

Università degli Studi di Trieste Dipartimento di Ingegneria ed Architettura

Scienza e tecnologia dei materiali ceramici

Prof. Valter Sergo

Contributi di: Federico Antonelli Elisa Favero Silvia Dalla marta

SINTERING PROCESS

Silvia Dalla Marta (dal corso di Scienza e tecnologia dei materiali ceramici prof. V. Sergo) It is a thermal process of microstructural rearrangement in which the particles of powder are compacted and the porosity decreases to form a dense piece of ceramic.

monodisperse powder fcc or hcp: PF=74.5%

ceramic matherial with porosity: *before sintering*

FORMATURE?

The absence of defects and porosity is very important for the *mechanical properties*:

$$K_{IC} = y\sigma\sqrt{c}$$

K: the parameter for the determination of the stress at the tip of the crack. y: dimensionless constant that depends on defect's geometry and load c: length of defect (m)

For the polycrystalline alumina: $K_{IC} = 3MPa\sqrt{m}$

In ceramics materials these values are very low compared to metals. A very small defect or porosity lead to failure during an application of stress.

BEFORE SINTERING:

- powder compact united by weaks Van der Waals forces
- individual grains separated by 25-60% of volume porosity

Considering two particles of ceramic material in contact with each other:

- oncave zone
- onvex zone

The atoms in a convex zone tend to *migrate* in a concave zone in according to a diffusion process actived by temperature.

DIFFUSION PROCESS

- Thermodinamically favored
- kinetically slow

FICK' S LAW (1D):

$$\frac{dC}{dt} = D\frac{d^2C}{dx^2}$$

Diffusion coefficient:

 $D = D_0 e^{-\frac{Ea}{RT}}$

In order of kinetics to be fast enough for microstructural rearrangment to occur in *short time*, the sintering temperature must be:

$$T = \frac{2}{3}T_m$$

SINTERING MECHANISMS

 SURFACE DIFFUSION
 VAPOR TRANSPORT

- BULK DIFFUSION
- GRAIN BOUNDARY DIFFUSION

NO densification

thinning of the particles

densification

decrease of the distance between particle centres

Thinning due to vapor phase matherial transfer:

Fig. 12.17. Photomicrographs of sintering sodium chloride at 750°C: (a) 1 min, (b) 90 min.

DENSIFICATION:

- atoms migration in the neck zone
- o pores disappearence
- obtaining straight grain boundaries
- same chemical potential
- thermodynamically stable

Monodispersed powder: rare and expensive!

More frequent: Grain size distribution!

SECONDARY ABNORMAL OF BOUNDARY

Since grain boundaries migrate toward their centre of curvature, grains with more than 6 sides tend to incorporate grains with less than 6 sides.

Growth of a large Al₂O₃ crystal into a matrix of uniformly sized grain.

Polycrystalline flurite CaF₂ illustrating normal grain growth

PROGRESSIVE DEVELOPMENT OF MICROSTRUCTURE IN *LUCALOX ALUMINA*

a) SEM of initial particles befor sintering (5000x)

b) SEM of particles after1minute at 1700°C (5000x)

c) SEM of particles after 2 minutes at 1700°C (5000x)

d) SEM of particles after 6 minutes at 1700°C (5000x)

e) SEM of the final microstructure that is nearly porefree, with only a few pores located within grains (500x)

PRESSURE DIFFERENCE ACROSS A CURVED SURFACE

- The differences in the curvature of surface, causes a pressure difference in the various part of system, that leads to atoms transport.
- At the surface of the particle there is a positive radius of curvature, so that the vapour pressure is larger than would be observed in a flat surface.
- At the junction between particles there is a NECK whith a small negative radius of curvatures and a vapour pressure lower than that for the particle itself.

P : Supplementary pressure to create the bubble.

