Università degli Studi di Trieste Dipartimento di Ingegneria ed Architettura

Scienza e temolagia dei materiali reramici

Prof. Valter Sergo

SINTERING PROCESS

Silvia Dalla Marta
(dal corso di Scienza e tecnologia dei materiali ceramici prof. V. Sergo)

It is a thermal process of microstructural rearrangement in which the particles of powder are compacted and the porosity decreases to form a dense piece of ceramic.
monodisperse powder fcc or hcp: $\mathrm{PF}=74.5 \%$
ceramic matherial with porosity: before sintering

The absence of defects and porosity is very important for the mechanical properties:

$$
K_{I C}=y \sigma \sqrt{c}
$$

K: the parameter for the determination of the stress at the tip of the crack. y: dimensionless constant that depends on defect's geometry and load c : length of defect (m)

For the polycrystalline alumina: $\quad K_{I C}=3 M P a \sqrt{m}$

In ceramics materials these values are very low compared to metals. A very small defect or porosity lead to failure during an application of stress.

BEFORE SINTERING:

- powder compact united by weaks Van der Waals forces
- individual grains separated by $25-60 \%$ of volume porosity

Considering two partiches of ceramic material in contert with each other:

O concave zone
o convexzone

The atoms in a convex zone tend to migrate in a concave zone in according to a diffusion process actived by temperature.

DIFFUSIIN PRRCESS

- Thermodinamically favored
o kinetically slow

FICK' S LAW (1D): $\quad \frac{d C}{d t}=D \frac{d^{2} C}{d x^{2}}$

Diffusion coefficient:

$$
D=D_{0} e^{-\frac{E a}{R T}}
$$

In order of kinetics to be fast enough for microstructural rearrangment to occur in short time, the sintering temperature must be:

$$
T=\frac{2}{3} T_{m}
$$

SINTERING MELHANISMS

O SURFACE DIFFUSION
O VAPOR TRANSPQRT

NO densification
thinning of the particles

- BULK DIFFUSION
- GRAIN BOUNDARY DIFFUSION

densification
decrease of the distance between particle centres

Thimning due ta vapar phase matherial transfer:

(a)

(b)

Fig. 12.17. Photomicrographs of sintering sodium chloride at $750^{\circ} \mathrm{C}$: (a) 1 min , (b) 90 min .

DENSIFILATION:

O atoms migration in the neck zone
O pores disappearence
O obtaining straight grain boundaries
O same chemical potential
O thermodynamically stable

Monadispersed powder: rare and expensive!

Mare frequent: Grain size distributian!

SECONDARY ABNORMAL OF BOUNDARY

Singe grain boundaries migrate toward their centre of curvature, greains with murre than B sides tend to incurpureate grains with lesss than B sidess.

Growth of a large $\mathrm{Al}_{2} \mathrm{O}_{3}$ crystal into a matrix of uniformly sized grain.

Polycrystalline flurite CaF_{2} illustrating normal grain growth

PROGRESSIVE DEVELOPMENT OF MICROSTRUCTURE IN LUCALOX ALUMINA

a) SEM of initial particles befor sintering (5000x)

b) SEM of particles after 1 minute at $1700^{\circ} \mathrm{C}$ (5000x)

d) SEM of particles after 6 minutes at $1700^{\circ} \mathrm{C}$ (5000x)
e) SEM of the final microstructure that is nearly porefree, with only a few pores located within grains (500x)

PRESSUIRE DIFFERENEE ACRISSS A CURVVED SURFALE

- The differences in the curvature of surface, causes a pressure difference in the various part of system, that leads to atoms transport.
- At the surface of the particle there is a positive radius of curvature, so that the vapour pressure is larger than would be observed in a flat surface.
- At the junction between particles there is a NECK whith a small negative radius of curvatures and a vapour pressure lower than that for the particle itself.

