# Learning Temporal Logic Formulas from Time-series Data

Laura Nenzi

March 30, Trieste 2022

## Time-series Data



## **Formal Specification**

#### SIMULATION



#### BEHAVIOUR

"Between 30 and 50 time units, the number of recovered individuals becomes more than 60"



PROPERTY (Temporal Logic Formula)  $F_{[30,50]}(X_R > 60)$ 

## Specification-based Monitoring



## Specification-based Monitoring



## Specification-based Monitoring



## Learning from Time-series Data



STL classifiers

## Learning from Time-series Data

STL classifiers



STL classifiers from positive examples



Logical Clusters (STL-based)



Advantages: explicability, easy to build monitors

**Applications**: anomaly detection, specification synthesis

## Learning STL Classifiers ((Semi-)Supervised Learning)



**Goal**: learning a specification/ classifier as a temporal logic formula to discriminate as much as possible between bad and good behaviours

## Learning STL-based clustering (Unsupervised Learning)



**Goal**: clusterizing spatio-temporal data using formal logic

### Agenda

- Signal Temporal Logic (STL)
- STL-based classification (supervised and semi-supervised)
- Spatio-Temporal Reach and Escape Logic (STREL)
- STL-based clustering of time-series data



In addition  $F_I \varphi := \top U_I \varphi$   $G_I \varphi := \neg F_I \neg \varphi$ 



"Between 30 and 50 time units, the number of recovered individuals becomes more than 60"

 $F_{[30,50]}(X_R > 60)$ 

Boolean Signal  $s_{\varphi} : [0, T] :\rightarrow \{0, 1\} \text{ s.t. } s_{\varphi}(t) = 1 \Leftrightarrow (\vec{x}, t) \models \varphi$ 

Quantitative Signal  $\rho_{\varphi} : [0, T] :\rightarrow \mathbb{R} \cup \{\pm \infty\} \text{ s.t. } \rho_{\varphi}(t) = \rho(\varphi, \vec{x}, t)$ 



**Boolean Semantics**  $\chi(\vec{x}, t, \varphi) \in \{0, 1\}$ 

$$\begin{array}{c} t \xrightarrow{\vec{x}} \mathbb{R}^m \xrightarrow{f} \mathbb{R} \xrightarrow{f \geq 0} \{0, 1\} \end{array}$$



**Boolean Semantics**  $\chi(\vec{x}, t, \varphi) \in \{0, 1\}$ 





Boolean Semantics  $\chi(\vec{x},t,\varphi) \in \{0,1\}$ 







# Boolean Semantics $\chi(\vec{x},t,\varphi) \in \{0,1\}$





# Boolean Semantics $\chi(\vec{x},t,\varphi) \in \{0,1\}$



## Distance to violation/satisfaction



 $\mathbf{G}_{[50,100]}(x(t) < 3)$ 

## Recursive Quantitative Semantics

| arphi                                       | $\rho(\varphi, \mathbf{x}, t)$                                                                                                                      |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(\mathbf{x}) > 0$ , $f(\mathbf{x}) \ge 0$ | $f(\mathbf{x}(t))$                                                                                                                                  |
| $\neg \varphi$                              | $-\rho(\varphi, \mathbf{x}, t)$                                                                                                                     |
| $\varphi_1 \wedge \varphi_2$                | $\min(\rho(\varphi_1, \mathbf{x}, t) \land \rho(\varphi_2, \mathbf{x}, t))$                                                                         |
| $\mathbf{F}_{[a,b]} arphi$                  | $\sup_{\tau \in [t+a,t+b]} \rho(\varphi, \mathbf{x}, \tau)$                                                                                         |
| $\mathbf{G}_{[a,b]} \varphi$                | $\inf_{\tau \in [t+a,t+b]} \rho(\varphi, \mathbf{x}, \tau)$                                                                                         |
| $arphi ~ \mathbf{U}_{[a,b]}  \psi$          | $\sup_{\tau \in [t+a,t+b]} \left( \min \left( \rho(\psi, \mathbf{x}, \tau), \inf_{\tau' \in [t,\tau)} \rho(\varphi, \mathbf{x}, t) \right) \right)$ |

## Monitoring STL





### Average Robustness

**Robustness Distribution** 

$$\mathbb{P}\left(\boldsymbol{R}_{\varphi}(\mathbf{X}) \in [\boldsymbol{a}, \boldsymbol{b}]\right) = \mathbb{P}\left(\mathbf{X} \in \{\mathbf{x} \in \mathcal{D} \mid \rho(\varphi, \mathbf{x}, \mathbf{0}) \in [\boldsymbol{a}, \boldsymbol{b}]\}\right)$$