γ : surface tension

GENERICALLY:

SPHERICAL MODEL: $A = 4\pi R^2$ $V = \frac{4}{3}\pi R^3$

$$pdV = \gamma_{LV} dA$$
$$\Delta p 4\pi R^2 dR = \gamma_{LV} 8\pi R dR$$
$$\Delta p = \frac{2\gamma_{LV}}{2}$$

R

 $H_2O(l) \rightleftharpoons H_2O(g)$

in equilibrium condition

$$p^{\circ} = K_e = e^{-\frac{\Delta G^0}{RT}}$$

vapour pressure of water in a flat liquid-vapour interface

If the liquid-vapour interface is not flat, as in a small drops, the water has a vapour pressure that is larger than that in a flat surface:

$$e^{-\frac{\Delta G}{RT}} = e^{-\frac{\Delta G^0}{RT}}e^{-\frac{\overline{V}\Delta P}{RT}}$$

$$P_{H_2O} = P_{H_2O}^0 e^{-\frac{2\gamma V}{rRT}}$$

 $P_{H_2O}^0$: standard vapour pression

ENERGY SURFACE

in a densification process in which the only energy is given by radius of curvature:

$$\overline{V} = \frac{MW}{\rho}$$

$$N = \frac{3MW}{4\pi a^3 \rho} = \frac{3\overline{V}}{4\pi a^3}$$

$$S_A = 4\pi a^2 N = \frac{4\pi a^2 3MW}{4\pi a^3 \rho} = 3\frac{\overline{V}}{a}$$

$$E_S = S_A \gamma = \frac{3\overline{V}\gamma}{a}$$

	3
\overline{V} : molecular volume	$\frac{cm^3}{mol}$
ho : density	$\frac{g}{cm^3}$
a : particle radius	≈ µm
N : number of particles in a mole of powder	
$S_{\scriptscriptstyle A}$: surface area	m^2
E_s :surface energy	$\frac{J}{mol}$

 E_s :surface energy γ : surface tension

MW : molecular weight

 $\approx 1 \frac{J}{m^2}$ $\frac{g}{mol}$

Energy available without added pressure in a sintering pocess of alumina:

• Energy available whith added pressure in the same sintering:

$$w = P_A \overline{V} = 750 \frac{J}{mol}$$

P = 30Mpa

$$\overline{V}_{Al_2O_3} = 25 \cdot 10^{-6} \frac{m^3}{mol}$$

Image from Kingery

true in the absence of friction:

otherwise:

Einstein's generalized equation of mobility:

F = ma

 $F = m\frac{dv}{dt} + \frac{v}{M}$ D = MRT

 $\frac{v}{M}$: friction coefficient M: mobility

D: diffusion coefficient

KINETIC MODELING OF SINTERING PROCESS

PARAMETERS TO DEFINE THE MODEL:

- define a DRIVING FORCE
- define the GEOMETRY
- *define the MECHANISM OFTRANSPORT*

STAGES OF THE SINTERING:

- INITIAL STAGE : from 50-55% to 75% of TD \longrightarrow MODELING
- *INTERMEDIATE STAGE* : from 75% to 92% of TD
- FINAL STAGE : from 92% to 100% of TD

ho : radius of the neck's curvature

 ${\cal r}_{}_{}$: radius of particle

X : parameter indicated the progress of the sintering

GEOMETRY

$$(r + \rho)^{2} = (r - \rho)^{2} + (x + \rho)$$
$$\rho = \frac{x^{2}}{4r}$$

$$A_{Neck} = 2\pi x \cdot \pi \rho = \frac{\pi^2 x}{2r}$$

 πx^{i}

8r

V_{Neck}

Approximations :

$$\rho^2 = 0$$

 $x\rho = 0$

FLUX

The material transfer is linked to the flux. Considering the area through which the transport takes (the neck area):

$$J = \frac{1}{A_{Neck}} \frac{d}{MW} \frac{dV_{Neck}}{dt}$$

d : density MW : molecoular weight J : flux

$$\frac{dV_{Neck}}{dt} = \frac{4\pi x^3}{8r}\frac{dx}{dt} = \frac{\pi x^3}{2r}\frac{dx}{dt}$$

Variation of the neck volume based on the increase of the 'x' parameter:

$$J = \frac{2r}{\pi^2 x^3} \frac{d}{MW} \frac{\pi x^3}{2r} \frac{dx}{dt} = \frac{1}{\pi \overline{V}} \frac{dx}{dt}$$