SPHERICAL MODEL:

$$
\begin{aligned}
& A=4 \pi R^{2} \quad V=\frac{4}{3} \pi R^{3} \\
& p d V=\gamma_{L V} d A \\
& \Delta p 4 \pi R^{2} d R=\gamma_{L V} 8 \pi R d R \\
& \Delta p=\frac{2 \gamma_{L V}}{R}
\end{aligned}
$$

P : Supplementary pressure to create the bubble.
γ : surface tension

GENERICALLY:

$$
\Delta p=\gamma_{L V}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
p^{\circ}=K_{e}=e^{-\frac{\Delta a^{0}}{R T}}
$$

in equilibrium condition
vapour pressure of water in a flat liquid-vapour interface

If the liquid-vapour interface is not flat, as in a small drops, the water has a vapour pressure that is larger than that in a flat surface:

$$
e^{-\frac{\Delta G}{R T}}=e^{-\frac{\Delta G^{0}}{R T}} e^{-\frac{\bar{V} \Delta P}{R T}}
$$

$$
P_{\mathrm{H}_{2} \mathrm{O}}=P_{\mathrm{H}_{2} \mathrm{O}}^{0} e^{-\frac{2 \gamma \bar{V}}{r R T}}
$$

$$
P_{H_{2} O}^{0} \text { O standard vapour pression }
$$

ENEREY SUIRFALE

in a densification process in which the only energy is given by radius of curvature:

$$
\begin{aligned}
& \bar{V} \text { : molecular volume } \quad \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \\
& \bar{V}=\frac{M W}{\rho} \\
& N=\frac{3 M W}{4 \pi a^{3} \rho}=\frac{3 \bar{V}}{4 \pi a^{3}} \\
& S_{A}=4 \pi a^{2} N=\frac{4 \pi a^{2} 3 M W}{4 \pi a^{3} \rho}=3 \frac{\bar{V}}{a} \\
& E_{S}=S_{A} \gamma=\frac{3 \bar{V} \gamma}{a} \\
& \rho \text { : density } \\
& \frac{g}{\mathrm{~cm}^{3}} \\
& a \text { : particle radius } \quad \approx \mu m \\
& N \text { : number of particles in a mole of powder } \\
& M W \text { : molecular weight } \quad \frac{g}{m o l}
\end{aligned}
$$

O Energy avaliable without added pressure in a sintering pocess of alumina:

$$
E_{S}=\frac{3 \overline{V_{\gamma}}}{a}=75 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

O Energy available $\stackrel{a}{w}$ hith $\frac{\mathrm{mol}}{\mathrm{ad}}$ ded pressure in the same sintering:

$$
w=P_{A} \bar{V}=750 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\begin{aligned}
& P=30 \mathrm{Mpa} \\
& \bar{V}_{A l_{2} O_{3}}=25 \cdot 10^{-6} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Fig. 12.30. Densification of beryllia by sintering and by hot pressing at 2000 psi .

DIFFIISIIIN AND MDBILITY:

true in the absence of friction:
otherwise:

Einstein's generalized equation of mobility:
$F=m a$
$F=m \frac{d v}{d t}+\frac{v}{M}$
$D=M R T$
$\frac{v}{M}:$ friction coefficient
M : mobility
D : diffusion coefficient

KINETC MIDELING OF SINTERNG PROCESS

PARAMETERS TO DEFINE THE MODEL:

- define a DRIVING FORCE
- define the GEOMETRY
- define the MECHANISM OFTRANSPORT

STAGES OF THE SINTERING:

- INITIAL STAGE: from 50-55\% to 75\% ofTD \longrightarrow MODELING
- INTERMEDIATE STAGE : from 75% to 92% of TD
- FINAL STAGE : from 92% to 100% of TD

ρ : radius of the neck's curvature r : radius of particle x : parameter indicated the progress of the sintering

GEOMETRY

$$
\begin{array}{ll}
(r+\rho)^{2}=(r-\rho)^{2}+(x+\rho)^{2} & \text { Approximations : } \\
\rho=\frac{x^{2}}{4 r} & \rho^{2}=0 \\
x \rho=0
\end{array}
$$

$$
A_{\text {Neck }}=2 \pi x \cdot \pi \rho=\frac{\pi^{2} x^{3}}{2 r}
$$

$$
V_{\text {Neck }}=\frac{\pi x^{4}}{8 r}
$$

FLUX

The material transfer is linked to the flux.
Considering the area through which the transport takes (the neck area):

$$
J=\frac{1}{A_{\text {Neck }}} \frac{d}{M W} \frac{d V_{\text {Neck }}}{d t} \quad \begin{aligned}
& \mathrm{d}: \text { density } \\
& \mathrm{MW}: \text { molecoular weight } \\
& \mathrm{J}: \text { flux }
\end{aligned}
$$

$$
\frac{d V_{\text {Neck }}}{d t}=\frac{4 \pi x^{3}}{8 r} \frac{d x}{d t}=\frac{\pi x^{3}}{2 r} \frac{d x}{d t} \quad \begin{aligned}
& \text { Variation of the neck volume } \\
& \text { based on the increase of the } \\
& \text { 'x parameter: }
\end{aligned}
$$

$$
J=\frac{2 r}{\pi^{2} x^{3}} \frac{d}{M W} \frac{\pi x^{3}}{2 r} \frac{d x}{d t}=\frac{1}{\pi \bar{V}} \frac{d x}{d t}
$$

