
Exercises Lecture VII:
Metropolis - Monte Carlo algorithm

gaussian and Boltzmann distributions

1. Random numbers with gaussian distribution:
Metropolis algorithm
Here we use the Metropolis algorithm to generate points with the distri-

bution P (x) = e�x2/(2�2)
. The algorithm is implemented for instance in

the code gauss metropolis.f90. We consider � = 1, but the suggestion

is to write the code for a generic �.

(a) Start from x0=0 and choose �=5� to be the maximum displacement

for each step. Execute runs with n=100, 1000, 10000, 100000 points,

make an histogram of the points generated and compare it with the

gaussian distribution. For which n the agreement is satisfactory?

(b) Choose n which gives a satisfactory result. For � fixed, change the

step size � (i.e., change the ratio �/�). Determine qualitatively the

dependence of the acceptance ratio on �/�. Make a plot. How to

choose �/� in order to accept from ⇡ 1/3 to ⇡ 1/2 of trial changes?

(c) By varying n in a more refined way (e.g. from 100 to 10000 with steps

of 100), compare the first moments of the distribution obtained nu-

merically with the exact ones analytically calculated with the Gaus-

sian. In particular, focus on the second moment and make a plot of

the di↵erence “exact variance - numerical variance” as a function of

n.

(d) For fixed � = 1 and �=5�, determine qualitatively the equilibration

time (i.e. the number of steps necessary to equilibrate the system);

a possible criterion is that the numerical estimate of hx2i � hxi2 is

close enough to �2
, say within 5%.
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2. Sampling physical quantities: direct sampling and Metropolis
sampling
Consider the quantum harmonic oscillator and its ground state. The exact

solution and the expectation values of kinetic, potential and total energy

are know analitically, and can be used to compare the numerical results.

(a) Direct sampling. Estimate kinetic energy, potential energy, first mo-

ments hxii of the wavefunction  (x) = Ae�x2/(4�2)
. with a sample-

mean Monte Carlo calculation of the integral of the expectation val-

ues using a sequence of random points directly obtained for instance

from the gasdev subroutine (see Lecture III). See for instance the

code direct sampling.f90. Study the numerical accuracy and the

convergence of the previous quantities as a function of the number

of sampling points (since variance and kinetic, potential and total

energy depend on the second moment hx2i, you should find the same

behavior for all these quantities, a part from a scaling factor).

(b) Is the normalization constant A of the wavefunction important for

our purposes?

(c) Metropolis sampling. Repeat the sampling using the Metropolis algo-

rithm. See for instance the code metropolis sampling.f90. Eval-

uate the numerical accuracy and convergence of the more relevant

quantities as a function of the number of sampling points. (see the

comment in (a))

(d) Compare the behavior of the absolute error on the total energy with

respect to the exact value as a function of the number of sampling

points in case of direct and of Metropolis sampling, making a log-log

plot. Comment on the results and explain the possible di↵erences

(consider how the points are generated in the two methods. . . ).

3. Correlations

(a) Calculate the autocorrelation function C(j) =
hxixi+ji � hxii2

hx2
i i � hxii2

for a

sequence or random numbers distributed according to a gaussian us-

ing the Metropolis method, testing di↵erent values of �/�. Comment

the results.

(b) For a fixed value of � compare the autocorrelation function for two

sequences of numbers generated according to a gaussian(i) using the

Metropolis method and (ii) using some ad-hoc routine, like for in-

stance gasdev based on the Box-Muller algorithm. Discuss the re-

sults.
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4. Verification of the Boltzmann distribution

We can verify directly that the Metropolis algorithm yields the Boltzmann

distribution. We consider a single classical particle in one dimension

in equilibrium with a heath bath (canonical ensemble). We fix therefore

the temperature T , which labels a macrostate. The energy E can vary

according to the particular microstate (in this particular case, it is enough

to label a microstate, a part from the sign of the velocity).

(a) Write a code (see e.g. boltzmann metropolis.f90) to determine

the form of the probability distribution P(E) that is generated by

the Metropolis algorithm. Let for instance T=1, the initial velocity

vinitial=0, the number of Monte Carlo steps nmcs=1000, and the

maximum variation of the velocity dvmax=2. Calculate the mean

energy, the mean velocity, and the probability density P(E).

(b) Consider ln P(E) as a function of E. Can you recognize the expected

behavior ? (see slides for the analytic derivation of P(E)) You should

recognise that the asymptotic behavior is a straight line whose slope

is �1/T .

(c) How many nmcs do you need to have a reasonable estimate of the

mean energy and mean velocity ?