FLUX expressed as a DRIVING RORCE

$$J = cMF$$
$$M = \frac{D}{RT}$$

c : concentrationM : mobility of bulk and grain boundary atomsF : force

$$F = -\nabla G = -\frac{dG}{dx} \approx \frac{dG}{\rho}$$

Variation of the free energy during the diffusion on the neck area:

$$\Delta G = \Delta p \overline{V} = \overline{V} \gamma \left(\frac{1}{r_1} + \frac{1}{r_2} \right) = \overline{V} \gamma \left(\frac{1}{x} - \frac{1}{\rho} \right) = \frac{V \gamma}{\rho}$$

$$F = \frac{\Delta G}{\rho} = \frac{\overline{V}\gamma}{\rho^2}$$

 $J = cMF = c\frac{D}{RT}\frac{V\gamma}{\rho^2}$

 $\frac{1}{\overline{V}\pi}\frac{dx}{dt} = \frac{cD}{RT}\frac{\overline{V}\gamma}{x^4}$ $\frac{1}{16r^2}$

integration between o and x

t=0, x=0

 $\frac{1}{5}x^5 = \frac{5\pi \overline{V}^2 c D\gamma r^2}{RT}t$

 $x = \left(\frac{5\pi \overline{V}^2 cD\gamma r^2}{RT}\right)^{\frac{1}{5}} t^{\frac{1}{5}}$

t: sintering time

Variation of the volume of the particles in the sintering process during the time:

Variation of the relative density variatung time and temperature:

The increase of a few degrees in temperature has much more influence on the grain size than the increase of a one order of magnitude of the time

FIGURE 24.21 Elongated exaggerated grain in Al₂O₃.

FIGURE 24.17 (a, b) AFM of grooves at migrating GB

- During the growth, the larger grain leaves behind a lot of pores and the piece can not achive the 100% of theoretical density (DT).
- To avoid the pore incorporation inside the grain, the speed of grain boudaries must be lower than that of the pores.
- Some impurities can segregate on grain boundary (*GRAIN BOUNDARY PINNING*) slowing the growth and so it's possible to achive the 100% of DT.

v pore > v grain boundary

E.G. :

ALUMINA 'LUCALOX ': polycrystalline Al2O3 - 1% MgO

FIGURE 31.10 Hysteresis loops for BaTiO₃. (a) Single-domain single crystal. (b) Polycrystalline ceramic.

FIGURE 31.15 Effect of grain size on the dielectric con BaTiO₃.

FIGURE 24.27 Two-phase ceramics. (a) As sintered and (b) heat treated at 1600°C for 30 hours. ZTA 30% (zirconia-toughened alumina with 30 vol% YSZ containing 10 molar% yttria).

WETTABILITY

Is the ability of a drop of liquid to recline on a solid surface. Varying the pressur is changed the wettability.

- α : contact angle
- γ_{LV} : liquid-vapour interfacial energy
- γ_{LS} : liquid-solid interfacial energy
- γ_{SV} : solid-vapour interfacial energy

The contact angle specifies the condition for minimum energy, according to the relation:

$$\gamma_{SL} + \gamma_{LV} \cos \alpha = \gamma_{SV}$$
$$\cos \alpha = \frac{\gamma_{SV} - \gamma_{SL}}{\gamma_{LV}}$$

possible cases:

 $\begin{array}{l} \alpha > 90^{\circ} \longrightarrow \text{ non-wettability} \\ \alpha < 90^{\circ} \longrightarrow \text{ wettability} \\ \alpha = 0 \longrightarrow \text{ spreading} \end{array}$

LIQUID PHASE SINTERING

- It is the process of adding an additive to the powder which will melt before the ceramic grains.
- The metal added, at high temperatures, melt and WET the grains. The intergranulary spaces are such as to have a capillary forces which attract the grain one another.
- (By lowering the temperature, the amorphous phase does not wet the grains anymore and ritires in triple junctions.)
- (This gives good mechanical proprieties.)
- E.G. : WIDIA (93% WC in a Co matrix).

Liquid phase sintered SiC

Lquid phase sintered SiAION

PROCEDURE FOR THE SINTERING PROCESS

- Determination of the T_m T_{sintering} = 2/3 T_m E.G.: Al₂O₃ T_m = 2400°C T_{sintering} = 1600°C
- CALCINATION (200°C-300°C under the sintering temperature)
 E.G.: ZrO₂ stabilized by CaO, Y₂O₃, CeO₂
- FORMING the ceramic parts
- SINTERING

$$\frac{\sqrt{D \cdot t}}{a} \approx 1$$

DENSITY DETERMINATION BY ARCHIMEDE'S PRINCIPLE

- D = dry weight
- o boil the piece for 5 hours
- W = wet weight in air
- S = wet weight in water suspended
- V = external volume of the piece: V = W S
- BULK DENSITY B = D/V
- P = apparent porosity

P = (W-D)/V

Flaws are Stress Concentrators

If the crack is similar to an elliptical hole through plate, and is oriented perpendicular to applied stress, the maximum

stress
$$\sigma_m = \sigma_o \left(\frac{a}{\rho_t}\right)^{1/2} = K_t \sigma_o$$

where

- ρ_t = radius of curvature
- σ_o = applied stress
- σ_m = stress at crack tip
- a = length of surface crack or 1/2 length of internal crack

 $\sigma_m / \sigma_o = K_t$ the stress concentration factor

Brittle Fracture of Ceramics

- Most ceramics (at room temperature) fracture before any plastic deformation can occur.
- Typical crack configurations for 4 common loading methods.

