matching P in T requires O(|P|+occ) time.



Properties of the Suffix Tree
Now the natural question is: what is the time complexity of building 
the suffix tree of a text? And how much space does its 
representation take?

Let us first focus on the space. We need O(1) space to represent a 
node or a character.

A string of length n has n suffixes (one for each starting position). 
There is one leaf for each suffix and the suffix tree has only 
branching nodes, thus there are O(n) nodes in total, requiring O(n) 
space to be represented.

What about representing the edge labels? Every suffix appear in 
the suffix tree, and their total length is 1+2+3+…+n-1+n=O(n2). 
Thus it looks like we need O(n2) total space in the worst case, 
but…



Properties of the Suffix Tree
…but all the strings labelling the edges of the suffix tree of T are 
substrings of T. Thus each of them can be represented by an 
interval of positions over T. Representing one such interval requires 
O(1) space, and since the suffix tree has O(n) edges (because there 
are O(n) nodes) the whole representation requires O(n) space!

O(n) space O(n2) space

i
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Properties of the Suffix Tree
For the construction, there are several linear-time algorithms, thus 
constructing the suffix tree of T in O(|T|) time. We will see one such 
algorithms in details. We have obtained the following result:


Theorem. The problem of matching multiple patterns P1,P2,…,Pk in 
a text T can be solved in O( ) time using the suffix tree 

of T.

k

∑
i=1

|Pk | + |T |



Constructing the Suffix Tree
We start with a brute force algorithm with time complexity O(n2), 
and later we will modify this algorithm to obtain a linear-time 
complexity. 



Constructing the Suffix Tree
We start with a brute force algorithm with time complexity O(n2), 
and later we will modify this algorithm to obtain a linear-time 
complexity. 

The idea is to add suffixes to the trie one at a time starting from the 
longest to the shortest suffix. 



Constructing the Suffix Tree
While constructing the suffix tree we will use the following notation.

• Su denotes the path label of the node u, that is, the string 

represented by u in the suffix tree

• child(u,c) is the child v of node u such that the label of the edge 

(u,v) starts with the letter c, and ε if u has no such child 

• parent(u) is the parent of u 

• depth(u) is the length of Su  


• start(u) is the starting position of some occurrence of Su in T



Constructing the Suffix Tree
In the suffix tree of mississippi$, if we call u the red node, we have

Su = ssi; child(u,p)=6; child(u,m)=ε; depth(u)=3; start(u)=3 or 
(equivalently) start(u)=6.

i
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Constructing the Suffix Tree
While constructing the suffix tree we will use the following notation.

• Su denotes the path label of the node u, that is, the string 

represented by u in the suffix tree

• child(u,c) is the child v of node u such that the label of the edge 

(u,v) starts with the letter c, and ε if u has no such child 

• parent(u) is the parent of u 

• depth(u) is the length of Su  


• start(u) is the starting position of some occurrence of Su in T

Then we have that  Su =T[start(u)..start(u)+depth(u)-1], and the label 
of an edge (parent(u),u) will be 

T[start(u)+depth(parent(u))..start(u)+depth(u)-1], which can be 
represented in O(1) space by the interval 

[start(u)+depth(parent(u))..start(u)+depth(u)-1]



Constructing the Suffix Tree

i
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mississippi$
[start(u)+depth(parent(u))..start(u)+depth(u)-1]



Constructing the Suffix Tree
A locus in the suffix tree is a pair (u,d) where 

depth(parent(u)) < d depth(u). It represents: 


• The uncompact trie node that would be at depth d along the 
edge (parent(u), u), and


• The corresponding string S(u,d) =T[start(u)..start(u)+d-1].


Recall that the nodes of the uncompact trie represent the set of all 
factors of T. Thus every factor of T has its own locus. 


During the construction, we need to create nodes at an existing 
locus in the middle of an edge, splitting the edge into two edges. 

≤



Constructing the Suffix Tree
CreateNode(u,d)   \\splits the edge above u at string depth d


1  i start(u);

2  p parent(u); 

3  v EmptyNode(); 

4  (start(v),depth(v)) (i,d);

5  child(v,T[i+d]) u;

6  parent(u) v;

7  child(p,T[i +depth(p)]) v;

8  parent(v) p;


  9  return v;

←
←
←

←
←

←
←

←



Constructing the Suffix Tree
CreateLeaf(i,u,d)               \\attaches a new leaf at depth d under u 


1  w EmptyLeafNode(); 


2  (start(w),depth(w)) (i,|T|-i+1);   \\depth=length of suffix T[i..|T|]


3  child(u,T[start(w)+d]) w;


4  parent(w) u;

5  return w; 

←
←

←
←



Brute Force Suffix Tree Construction
BF-Construction(T[0 . . n])


1 root EmptyNode(); 

2 depth(root) 0;

3 (u,d) (root,0);

4 for i=0,…,n do


5 while d=depth(u) and child(u,T[i+d])  ε do

6 u child(u,T[i +d]);

7 d d+1;

8 while d < depth(u) and T[start(u) + d] = T[i + d]) do


9 d d+1;

10 if d < depth(u) then


11 u CreateNode(u, d);

12 w CreateLeaf(i,u,d);

13 (u,d) (root,0);

←
←

←

≠
←
←

←

←
←

←