(d) Verify that your results do not depend from the initial conditions by

changing vinitial. What does it change? What does it changes by

changing instead dvmax ?

(e) Modify the program to simulate an ideal gas of N particles in one

dimension. [Hint: modify the subroutine Metropolis inserting a loop

over the particles] Consider for instance N=20, T=100, nmcs=200.

Assume all particles to have the same initial velocity vinitial=10.

Determine the value of dvmax so that the acceptance ratio is about

50% ? What are the mean energy hEi (i.e., total energy of the system

hEtoti divided by the number of particles) and the mean velocity?

[the symbol hi indicates temporal(statistical) averages]

(f) Calculate P(E) (E now indicates the mean energy per particle), make

a plot and describe its behaviour. Is it similar to the case N=1 ?

Comment on that.

(g) Calculate the total energy Etot for T=10, 20, 30, 90, 100, and 110,

and estimate the heat capacity as the numerical derivative of the

energy with respect to the temperature, C = @hEtoti/@T . [C is the

heat capacity, i.e. referred to the whole system; you may consider,

alternatively, the specific heat, referred to a single particle...]

(h) Calculate the mean square energy fluctuation h�E2
toti = hE2

toti �
hEtoti2 for T=10 and T=40. Compare the magnitude of the ratio

C = h�E2
toti/T 2

numerically estimated from the mean square energy

fluctuation with that obtained in (f).
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
! metropolis_sampling.f90
!
! METROPOLIS sampling of several physical observables for the
! hamiltonian: h = -1/2 \nabla^2 + 1/2 x^2),
! comparison exact expected results with numerical results
! on psi^2(x), with psi(x) = exp(-x^2/(4\sigma^2))
! \sigma=1 => psi^2(x) = costant * standard gaussian
! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program metropolis_sampling
implicit none
integer, parameter :: dp=selected_real_kind(13)
integer :: i,n
real(kind=dp):: sigma,etot,ekin,epot,rnd
real(kind=dp):: x,x1,x2,x3,x4,xp,delta,expx,expxp,w,acc
character(len=13), save :: format1 = "(a7,2x,2f9.5)"
x = 0.0_dp
acc = 0.0_dp
x1 = 0.0_dp
x2 = 0.0_dp
x3 = 0.0_dp
x4 = 0.0_dp
ekin = 0.0_dp
epot = 0.0_dp
print*, "n, sigma, x0, delta"
read*, n,sigma,x,delta

do i=1,n
ekin = ekin - 0.5_dp * ((x/(2*sigma**2))**2 - 1/(2*sigma**2))
epot = epot + 0.5_dp * x**2
etot = ekin + epot
x1 = x1 + x
x2 = x2 + x**2
x3 = x3 + x**3
x4 = x4 + x**4
!ccccccccccccccccccccccccccccccc
expx = - x**2 /(2*sigma**2) !
call random_number(rnd) !
xp = x + delta * (rnd-0.5_dp) !
expxp = - xp**2 /(2*sigma**2) ! metropolis
w = exp (expxp-expx) ! algorithm
call random_number(rnd) !
if (w > rnd) then !

x = xp !
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!ccccccccccccccccccccccccccccccc
acc=acc+1.0_dp

endif
enddo

write(unit=*,fmt=*)"acceptance ratio = ",acc/n
write(unit=*,fmt=*)"# Results (simulation vs. exact results):"
write(unit=*,fmt=format1)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&

+0.5_dp*sigma**2
write(unit=*,fmt=format1)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)
write(unit=*,fmt=format1)"epot = ",epot/n,0.5_dp*sigma**2
write(unit=*,fmt=format1)"<x> = ",x1/n,0.0_dp
write(unit=*,fmt=format1)"<x^2>= ",x2/n,sigma**2
write(unit=*,fmt=format1)"<x^3>= ",x3/n,0.0_dp
write(unit=*,fmt=format1)"<x^4>= ",x4/n,3.0_dp*sigma**4

end program metropolis_sampling
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
! boltzmann_metropolis.f90
!
! Metropolis algorithm used as importance-sampling:
! generation of microstates with Boltzmann distribution,
! here for a classical particle in 1D.
! The interesting quantity is the probability P(E)dE for a particle
! to have energy between E and E+dE (here E can label a microstate,
! a part from the sign +/- of the velocity)
!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module common
implicit none
public :: initial, Metropolis, data, probability, averages
real, public :: E,T,del_E,beta,dvmax,vel,accept
integer, public, dimension(:), allocatable :: seed
integer, public :: nbin,nmcs,sizer
real, public, dimension(:), allocatable :: P