FLUX expressed as a DRIVING RORCE

$$
\begin{array}{lr}
J=c M F & \begin{array}{l}
\text { c: concentration } \\
M=\frac{D}{R T} \\
F
\end{array} \quad \begin{array}{l}
\text { M: mobility of bulk and grain boundary atoms } \\
\text { F: force }
\end{array} \\
\end{array}
$$

Variation of the free energy during the diffusion on the neck area:

$$
\begin{aligned}
& \Delta G=\Delta p \bar{V}=\bar{V} \gamma\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)=\bar{V} \gamma\left(\frac{1}{x}-\frac{1}{\rho}\right)=\frac{\bar{V} \gamma}{\rho} \\
& F=\frac{\Delta G}{\rho}=\frac{\bar{V}_{\gamma}}{\rho^{2}}
\end{aligned}
$$

$$
J=c M F=c \frac{D}{R T} \frac{\bar{V} \gamma}{\rho^{2}}
$$

integration between o and x

$$
t=0, x=0
$$

$$
\frac{1}{5} x^{5}=\frac{5 \pi \bar{V}^{2} c D \gamma r^{2}}{R T} t
$$

$$
x=\left(\frac{5 \pi \bar{V}^{2} c D \gamma r^{2}}{R T}\right)^{\frac{1}{5}} t^{\frac{1}{5}}
$$

t: sintering time

Variation of the volume of the particles in the sintering process during the time:

Variation of the relative density

 variatung time and temperature:

Fig. 12.19. (a) Linear and (b) log-log plots of shrinkage of sodium fluoride and aluminum oxide compacts. After J. E. Burke and R. L. Coble.

Fig. 12.25. Effect of time and temperature on the vitrification of a porcelain body. Data from F. H. Norton and F. B. Hodgdon, J. Am. Ceram. Soc., 14, 177 (1931).

The increase of a few degrees in temperature has much more influence on the grain size than the increase of a one order of magnitude of the time

Figure 11.9 Comparison of the microstructure and translucency of relatively porefree $\mathrm{Al}_{2} \mathrm{O}_{3}$ (a) with that of opaque $\mathrm{Al}_{2} \mathrm{O}_{3}$ containing pores trapped in grains (b). Translucent $\mathrm{Al}_{2} \mathrm{O}_{3}$ tubes are used in sodium vapor lamps that provide energy efficient street lights. (Courtesy of General Electric.)

FIGURE 24.17 (a, b) AFM of grooves at migrating GB!

FIGURE 24.21 Elongated exaggerated grain in $\mathrm{Al}_{2} \mathrm{O}_{3}$.

- During the growth, the larger grain leaves behind a lot of pores and the piece can not achive the 100% of theoretical density (DT).
- To avoid the pore incorporation inside the grain, the speed of grain boudaries must be lower than that of the pores.
- Some impurities can segregate on grain boundary (GRAIN BOUNDARY PINNING) slowing the growth and so it's possible to achive the 100% of DT.
v pore > v grain boundary

GS

FIGURE 24.14 (a-e) GB/pore interaction: the break-away process.

FIGURE 31.10 Hysteresis loops for BaTiO_{3}. (a) Single-domain single crystal. (b) Polycrystalline ceramic.

FIGURE 31.15 Effect of grain size on the dielectric con BaTiO_{3}.

FIGURE 24.27 Two-phase ceramics. (a) As sintered and (b) heat treated at $1600^{\circ} \mathrm{C}$ for 30 hours. ZTA 30\% (zirconia-toughened alumina with $30 \mathrm{vol} \%$ YSZ containing 10 molar\% yttria).

WETTABILITY

Is the ability of a drop of liquid to recline on a solid surface.
Varying the pressur is changed the wettability.