## Parametric Signal Temporal Logic

### Definition (PSTL syntax)

$$\phi \coloneqq (x_i \bowtie \pi) | \neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \mathcal{U}_{[\tau_1, \tau_2]} \varphi_2$$

with  $\bowtie \in \{>, \leq\}$ 

- $\pi$  is **threshold** parameter
- $\tau_1$ ,  $\tau_2$  are **temporal** parameters
- $\mathbb{K} = (\mathcal{T} \times \mathcal{C})$  be the **parameter space**
- $\theta \in \mathbb{K}$  is a parameter configuration

e.g.,  $\phi = \mathcal{F}_{[a,b]}(x_i > k), \theta = (0, 2, 3.5)$  then  $\phi_{\theta} = \mathcal{F}_{[0,2]}(x_i > 3.5).$ 

## Learning STL classifiers



**Goal**: learning a specification/ classifier as a temporal logic formula to discriminate as much as possible between bad and good behaviours

Advantages: explicability, easy to build monitors

Application: anomaly detection, specification synthesis

## Methodology

• *Single-level* variant: learning formula structure and parameter using Context Free Grammar Genetic Programming (CFGGP)

- *Bi-level* variant:
  - learning formula structure CFGGP
  - learn parameters of the formula using by **Bayesian Optimisation**

A fitness function f measures the quality of candidate solutions and depends on the kind of problem at hand (two-classes, one-class)

## Evolutionary algorithm

- It builds the offspring population *P*'
- It merges the parent and offspring populations
- It shrinks the resulting new population *P*

```
1 function evolve():
           P \leftarrow \text{initialize}(\mathcal{G}, n_{\text{pop}})
 2
           foreach i \in \{1, \ldots, n_{\text{gen}}\} do
 3
                 P' \leftarrow \emptyset
 4
                 while |P'| \leq n_{pop} do
 5
                        i \leftarrow 0
 6
                        repeat
 7
                              if \sim U(0,1) \leq p_{xover} then
  8
                                     (\varphi_{p,1}, f_{p,1}) \leftarrow \text{select}(P)
  9
                                     (\varphi_{p,2}, f_{p,2}) \leftarrow \text{select}(P)
10
                                    \varphi_c \leftarrow \text{crossover}(\varphi_{p,1}, \varphi_{p,2}; \mathcal{G})
11
                              else
12
                                     (\varphi_p, f_p) \leftarrow \text{select}(P)
13
                                    \varphi_c \leftarrow \mathsf{mutate}(\varphi_p; \mathcal{G})
14
                               end
15
                              i \leftarrow i + 1
16
                        until (\varphi_c \notin P \cup P') \land (i \leq n_{atts})
17
                       P' \leftarrow P' \cup \{(\varphi_c, f_{opt}(\varphi_c; \mathcal{L}))\}
18
                 end
19
                 P \leftarrow P \cup P'
20
                 while |P| \ge n_{pop} do
21
                      P \leftarrow P \setminus \{ worst(P) \}
22
                 end
23
           end
24
           return best(P)
25
26 end
```

## Building the populations

• Candidate formulas are represented as derivation trees of a grammar



## **Context Free Grammar**

 $\langle \text{formula} \rangle ::= \langle \text{formula}_1 \rangle$  $\langle \text{formula}_i \rangle ::= \begin{cases} \langle \text{atom} \rangle \mid \langle \text{logic}_i \rangle \mid \langle \text{temp}_1 \rangle & \text{if } i < i_{\max} \\ \langle \text{atom} \rangle \mid \langle \text{logic}_i \rangle & \text{otherwise} \end{cases}$  $\langle \text{logic}_i \rangle ::= \neg \langle \text{formula}_i \rangle | \langle \text{formula}_i \rangle \land \langle \text{formula}_i \rangle$  $\langle \text{temp}_i \rangle ::= \langle \text{formula}_{i+1} \rangle U_{\langle \text{interval} \rangle} \langle \text{formula}_{i+1} \rangle |$  $G_{(interval)}(formula_{i+1}) | F_{(interval)}(formula_{i+1})$ (interval) ::= [(num), (num)] $\langle \text{atom} \rangle ::= \langle \text{attr} \rangle \langle \text{comp} \rangle \langle \text{num} \rangle$  $\langle \text{attr} \rangle \coloneqq = a_1 \mid a_2 \mid \ldots \mid a_{|A|}$  $\langle \text{comp} \rangle ::= \langle | \rangle$  $\langle num \rangle ::= \langle digit \rangle \langle digit \rangle$  $\langle \text{digit} \rangle ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$ 

## Crossover operator









## Mutation operator



## Learning the Parameters



### (1) The $G(\phi_{a})$ Computation

Collection of the training set {( $\theta^{(i)}, y^{(i)}$ ), i = 1,...,m} for parameters values  $\theta$ .



