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Learning from Time-series Data

Logical Learning 

STL classifiers from positive examples



Learning from Time-series Data

Logical Learning 

STL classifiers from positive examples

Advantages: explicability, easy to build monitors 
Applications: anomaly detection, specification synthesis 



Learning STL Classifiers ((Semi-)Supervised Learning)

Goal: learning a specification/ classifier as a temporal logic formula to 
discriminate as much as possible between bad and good behaviours



Learning STL-based clustering (Unsupervised Learning)

Goal: clusterizing spatio-temporal data using formal logic



Agenda

• Signal Temporal Logic (STL)

• STL-based classification (supervised and semi-supervised)

• Spatio-Temporal Reach and Escape Logic (STREL)

• STL-based clustering of time-series data



Signal Temporal Logic (STL) 

8 L. Nenzi et al.

dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition µ,
these are inequality of the form (g(ν1, . . . ,νn) ≥ 0), for g ∶ Rn → R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ µ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1Rf
d ϕ2 ∣ Ef

d ϕ

where true is the Boolean true constant, µ is an atomic predicate (AP ), negation¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, #, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location # at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, #, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, #, t) > 0 then (S,x, #, t) ⊧⊧ ϕ; if ρ(ϕ,S,x, #, t) <
0 then (S,x, #, t) /⊧ ϕ. Furthermore it satisfies also the correctness property,
which shows that x measures how robust is the satisfaction of a trajectory with
respect to perturbations. We refer the reader to [36] for more details.
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In addition 𝐹&𝜑 ∶= ⊤ 𝑈&𝜑 𝐺&𝜑 ∶= ¬𝐹&¬𝜑
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Signal Temporal Logic (STL)

Syntax
' := µ | ¬' | '1 ^ '2 | '1 U[a,b] '2

In addition F[a,b]' := Ua,b' and G[a,b]' := ¬F[a,b]¬'

Boolean Signal

s' : [0,T ] :! {0, 1} s.t. s'(t) = 1 , (~x , t) |= '

Quantitative Signal

⇢' : [0,T ] :! R [ {±1} s.t. ⇢'(t) = ⇢(', ~x , t)
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Robust Monitoring
A robust STL monitor is a transducer that transform x into ��(x, .)
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Quant. sat
Bool. sat

��(x, ·)/��(x, ·)

In practice
I Trace: time words over alphabet R, linear interpolation

Input: x(·) � (ti , x(ti))i�N 0utput: ��(x, ·) � (rj , z(rj))j�N
I Continuity, and piecewise a�ne property preserved

Alexandre Donzé Robust Monitoring of STL EECS144 Fall 2013 20 / 52

Robust System Design 8/33
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GOOD

GOOD

Distance to violation/satisfaction

20

𝐆 !",$"" (𝑥(𝑡) < 3)
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Recursive Quantitative Semantics

21

𝜑 𝜌(𝜑, 𝐱, 𝑡)

𝑓 𝐱 > 0 , 𝑓 𝐱 ≥ 0 𝑓 𝐱(𝑡)

¬𝜑 −𝜌 𝜑, 𝐱, 𝑡

𝜑' ∧ 𝜑( min 𝜌 𝜑#, 𝐱, t ∧ 𝜌 𝜑$, 𝐱, t

𝐅 ),* 𝜑 sup
%∈ '(),'(+

𝜌(𝜑, 𝐱, 𝜏)

𝐆 ),* 𝜑 inf
%∈ '(),'(+

𝜌(𝜑, 𝐱, 𝜏)

𝜑 𝐔[),*] 𝜓 sup
%∈ '(),'(+

min 𝜌 𝜓, 𝐱, 𝜏 , inf
%+∈ ',%

𝜌 𝜑, 𝐱, 𝑡



Introduction STL Spatio-temporal signals SSTL Example Conclusions

Monitoring STL

' ∶ (xI > 80) ∧F[60,90] (xR > 60)
' ∶ µ1 ∧  

µ1 ∶ xI − 80 > 0

 ∶ F[60,90] µ2

µ2 ∶ xR − 60 > 0

[2] O. Maler, T. Ferrére, and D. Nickovic. E�cient Robust Monitoring for STL. In Proc. CAV 2010.
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Monitoring STL

' ∶ µ1 ∧  
s'(t), ⇢'(t)

µ1 ∶ xI − 80 > 0
sµ1
(t), ⇢µ1

(t)

xI (t) − 80

 ∶ F[60,90] µ2

s (t), ⇢ (t)
µ2 ∶ xR − 60 > 0
sµ2
(t), ⇢µ2

(t)

xR(t) − 60

Boolean signals
Quantitative signals

s'(0),⇢'(0) Boolean satisfaction
Quantitative satisfaction

Secondary signals
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Monitoring STL

' ∶ µ1 ∧  

µ1 ∶ xI − 80 > 0
sµ1
(t), ⇢µ1

(t)

xI (t) − 80

xI (t), xS(t), xR(t)

 ∶ F[60,90] µ2

µ2 ∶ xR − 60 > 0
sµ2
(t), ⇢µ2

(t)

xR(t) − 60

xI (t), xS(t), xR(t)

Boolean signal
Quantitative signals

Secondary signals

Primary signals

[2] O. Maler, T. Ferrére, and D. Nickovic. E�cient Robust Monitoring for STL. In Proc. CAV 2010.