contains

subroutine initial(nequil,vcum,ecum,e2cum)
real, intent(out) :: vcum,ecum,e2cum
integer, intent(out) :: nequil
print*," number of MC steps >"
read *, nmcs
print*," absolute temperature >"
read *, T
print*," initial velocity >"
read *, vel
print*," maximum variation of the velocity (hint: 4*sqrt(T)=",4*sqrt(T),") >"
read *, dvmax
call random_seed(sizer)
allocate(seed(sizer))
print *,’Here the seed has ’,sizer,’ components; insert them (or print "/") >’
read *, seed
call random_seed(put=seed)
beta = 1/T
nequil = 0.1 * nmcs ! WARNING : VERIFY this choice !
E = 0.5 * vel * vel
del_E = T/20 ! a reasonable width of the bin for the histogram of P(E)
nbin = int(4*T / del_E) ! max. number of bins
print *,"# T :",T
print *,"# <E0> :",E
print *,"# <v0> :",vel
print *,"# dvmax :",dvmax
print *,"# nMCsteps:",nmcs
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print *,"# deltaE :",del_E
print *,"# nbin :",nbin
open(unit=9,file="boltzmann.dat",status="replace",action="write")
write(unit=9,fmt=*)"# T :",T
write(unit=9,fmt=*)"# <E0> :",E
write(unit=9,fmt=*)"# <v0> :",vel
write(unit=9,fmt=*)"# dvmax :",dvmax
write(unit=9,fmt=*)"# nMCsteps:",nmcs
write(unit=9,fmt=*)"# deltaE :",del_E
write(unit=9,fmt=*)"# nbin :",nbin
allocate (P(0:nbin))
ecum = 0.0
e2cum = 0.0
vcum = 0.0
P = 0.0
accept= 0.0

end subroutine initial

subroutine Metropolis()
real :: dv,vtrial,de,rnd
call random_number(rnd)
dv = (2*rnd - 1) * dvmax ! trial variation for v
vtrial = vel + dv ! trial velocity v
de = 0.5 * (vtrial*vtrial - vel*vel) ! corresponding variation of E
call random_number(rnd)
if (de >= 0.0) then

if ( exp(-beta*de) < rnd ) return ! trial step not accepted
end if
vel = vtrial
accept = accept + 1
E = E + de

end subroutine Metropolis

subroutine data(vcum,ecum,e2cum)
real, intent(inout) :: vcum,ecum,e2cum
Ecum = Ecum + E
E2cum = E2cum + E*E
vcum = vcum + vel
call probability()

end subroutine data

subroutine probability()
integer :: ibin
ibin = int(E/del_E)
if ( ibin <= nbin ) P(ibin) = P(ibin) + 1

end subroutine probability
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subroutine averages(nequil,vcum,Ecum,E2cum)
integer, intent(in) :: nequil
real, intent(in) :: vcum,Ecum,E2cum
real :: znorm, Eave, E2ave, vave, sigma2
integer :: ibin
znorm = 1.0/nmcs
accept = accept / (nmcs+nequil) ! acceptance ratio
Eave = Ecum * znorm ! average energy
E2ave = E2cum * znorm !
vave = vcum * znorm ! average velocity
sigma2 = E2ave - Eave*Eave
print *,"# <E2>num.:",E2ave
print *,"# <E> num.:",Eave
print *,"# <E> th. :",T/2
print *,"# <v> :",vave
print *,"# accept. :",accept
print *,"# sigma :",sqrt(sigma2)
write(unit=9,fmt=*)"# <E2>num:",E2ave
write(unit=9,fmt=*)"# <E> num.:",Eave
write(unit=9,fmt=*)"# <E> th. :",T/2
write(unit=9,fmt=*)"# <v> :",vave
write(unit=9,fmt=*)"# accept. :",accept
write(unit=9,fmt=*)"# sigmaE :",sqrt(sigma2)
write(unit=9,fmt=*)"# ibin*del_E, P(E)"
do ibin = 0,nbin

write(unit=9,fmt=*) ibin*del_E, P(ibin) * znorm / del_E
end do
close(unit=9)

end subroutine averages
end module common

program Boltzmann
use common
real :: vcum, ecum, e2cum
integer :: imcs,nequil
! parameters and variable initialization
call initial(nequil,vcum,ecum,e2cum)
do imcs = 1 , nmcs + nequil

call Metropolis()
! data accumulation after each Metropolis step
if ( imcs > nequil ) call data(vcum,ecum,e2cum)

end do
call averages(nequil,vcum,Ecum,E2cum)
deallocate(P)

end program Boltzmann
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