### (2) The GP Regression

We have noisy observations y of the function value distributed around an unknown true value f ( $\theta$ ) with spherical Gaussian noise

### (2) The GP Regression

We have noisy observations y of the function value distributed around an unknown true value f ( $\theta$ ) with spherical Gaussian noise



### (3) The GP-UCB Algorithm

Balance Exploration and Exploitation: we maximise the 95% upper quantile of the distribution:  $\theta_{t+1} = argmax_{\theta} [\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)}]$ 


Balance Exploration and Exploitation: we maximise the

**95%** upper quantile of the distribution:  $\theta_{t+1} = argmax_{\theta} [\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)}]$ 



#### Balance Exploration and Exploitation: we maximise the



#### Fitness Function for the two-classes problem

$$f(\varphi; X_{\mathcal{L}}^+, X_{\mathcal{L}}^-) = -\frac{\mu_{\varphi, X_{\mathcal{L}}^+} - \mu_{\varphi, X_{\mathcal{L}}^-}}{\sigma_{\varphi, X_{\mathcal{L}}^+} + \sigma_{\varphi, X_{\mathcal{L}}^-}}$$

$$\mu_{\varphi,X} = \frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \rho(\varphi, \boldsymbol{x})$$
$$\sigma_{\varphi,X} = \sqrt{\frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \left(\rho(\varphi, \boldsymbol{x}) - \mu_{\varphi,X}\right)^2}$$

#### Fitness Function for the one-class problem

$$f(\varphi; X_{\mathcal{L}}^{+}) = \alpha \frac{1}{\left|X_{\mathcal{L}}^{+}\right|} \left| \left\{ \boldsymbol{x} \in X_{\mathcal{L}}^{+} : \boldsymbol{x} \not\models \varphi \right\} \right| + \frac{1}{\sigma_{\varphi, X_{\mathcal{L}}^{+}}' \left|X_{\mathcal{L}}^{+}\right|} \sum_{\boldsymbol{x} \in X_{\mathcal{L}}^{+}} \left|\rho(\varphi, \boldsymbol{x})\right|$$

$$\sigma_{\varphi,X}' = \sqrt{\frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \left( |\rho(\varphi, \boldsymbol{x})| - \frac{1}{|X|} \sum_{\boldsymbol{x} \in X} |\rho(\varphi, \boldsymbol{x})| \right)^2}$$

#### Maritime Surveillance

Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours.



$$\phi_1 = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$$

#### Train Cruise



 $(F_{[22,40]}(vel > 24.48)) \land (F_{[46,49]}(19.00 < vel < 26.44))$ 

# Results (supervised learning)

| Dataset  | Algorithm             | FNR  | FPR  | MCR  | Time |
|----------|-----------------------|------|------|------|------|
| Maritime | BUSTLE (single-level) | 0.00 | 0.00 | 0.00 | 109  |
|          | BUSTLE (bi-level)     | 0.00 | 0.00 | 0.00 | 1477 |
|          | [23]                  | 0.00 | 0.00 | 0.00 | N/A  |
|          | [22]                  | 0.05 | 0.02 | 0.04 | 73   |
|          | [6]                   | N/A  | N/A  | 0.02 | 140  |
| Linear   | BUSTLE (single-level) | 0.00 | 0.00 | 0.00 | 15   |
|          | BUSTLE (bi-level)     | 0.00 | 0.00 | 0.00 | 112  |
|          | [23]                  | 0.01 | 0.01 | 0.01 | N/A  |
|          | [22]                  | N/A  | N/A  | 0.02 | 39   |
| Train    | BUSTLE (single-level) | 0.03 | 0.05 | 0.04 | 26   |
|          | BUSTLE (bi-level)     | 0.00 | 0.03 | 0.02 | 523  |
|          | [23]                  | 0.07 | 0.32 | 0.19 | N/A  |
|          | [22]                  | N/A  | N/A  | 0.02 | 32   |

### Results (semi-supervised learning)

Single-level

**Bi-level** 



#### Learning STL-based clustering (Unsupervised Learning)



**Goal**: clusterizing spatio-temporal data using formal logic

[2] Mining Interpretable Spatio-temporal Logic Properties for Spatially Distributed Systems, ATVA, [Mohammadinejad et al., 2021]