Monitoring STL



Average Robustness 
Robustness Distribution                                                                            

Indicators 
• (the average robustness degree)
• and                                    (the conditional averages)



Parametric Signal Temporal Logic
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Goal: learning a specification/ classifier as a temporal logic formula to discriminate as 
much as possible between bad and good behaviours

Advantages: explicability, easy to build monitors 
Application: anomaly detection, specification synthesis 

Learning STL classifiers



Methodology

• Single-level variant: learning formula structure and parameter using Context Free 
Grammar Genetic Programming (CFGGP)

• Bi-level variant: 
• learning formula structure CFGGP
• learn parameters of the formula using by Bayesian Optimisation

A fitness function 𝑓 measures the quality of candidate solutions and depends on the 
kind of problem at hand (two-classes, one-class)



Evolutionary algorithm

• It builds the offspring population 𝑃’

• It merges the parent and offspring populations

• It shrinks the resulting new population 𝑃



Building the populations
• Candidate formulas are represented as derivation trees of a grammar



Context Free Grammar
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Mutation operator
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Learning the Parameters 

Problem
Given a PSTL formula φ, a parameter space K, find Θ∗ that maximises the 

discrimination function 𝑓$%&(𝜑Θ)

Methodology

1. Sample {(θ(i),y(i)), i = 1,...,n}

2. Emulate (GP Regression): G[Rφ] ∼ GP(μ,k)

3. Optimize the emulation via GP-UCB algorithm, new θ(n+1) 



(1) The G(φΘ) Computation 
Collection of the training set {(θ(i),y(i)), i = 1,...,m} for parameters values θ. 



(2) The GP Regression
We have noisy observations y of the function value distributed around 

an unknown true value f (θ) with spherical Gaussian noise 



(2) The GP Regression
We have noisy observations y of the function value distributed around 

an unknown true value f (θ) with spherical Gaussian noise 



(3) The GP-UCB Algorithm
Balance Exploration and Exploitation: we maximise the 

95% upper quantile of the distribution:
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(3) The GP-UCB Algorithm
Balance Exploration and Exploitation: we maximise the 

95% upper quantile of the distribution:



Fitness Function for the two-classes problem



Fitness Function for the one-class problem



Maritime Surveillance 
Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours. 



Train Cruise



Results (supervised learning) 



Results (semi-supervised learning) 

𝜖

Single-level Bi-level

𝜖



Learning STL-based clustering (Unsupervised Learning)

Goal: clusterizing spatio-temporal data using formal logic

[2] Mining Interpretable Spatio-temporal Logic Properties for Spatially Distributed Systems, ATVA, [Mohammadinejad et al., 2021]



STL-based clustering of time-series data:
• Considerable interest in learning logical properties of temporal data

using logics such as Signal Temporal Logic (STL)
• Signal Temporal Logic (STL):
• A logic over Boolean and temporal combinations of signal predicates

• There is limited work on discovering such relations on spatio-
temporal data

We propose the first set of algorithms for unsupervised learning
of spatio-temporal data using formal logics



Spatial Model:
We model the spatial configuration as a weighted graph 𝑆 = 𝐿,𝑊
𝐿: set of locations
𝑊: proximity relation between locations

Connectivity graph
𝑊: 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦



Spatio-temporal trace:
• Time-series data (trace/signal): a sequence of data values indexed by 

time stamps
• A spatio-temporal trace associates each location in a spatial model 

with a time-series trace

Longitude
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Spatio-temporal data clustering:
• It is a process of grouping data with similar spatial attributes, 

temporal attributes, or both [1]
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Spatio-Temporal Reach and Escape Logic (STREL):
• An extension of STL with two spatial operators: Reach and Escape

• Somewhere, Everywhere and Surround operators can be derived from 
Reach and Escape 

• I will explain Reach and Everywhere operators
Refer to [2] and [3] to learn more about other spatial operators

[2] Monitoring spatio-temporal properties (invited tutorial) [Nenzi et al., 2020]
[3] https://www.youtube.com/watch?v=EfB1r9htG6M&t=179s

https://www.youtube.com/watch?v=EfB1r9htG6M&t=179s


Reach operator (R)
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Everywhere operator (□)
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[2] Monitoring spatio-temporal properties (invited tutorial) [Nenzi et al., 2020]
[3] https://www.youtube.com/watch?v=EfB1r9htG6M&t=179s

https://www.youtube.com/watch?v=EfB1r9htG6M&t=179s


Parametric STREL (PSTREL):
• Replacing values in STREL by parameters

𝜑#𝑅[*&,*!]𝜑!