α : contact angle
$\gamma_{L V}$: liquid-vapour interfacial energy
$\gamma_{L S}$: liquid-solid interfacial energy
$\gamma_{s v}$: solid-vapour interfacial energy

The contact angle specifies the condition for minimum energy, according to the relation:

$$
\begin{aligned}
& \gamma_{S L}+\gamma_{L V} \cos \alpha=\gamma_{S V} \\
& \cos \alpha=\frac{\gamma_{S V}-\gamma_{S L}}{\gamma_{L V}}
\end{aligned}
$$

possible cases:

15°

0°
$\alpha>90^{\circ} \longrightarrow$ non-wettability
$\alpha<90^{\circ} \longrightarrow$ wettability
$\alpha=0 \quad \longrightarrow \quad$ spreading

LIQUID PHASE SINTERING

O It is the process of adding an additive to the powder which will melt before the ceramic grains.
o The metal added, at high temperatures, melt and WET the grains. The intergranulary spaces are such as to have a capillary forces which attract the grain one another.

- (By lowering the temperature, the amorphous phase does not wet the grains anymore and ritires in triple junctions.)
O (This gives good mechanical proprieties.)
O E.G. : WIDIA (93\% WC in a Co matrix).

Liquid phase sintered SiL

Liquid phase sintered $\mathrm{Si}_{3} \mathrm{~N}_{4}$

Lquid phase sintered SiAlDN

Ni

(200)

Abstract

 wacevoconencey a+*5\%:ะ .ace. ************* $\operatorname{cochec+c+ch+4+t+20)}$ वमझ円MMa

Figure 1. Typical microstructure of polycrystalline ZnO used in this work, after thermal etching at $1150^{\circ} \mathrm{C}$, for 1 h , in air.

PRICEDURE FIR THE SINTERNG PRICESS

- Determination of the $\mathrm{T}_{\mathrm{m}} \quad \mathrm{T}_{\text {sintering }}=2 / 3 \mathrm{Tm}$
E.G.: $\quad \mathrm{Al}_{2} \mathrm{O}_{3}$ $\mathrm{T}_{\mathrm{m}}=2400^{\circ} \mathrm{C} \quad \mathrm{T}_{\text {sintering }}=1600^{\circ} \mathrm{C}$
- CALCINATION ($200^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}$ under the sintering temperature) E.G. : $\quad \mathrm{ZrO}_{2}$ stabilized by $\mathrm{CaO}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{CeO}_{2}$
- FORMING the ceramic parts
- SINTERING

$$
\frac{\sqrt{D \cdot t}}{a} \approx 1
$$

DENSITY DETERMINATICN BY ARCHIMEDE'S PRINLIPLE

O D = dry weight
O boil the piece for 5 hours
O W = wet weight in air

- S = wet weight in water suspended

○ $\mathrm{V}=$ external volume of the piece: $\mathrm{V}=\mathrm{W}-\mathrm{S}$
○ BULK DENSITY
○ $\mathrm{P}=$ apparent porosity

$$
\begin{aligned}
& B=D / V \\
& P=(W-D) / V
\end{aligned}
$$

TYPICAL SINTERING TMME-TEMPERATURE PROFILE

$$
\begin{aligned}
& \text { T } \\
& \text { - } 1 .-5 \mathrm{~K} / \mathrm{min} \\
& \underbrace{500^{\circ} \mathrm{C} \quad 1 \mathrm{~h}}+10 \mathrm{~K} / \mathrm{min}
\end{aligned}
$$

Flaws are Stress Concentrators

If the crack is similar to an elliptical hole through plate, and is oriented perpendicular to applied stress, the maximum

$$
\begin{aligned}
& \text { stress } \sigma_{\mathrm{m}}= \\
& \qquad \sigma_{m}=2 \sigma_{o}\left(\frac{a}{\rho_{t}}\right)^{1 / 2}=K_{t} \sigma_{o}
\end{aligned}
$$

where
$\rho_{t}=$ radius of curvature
$\sigma_{o}=$ applied stress
$\sigma_{m}=$ stress at crack tip
a $=$ length of surface crack or $1 / 2$
length of internal crack
$\sigma_{m} / \sigma_{o}=K_{t}$ the stress concentration factor

Brittle Fracture of Ceramics

- Most ceramics (at room temperature) fracture before any plastic deformation can

Impact or point loading
(a)

Bending
(b)

Undistinct features: brittle fracture (SiC)

- Fracture surface with crack initiation at top. Surface shows predominantly dull fibrous texture where rapid failure occurred after crack achieved critical size.
- Fatigue failure