#### STL-based clustering of time-series data:

- Considerable interest in learning logical properties of temporal data using logics such as Signal Temporal Logic (STL)
- Signal Temporal Logic (STL):
  - A logic over Boolean and temporal combinations of signal predicates
- There is limited work on discovering such relations on spatiotemporal data

We propose the first set of algorithms for unsupervised learning of spatio-temporal data using formal logics

#### **Spatial Model:**

We model the spatial configuration as a weighted graph  $S = \langle L, W \rangle$ 

L: set of locations

W: proximity relation between locations





#### Spatio-temporal trace:

- Time-series data (trace/signal): a sequence of data values indexed by time stamps
- A spatio-temporal trace associates each location in a spatial model with a time-series trace



#### Spatio-temporal data clustering:

• It is a process of grouping data with similar spatial attributes, temporal attributes, or both [1]



t

#### Spatio-Temporal Reach and Escape Logic (STREL):

- An extension of STL with two spatial operators: Reach and Escape
- Somewhere, Everywhere and Surround operators can be derived from Reach and Escape
- I will explain Reach and Everywhere operators Refer to [2] and [3] to learn more about other spatial operators

#### Reach operator (R)



$$\varphi = yellow R_{[1,4]}green$$

$$l_3 \text{ satisfies } \varphi$$
$$path = l_3, l_{13}l_{14}l_{17}l_{35}$$

$$l_4$$
 does not satisfy  $\varphi$ 

# Everywhere operator (□)



$$\varphi = \Box_{[2,3]} yellow$$

$$l_1$$
 satisfies  $arphi$ 

$$l_2$$
 does not satisfy  $\varphi$ 

[2] Monitoring spatio-temporal properties (invited tutorial) [Nenzi et al., 2020]
[3] <u>https://www.youtube.com/watch?v=EfB1r9htG6M&t=179s</u>

#### Parametric STREL (PSTREL):

• Replacing values in STREL by parameters



# Monotonic PSTREL $\varphi(p)$ :

- The polarity of a parameter p is:
  - + if it is easier to satisfy  $\varphi$  as we increase the value of p
  - — if it is easier to satisfy  $\varphi$  as we decrease the value of p
- Monotonic PSTREL:
  - All parameters have either + or polarity
- Example:  $\Box_{[0,d]}\varphi$ 
  - Polarity of d is -

# Validity Domain of PSTREL $\varphi(p)$

- Given a location l
- A set of spatio-temporal traces X associated with l
- The set of all valuations to *p* such that each trace in *X* satisfies the STREL formula
- Boundary of the validity domain: The robustness value with respect to at least one trace in X is  $\approx 0$
- Robustness means distance to satisfaction or violation



#### High-level steps:

- Constructing the spatial model
- Projecting each spatio-temporal trace to a tight valuation in the parameter space of a given PSTREL formula
- Clustering the trace projections
- Learning bounding boxes for each cluster using a Decision Tree based approach
- Learning a STREL formula for each cluster
- Improving the interpretability of the learned STREL formulas

Approach 1: fully connected graph

- Pros: gives the most accurate result
- Cons: computationally expensive



Approach 2: Connectivity graph that connects locations with distance less than a threshold

- Pros: lower cost
- Cons: disconnected spatial model which affects the accuracy



Approach 3: Minimum Spanning Tree (MST)

- Pros: low cost and connected graph
- Cons: overestimation of distance between some nodes



Approach 4: Enhanced Minimum Spanning Graph

Step1: create an MST

Step2: connect nodes that their shortest distance through MST is more than  $\alpha$  times their actual distance (default  $\alpha = 2$ )

- Pros: low cost, connected graph and more accurate distance between nodes
- Cons: not as accurate as fully connected graph



# Spatio-temporal trace projection [4] :

• The user provides a PSTREL formula

 $G_{[0,3hours]} \diamond_{[0,d]} (Bikes > c)$ 

- The goal is to learn the tight parameter valuations for each spatiotemporal trace
- Tight parameter valuation is not unique, and each point on the boundary of validity domain corresponds to a tight parameter



[4]: Logical clustering and learning for time-series data [V-Chanlatte et al., 2017]

# Spatio-temporal trace projection [4] :

- We assume some ordering or priority on parameter space,
   e.g., d ><sub>p</sub> c, provided by user
  - 1. Bisection search on d
  - 2. Bisection search on c



[4]: Logical clustering and learning for time-series data [V-Chanlatte et al., 2017]

# **Clustering:**

- The parameter valuation points serve as features for off-the-shelf clustering algorithms
- We use the Agglomerative Hierarchical Clustering (AHC) technique
- Number of clusters to choose:
  - Domain knowledge/Silhouette metric