Undistinct features: brittle fracture (SiC)

Fatigue

 Fracture surface with crack initiation at top.
 Surface shows predominantly dull fibrous texture where rapid failure occurred after crack achieved critical size.

Fatigue failure

- 1. Crack initiation
- 2. Crack propagation
- 3. Final failure

Brittle Fracture of Ceramics

- Surface of a 6-mm diameter fused silica rod.
- Characteristic fracture behavior in ceramics
 - Origin point
 - Initial region (mirror) is flat and smooth
 - After reaches critical velocity crack branches
 - mist
 - hackle

Fracture of glass

Fracture surface of silicon nitride with steel impurity

Fracture surface of lathe machined Silicon nitride

10µm ⊢

Roadmap for fractography

Roadmap for correcting failure

Toughening by whiskers and fibers

FIGURE 18.18 SEM image showing fiber pullout on the fracture surface of $AIPO_4$ -coated alumina/mullite fiber/ AI_2O_3 CMC, hot pressed at 1250°C for 1 h.

Glass theory

- Glasses lack the periodic (long range) order of a crystal
- •
- Infinite unit cell (no repeating large scale structures)
- •
- 3D network lacking symmetry and periodicity
- •
- ISOTROPIC: same average packing and properties in all directions
- •
- Crystals in different directions(see above):
- •
- different atom packing and so different properties

FIGURE 21.1 Plot of volume versus temperature for a liquid that forms a glass on cooling and one that forms a crystalline solid. The glass transition temperature, T_g , depends on the cooling rate and is not fixed like T_m .

Radial distribution function for SiO₂

Zachariasen rules for glass A_mO_n

 An oxygen atom is linked to no more than two glass-forming atoms A.

2) The number of oxygen atoms around each glass-forming atom A is small, perhaps 3 or 4.
3) Among the oxygen-containing polyhedra, a polyhedron cation A shares corners, but no sides or faces.

4) For three-dimensional networks of oxygencontaining polyhedra, at least three corners must be shared.

In general, all four rules should be satisfied for glass formation to occur. Low coordination numbers, corner-sharing rules imply that glass formation is more likely with open, low density polyhedral structures.

- 1. Consider Silica:
 - covalent Si-O bond: sp³ hybrid
 - tetrahedral bonding
- Pauling's packing rule:

 $\frac{r(Si^{4+})}{r(O^{2-})} = \frac{0.40}{1.40} \approx 0.29 \quad prefers \ tetrahedral \ bonding$

satisfies Zachariasen's rule #2.

 $\frac{ch \arg e(Si^{4+})}{CN(Si^{4+})} = \frac{4}{4} = \frac{ch \arg e(O^{2-})}{CN(O^{2-})} = \frac{2}{2} \qquad CN(O^{2-}) \text{ is } 2.$

satisfies Zachariasen's rule #1.

Crystal structure: sharing four corners: All Rules are Satisfied: SiO₂ forms a glass.

- 2. Consider Magnesia (MgO):
- ionic Mg-O bond
 - Pauling's packing rule:

 $\frac{r(Mg^{2+})}{r(O^{2-})} = \frac{0.72}{1.40} \approx 0.51 \quad \text{prefers octahedral bonding}$

violates Zachariasen's rule #2.

$$\frac{charg\,e(Mg^{2+})}{CN(Mg^{2+})} = \frac{2}{6} = \frac{charg\,e(O^{2-})}{CN(O^{2-})} = \frac{2}{6} \qquad CN(O^{2-}) \text{ is } 6.$$

violates Zachariasen's rule #1.

Crystal structure: edge-sharing polyhedra; Rules are Not Satisfied: MgO does not form a glass.