𝜑#𝑅[,,#,,,]𝜑!



Monotonic PSTREL 𝜑(𝑝):
• The polarity of a parameter p is:

• + if it is easier to satisfy 𝜑 as we increase the value of p 
• − if it is easier to satisfy 𝜑 as we decrease the value of p

• Monotonic PSTREL:
• All parameters have either + or − polarity

• Example: □[",5]𝜑
• Polarity of d is −

65/34Sara M., ATVA 2021



Validity Domain of PSTREL 
𝜑(𝑝)
• Given a location 𝑙
• A set of spatio-temporal traces 𝑋

associated with 𝑙
• The set of all valuations to 𝑝 such that 

each trace in 𝑋 satisfies the STREL 
formula
• Boundary of the validity domain: 

The robustness value with respect to 
at least one trace in 𝑋 is ≈ 0

• Robustness means distance to 
satisfaction or violation

□[,,*]𝑦 < 𝑐

𝑑

𝑐



High-level steps:
• Constructing the spatial model

• Projecting each spatio-temporal trace to a tight valuation in the 
parameter space of a given PSTREL formula

• Clustering the trace projections

• Learning bounding boxes for each cluster using a Decision Tree based 
approach

• Learning a STREL formula for each cluster

• Improving the interpretability of the learned STREL formulas cluster



Constructing Spatial Model:
Approach 1: fully connected graph
• Pros: gives the most accurate result
• Cons: computationally expensive



Constructing Spatial Model:
Approach 2: Connectivity graph that connects locations with distance 
less than a threshold
• Pros: lower cost
• Cons: disconnected spatial model 
which affects the accuracy 
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Constructing Spatial Model:
Approach 3: Minimum Spanning Tree (MST)
• Pros: low cost and connected graph
• Cons: overestimation of distance 
between some nodes
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Constructing Spatial Model:
Approach 4: Enhanced Minimum Spanning Graph

Step1: create an MST
Step2: connect nodes that their shortest distance through MST is more than 𝛼
times their actual distance (default 𝛼 = 2) 

• Pros: low cost, connected graph 
and more accurate distance between
nodes
• Cons: not as accurate as fully 
connected graph
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Spatio-temporal trace projection [4] :
• The user provides a PSTREL formula

• The goal is to learn the tight parameter valuations for each spatio-
temporal trace
• Tight parameter valuation is not unique, and each point on the 

boundary of validity domain corresponds to a tight parameter 
valuations

[4]: Logical clustering and learning for time-series data [V-Chanlatte et al., 2017]

𝐺[(,*+$,-.] ⋄[(,0] (𝐵𝑖𝑘𝑒𝑠 > 𝑐)

𝑑

𝑐

Most permissive point
Robustness highly positive

Least permissive point
Robustness highly negative

𝛾 𝑑 = +

𝛾
𝑐
=
−



Spatio-temporal trace projection [4] :
• We assume some ordering or priority on parameter space, 

e.g., 𝑑 >@ 𝑐, provided by user
1. Bisection search on d
2. Bisection search on c

[4]: Logical clustering and learning for time-series data [V-Chanlatte et al., 2017]

𝑑𝑑

𝑐

Most permissive point
Robustness highly positive

Least permissive point
Robustness highly negative

𝜋 = (𝑑#, 𝑐#)

𝑑#

𝑐#

𝑐

find projections 
for all traces

𝛾 𝑑 = +

𝛾
𝑐
=
−

Sara M., ATVA 2021



Clustering:
• The parameter valuation points serve as features for off-the-shelf 

clustering algorithms
• We use the Agglomerative Hierarchical Clustering (AHC) technique
• Number of clusters to choose: 

• Domain knowledge/Silhouette metric

𝑑

𝑐

𝑑

𝑐

AHC

Sara M., ATVA 2021



Learning bounding boxes for each cluster:
• We label each parameter valuation with its cluster

• Labels = (green, red, purple)

•We use off-the-shelf Decision Tree (DT) algorithms to learn 
bounding boxes

𝑑

𝑐
DT training accuracy = 100%

𝑑#

𝑐#

𝑐!

𝑑!