#### Learning bounding boxes for each cluster:

- We label each parameter valuation with its cluster
  - Labels = (green, red, purple)
- We use off-the-shelf Decision Tree (DT) algorithms to learn bounding boxes





#### Learning a STREL Formula for each Cluster:

- $\varphi_{green} = \varphi_1 \lor \varphi_2$
- $\varphi_{red} = \varphi_3 \lor \varphi_4$
- $\varphi_{purple} = \varphi_5$



#### Learning a STREL Formula for each Cluster:



$$\begin{split} \varphi_{5} &= \varphi(\mathbf{c}_{1}, \mathbf{d}_{2}) \wedge \neg \varphi(\mathbf{c}_{1}, \mathbf{d}_{1}) \wedge \neg \varphi(\mathbf{c}_{2}, \mathbf{d}_{2}) \\ \varphi &= G_{[0,3hours]} \diamond_{[0,d]} (Bikes > c) \\ \varphi_{5} &= G_{[0,3hours]} \diamond_{[0,d_{2}]} (Bikes > c_{1}) \\ \wedge \neg G_{[0,3hours]} \diamond_{[0,d_{1}]} (Bikes > c_{1}) \\ \wedge \neg G_{[0,3hours]} \diamond_{[0,d_{2}]} (Bikes > c_{2}) \end{split}$$

#### Pruning the Decision Tree:

- In some cases, achieving 100% accuracy can result in long and hence less interpretable formulas
- We prune the DT using a K-fold cross validation approach



#### Benchmarks:

- COVID-19 data from LA County
  - COVID-19 pandemic has extremely affected our lives
  - Understanding the spread pattern of COVID-19 in different areas is vital to stop the spread of the disease.
  - We focus on number of new positive cases in each region of the LA county
- BSS data from the city of Edinburgh
  - The BSS consists of a number of bike stations, distributed over a geographic area
  - We focus on the number of bikes (B) and empty slots (S) in each bike station
  - We are interested in analyzing the behavior of each station
- Outdoor Air Quality data from California
- Synthetic data for a food court building

#### **COVID-19 data from LA County**

PSTREL formula:  $(0,d) \{F_{[0,\tau]}(x > c)\}$ 

- We fix au to 10 days
- Small d and large c are hot spots


## BSS data from the city of Edinburgh

PSTREL formula:

$$\varphi(\tau, d) = G_{[0,\tau]} \big( \varphi_{wait}(\tau) \lor \varphi_{walk}(d) \big)$$

• Within the next 3 hours either  $\varphi_{wait}(\tau)$  or  $\varphi_{walk}(d)$  is True

$$\begin{aligned} \varphi_{wait}(\tau) &= F_{[0,\tau]}(B \ge 1) \land F_{[0,\tau]}(S \ge 1), \\ \varphi_{walk}(d) &= \diamond_{[0,d]}(B \ge 1) \land \diamond_{[0,d]}(S \ge 1) \end{aligned}$$

- Locations with large  $\tau$ : long wait times
- Locations with large d: far from stations with Bikes/Slots availability

## BSS data from the city of Edinburgh



$$\varphi_{red} = \neg G_{[0,3]} (\varphi_{wait}(17.09) \lor \varphi_{walk}(2100)) \land \neg G_{[0,3]} (\varphi_{wait}(50) \lor \varphi_{walk}(1000.98))$$

## **Results summary:**

| Case        | <i>L</i> | <i>W</i> | runtime(secs) | numC | $  \boldsymbol{\varphi}_{cluster}  $ |
|-------------|----------|----------|---------------|------|--------------------------------------|
| COVID-19    | 235      | 427      | 813.65        | 3    | 3. $ \phi  + 4$                      |
| BSS         | 61       | 91       | 681.78        | 3    | 2. $ \varphi  + 4$                   |
| Air Quality | 107      | 60       | 136.02        | 8    | 5. $ \phi  + 7$                      |
| Food Court  | 20       | 35       | 78.24         | 8    | 3. $ \varphi  + 4$                   |

## In a nutshell:

- We proposed a technique to learn interpretable STREL formulas from spatio-temporal data
- We proposed a new method for creating a spatial model with a restrict number of edges that preserves connectivity of the spatial model.
- We leveraged robustness of STREL combined with bisection search to extract features for spatiotemporal time-series clustering.
- We applied AHC on the extracted features followed by a DT based approach to learn an interpretable STREL formula for each cluster
- The results show that our method performs slower than ML approaches, but it is more interpretable