1. Crack initiation
2. Crack propagation
3. Final failure

Brittle Fracture of Ceramics

- Surface of a 6-mm diameter fused silica rod.
- Characteristic fracture behavior in ceramics
- Origin point
- Initial region (mirror) is flat and smooth
- After reaches critical velocity crack branches
- mist
- hackle

Fracture of glass

Fracture surface of silicon nitride with steel impurity

Fracture surface of lathe machined Silicon nitride

Roadmap for

 fractagraphy

STEP 4 - EDX, AUGER, MICROPROBE, TEM, SIMS

Roadmap for correcting failure

Toughening by whiskers and fibers

FIGURE 18.18 SEM image showing fiber pullout on the fracture surface of AlPO_{4}-coated alumina/mullite fiber/ $\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{CMC}$, hot
 pressed at $1250^{\circ} \mathrm{C}$ for 1 h .

Elass theory

- Glasses lack the periodic (long range) order of a crystal
- •
- Infinite unit cell (no repeating large scale structures)
- •
- 3D network lacking symmetry and periodicity
- •
- ISOTROPIC: same average packing and properties in all directions
- •
- Crystals in different directions(see above):
- •
- different atom packing and so different properties

FIGURE 21.1 Plot of volume versus temperature for a liquid that forms a glass on cooling and one that forms a crystalline solid. The glass transition temperature, T_{g}, depends on the cooling rate and is not fixed like T_{m}.

Pair distribution function of Sill2 glass

Radial distribution function far Sil_{2}

Glass structure:
SiO2 auartz compared to Sil2 alass

Crystalline SiO_{2}
(Quartz)

Amorphous SiO_{2}
(Glass)

Zachariasen rules for glass $A_{m} \square_{n}$

1) An oxygen atom is linked to no more than two glass-forming atoms A.
2) The number of oxygen atoms around each glass-forming atom A is small, perhaps 3 or 4 .
3) Among the oxygen-containing polyhedra, a polyhedron cation A shares corners, but no sides or faces.
4) For three-dimensional networks of oxygencontaining polyhedra, at least three corners must be shared.

In general, all four rules should be satisfied for glass formation to occur.
Low coordination numbers, corner-sharing
 rules imply that glass formation is more likely with open, low density polyhedral structures.

1. Consider Silica:

- covalent Si-O bond: $s p^{3}$ hybrid
- tetrahedral bonding
- Pauling's packing rule:
$\frac{r\left(S i^{4+}\right)}{r\left(O^{2-}\right)}=\frac{0.40}{1.40} \approx 0.29 \quad$ prefers tetrahedral bonding
- satisfies Zachariasen's rule \#2. $\frac{c h \operatorname{arge} e\left(S^{4+}\right)}{C N\left(S i^{4+}\right)}=\frac{4}{4}=\frac{\operatorname{charge}\left(O^{2-}\right)}{C N\left(O^{2-}\right)}=\frac{2}{2} \quad C N\left(O^{2-}\right)$ is 2.
- satisfies Zachariasen's rule \#1.

Crystal structure: sharing four corners:

Cation CN:Anion CN $=4: 2$

All Rules are Satisfied: SiO_{2} forms a glass.
2. Consider Magnesia (MgO):

- ionic Mg-O bond
- Pauling's packing rule:
$\frac{r\left(\mathrm{Mg}^{2+}\right)}{r\left(\mathrm{O}^{2-}\right)}=\frac{0.72}{1.40} \approx 0.51 \quad$ prefers octahedral bonding
- violates Zachariasen's rule \#2.
$\frac{\operatorname{charge} e\left(\mathrm{Mg}^{2+}\right)}{C N\left(\mathrm{Mg}^{2+}\right)}=\frac{2}{6}=\frac{\operatorname{charge}\left(\mathrm{O}^{2-}\right)}{C N\left(\mathrm{O}^{2-}\right)}=\frac{2}{6} \quad C N\left(\mathrm{O}^{2-}\right)$ is 6.
- violates Zachariasen's rule \#1.