𝑑 < 𝑑% 𝑑 ≥ 𝑑%

𝑐 < 𝑐% 𝑐 ≥ 𝑐%

𝑑 < 𝑑& 𝑑 ≥ 𝑑&

𝑐 ≥ 𝑐&𝑐 < 𝑐&



Learning a STREL Formula for each Cluster:
• 𝜑ABCCD = 𝜑' ∨ 𝜑(
• 𝜑BC5 = 𝜑! ∨ 𝜑3
• 𝜑@EB@FC = 𝜑$

𝑑

𝑐

1 2

3

4

5



Learning a STREL Formula for each Cluster:

77/34

(𝑐&, 𝑑!)(𝑐&, 𝑑&)
𝑑

𝑐

1 2

3

4

5

𝛾 𝑑 = +
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(𝑐!, 𝑑!)

𝜑K = 𝜑 c#, d$ ∧ ¬𝜑 c#, d# ∧ ¬𝜑 𝑐$, 𝑑$

𝜑 = 𝐺 L,MNOPQR ⋄ L,S 𝐵𝑖𝑘𝑒𝑠 > 𝑐

𝜑K = 𝐺 L,MNOPQR ⋄ L,S2 𝐵𝑖𝑘𝑒𝑠 > 𝑐#
∧ ¬𝐺 L,MNOPQR ⋄ L,S3 𝐵𝑖𝑘𝑒𝑠 > 𝑐#
∧ ¬𝐺 L,MNOPQR ⋄ L,S2 𝐵𝑖𝑘𝑒𝑠 > 𝑐$

Sara M., ATVA 2021[4]: Logical clustering and learning for time-series data [V-Chanlatte et al., 2017]



Pruning the Decision Tree:
• In some cases, achieving 100% accuracy can result in long and hence 

less interpretable formulas
• We prune the DT using a K-fold cross validation approach

pruning
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Benchmarks:
• COVID-19 data from LA County

• COVID-19 pandemic has extremely affected our lives
• Understanding the spread pattern of COVID-19 in different areas is vital to stop 

the spread of the disease.
• We focus on number of new positive cases in each region of the LA county

• BSS data from the city of Edinburgh
• The BSS consists of a number of bike stations, distributed over a geographic 

area
• We focus on the number of bikes (B) and empty slots (S) in each bike station
• We are interested in analyzing the behavior of each station

• Outdoor Air Quality data from California
• Synthetic data for a food court building



COVID-19 data from LA County
PSTREL formula: ⋄ ",5 {𝐹 ",G (𝑥 > 𝑐)}
• We fix 𝜏 to 10 days
• Small d and large c are hot spots

𝜑-.* =⋄[,,/01#.!1] 𝐹 ,,#, 𝑥 ≥ 3181 ∨ ⋄[,,#3,,,] 𝐹 ,,#, 𝑥 ≥ 5612



BSS data from the city of Edinburgh
PSTREL formula:
𝜑 𝜏, 𝑑 = 𝐺 ",G 𝜑H)IJ 𝜏 ∨ 𝜑H)FK 𝑑
• Within the next 3 hours either 𝜑H)IJ(𝜏) or 𝜑H)FK(𝑑) is True

𝜑H)IJ 𝜏 = 𝐹 ",G 𝐵 ≥ 1 ∧ 𝐹 ",G (𝑆 ≥ 1),
𝜑H)FK 𝑑 =⋄ ",5 𝐵 ≥ 1 ∧⋄ ",5 (𝑆 ≥ 1)

• Locations with large 𝜏: long wait times
• Locations with large d: far from stations with Bikes/Slots availability



BSS data from the city of Edinburgh

𝜑-.* = ¬𝐺 ,," 𝜑456% 17.09 ∨ 𝜑4578 2100 ∧ ¬𝐺 ,," (𝜑456% 50 ∨ 𝜑4578 1000.98 )



Results summary:

Case |𝑳| |𝑾| 𝒓𝒖𝒏𝒕𝒊𝒎𝒆(𝒔𝒆𝒄𝒔) numC |𝝋𝒄𝒍𝒖𝒔𝒕𝒆𝒓|
COVID-19 235 427 813.65 3 3. 𝜑 + 4
BSS 61 91 681.78 3 2. 𝜑 + 4
Air Quality 107 60 136.02 8 5. 𝜑 + 7
Food Court 20 35 78.24 8 3. 𝜑 + 4



In a nutshell:
• We proposed a technique to learn interpretable STREL formulas from 

spatio-temporal data 
• We proposed a new method for creating a spatial model with a restrict 

number of edges that preserves connectivity of the spatial model.
• We leveraged robustness of STREL combined with bisection search to 

extract features for spatiotemporal time-series clustering.
• We applied AHC on the extracted features followed by a DT based 

approach to learn an interpretable STREL formula for each cluster
• The results show that our method performs slower than ML 

approaches, but it is more interpretable