3. Consider Alumina (Al₂O₃): • Pauling's packing rule: $\frac{r(AI^{3+})}{r(O^{2-})} = \frac{0.53}{1.40} \approx 0.38 \quad octahedral / tetrahedral boundary$ • octahedral CN preferred in Al₂O₃. $\frac{charge(AI^{3+})}{CN(AI^{3+})} = \frac{3}{6} = \frac{charge(O^{2-})}{CN(O^{2-})} = \frac{2}{4} \quad CN(O^{2-}) \text{ is } 4.$ • violates Zachariasen's rule #1.

 Al_2O_3 does not form a glass.

Elements for glass formation

Formers	Modifiers	Intermediate	
O B	Sc	Ti	
o Si	La	Zr	
o Ge	Na	Pb	
A	Κ	Al	
o V	Rb	Th	
As	Cs		

Log Glass Viscosity vs. Temperature

Viscosity decreases with T

- soda-lime glass: 70% SiO₂ balance Na₂O (soda) & CaO (lime)
- borosilicate (Pyrex): 13% B2O3, 3.5% Na2O, 2.5% Al2O3
- Vycor: 96% SiO₂, 4% B₂O₃
- fused silica: > 99.5 wt% SiO₂

strain point annealing point

Working range:

glass-forming carried out

Adapted from Fig. 13.7, Callister & Rethwisch 8e. (Fig. 13.7 is from E.B. Shand, Engineering Glass, Modern Materials, Vol. 6, 1800 T(°C) Academic Press, New York, 1968, p. 262.)

Chapter 13 - 1

Glass Viscosity and Workability

Pilkington process

Glass bending

Bottle production line ://www.youtube.com/watch?v=k8MmEuvugG4

Dielectrics

FIGURE 31.2 Frequency dependence of polarization.

ĸat		ĸ at	
Material	1 MHz	Material	1 MHz
Diamond	5.5-6.6	Al ₂ O ₃	8.8
SiO ₂	3.7-3.8	MgO	9.6
NaCl	5.9	BaTiO ₃	3000
Mica	5.4-8.7	Pyrex glass	4.0-6.0
Soda-lime glass	7.0-7.6	TiO ₂	14-110
Steatite (SiO ₂ + MgO + Al ₂ O ₃)	5.5-7.5	Forsterite (2MgO·SiO ₂)	6.2
Cordierite (SiO ₂ +MgO + Al ₂ O ₃)	4.5-5.4	Mullite	6.6

_

High-lead glass

19

TABLE 31.4 Dielectric Strengths for Various Ceramics

Material	Dielectric strength (MV/cm at 25°C)
Al ₂ O ₃ (99.5%)	0.18
Al ₂ O ₃ (94.0%)	0.26
High-voltage porc	elain 0.15
Steatite porcelain	
Lead glass	0.25
Lime glass	2.5
Borosilicate glass	5.8
Fused quartz	6.6
Quartz crystal	6.0
NaCl [100], [111],	[110] 2.5, 2.2, 2.0
Muscovite mica	10.1

Non destructive testing Techniques

- Visual inspection
- Penetrant dyes
- Oltrasonic testing
- Radiographic testing
- Magnetoscopic testing
- Eddy currents

Proof testing: 1) load configuration as similar as possible to service condiction

2) one single test slightly above load/stress values in service

Liquid penetrant dyes

1 Crack filled with dirt

3 Application of penetrant

2 Ideally cleaned

4 Intermediate cleaning

5 Application of developer 6 Crack indication

Fluorescent penetrant dye revealed with a Wood lamp

Figure 13.10 Ultrasonic C-scan with a 25-MHz transducer of a 0.64-cm (0.25-in.)thick hot-pressed Si_3N_4 plate. (Courtesy Garrett Turbine Engine Company, Phoenix, Ariz., Division of Allied-Signal Aerospace.)

Radiographic testing

Radiographic testing of two chips

X ray image of C inclusions in Si3N4

Magnetoscopic testing

Indication

Flux Lines

Test Piece

Eddy current testing

 Table 14.2
 Examples of Design Requirements of Various Applications and Ceramics with Properties Which Match the Requirements

SiC Heat exchanger

Ceramic seal for taps

Sandblast nozzles

Rado watches

SEM fundamentals

E-beam sample intercation

electron beam

Compositional contrast

FIGURE 24.27 Two-phase ceramics. (a) As sintered and (b) heat treated at 1600°C for 30 hours. ZTA 30% (zirconia-toughened alumina with 30 vol% YSZ containing 10 molar% yttria).

Topographycal contrast