Crystal structure: edge-sharing polyhedra; Rules are Not Satisfied: MgO does not form a

Cation CN:Anion CN $=6: 6$
3. Consider Alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$:

- Pauling's packing rule:
$\frac{r\left(A I^{3+}\right)}{r\left(O^{2-}\right)}=\frac{0.53}{1.40} \approx 0.38 \quad$ octahedral / tetrahedral boundary
- octahedral CN preferred in $\mathrm{Al}_{2} \mathrm{O}_{3}$.
$\frac{\operatorname{charg} e\left(A I^{3+}\right)}{C N\left(A I^{3+}\right)}=\frac{3}{6}=\frac{\operatorname{charge} e\left(O^{2-}\right)}{C N\left(O^{2-}\right)}=\frac{2}{4} \quad C N\left(O^{2-}\right)$ is 4.
- violates Zachariasen's rule \#1.
$\mathrm{Al}_{2} \mathrm{O}_{3}$ does not form a glass.

Elements for glass formation

o Formers
Modifiers
Intermediate

○ B

- Si

○ Ge
○ Al
○ V
○ As
Sc
La
Ti
Zr
Na
Pb
K
Rb
Th
Cs

Log Glass Viscosity vs. Temperature

- Viscosity decreases with T
- soda-lime glass: $70 \% \mathrm{SiO}_{2}$ balance $\mathrm{Na}_{2} \mathrm{O}$ (soda) \& CaO (lime)
- borosilicate (Pyrex): $13 \% \mathrm{~B}_{2} \mathrm{O}_{3}, 3.5 \% \mathrm{Na}_{2} \mathrm{O}, 2.5 \% \mathrm{Al}_{2} \mathrm{O}_{3}$
- Vycor: $96 \% \mathrm{SiO}_{2}, 4 \% \mathrm{~B}_{2} \mathrm{O}_{3}$
- fused silica: > 99.5 wt $\% \mathrm{SiO}_{2}$
strain point
annealing point

Working range:

glass-forming carried out
Tmelt $\begin{aligned} & \text { Adapted from Fig. 13.7, Callister \& Rethwisch } \\ & \text { 8e. (Fig. 13.7 is from E.B. Shand, } \\ & \text { Engineering Glass, Modem Materials, Vol. 6, } \\ & \text { Academic Press, New York, 1968, p. 262.) }\end{aligned}$

Glass Viscosity and Workability

Pilkington pracess

Glass bending

Bottle production line
://www.youtube.com/watch?v=k8MmEuvugG4

FIGURE 31.1 Illustration of the different polarization mechanisms n a solid.

Dielectrics

FIGURE 31.2 Frequency dependence of polarization.

Non destructive testing Techniques

- Visual inspection
- Penetrant dyes
- Ultrasonic testing
- Radiographic testing
- Magnetoscopic testing
- Eddy currents

Prouf testing:

1) Ioad configuration as similar as possible to service condiction
2) one single test slightly above load/stress values in service

Liquid penetrant dyes

Fluorescent penetrant dye revealed with a Wood lamp

Figure 13.10 Ultrasonic C-scan with a $25-\mathrm{MHz}$ transducer of a $0.64-\mathrm{cm}(0.25-\mathrm{in}$.$) -$ thick hot-pressed $\mathrm{Si}_{3} \mathrm{~N}_{4}$ plate. (Courtesy Garrett Turbine Engine Company, Phoenix, Ariz., Division of Allied-Signal Aerospace.)

Radiographic testing

Radiographic testing of two chips

Counterfeit

Authentic

X ray image of WC inclusions in $\mathrm{Si}_{3} \mathrm{~N}_{4}$

Magnetoscapic testing

Figure 1

Figure 3

Figure 2

Eddy current testing

Table 14.2 Examples of Design Requirements of Various Applications and Ceramics with Properties Which Match the Requirements

Application	Requirements of the applications	Candidate ceramics	Kev nronerties
Seal	r-		
Turbine stator			
Heating element		O_{2}	
Rotary heat exchanger			

Heat sink for
IC and
transistor
devices,

SiC Heat exchanger

Ceramic seal for taps

Sandblast nozzles

Rada watches

SEM fundamentals

E-beam sample intercation

electron beam

Compositional contrast

FIGURE 24.27 Two-phase ceramics. (a) As sintered and (b) heat treated at $1600^{\circ} \mathrm{C}$ for 30 hours. ZTA 30% (zirconia-toughened alumina with 30 vol\% YSZ containing 10 molar\% yttria).

Topagraphycal contrast

SrTiO_{3} matrix

Glassy phase

200 nm

Ni

(200)

Abstract

 wacevoconencey a+*5\%:ะ .ace. ************* $\operatorname{cochec+c+ch+4+t+20)}$ वमझ円MMa

