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The key to efficient suffix tree construction are suffix links:

For an explicit node u, slink(u) is the node v such that Sv  is the 
longest proper suffix of Su, i.e., if Su =T[i..j] then Sv =T[i+1..j]. 


For example, let T = banana$.

The suffix links are represented

by the red arrows.
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Suffix links are well defined for all nodes except the root. For the 
root, we define slink(root) = root.

Lemma 1. If the suffix tree of T has a node u representing T[i..j] for 
any 1 i < j n, then it has a node v representing T[i+1..j]

Proof. If u is the leaf representing the suffix Ti , then v is the leaf 
representing the suffix Ti+1. 

If u is an internal node, then it has two child edges with labels 
starting with different symbols, say a and b, which means that 
T[i..j]a and T[i..j]b are both substrings of T. 

Then,T[i+1..j]a and T[i+1..j]b are substrings of T too, and thus there 
must be a branching node v representing T[i +1..j].  
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Suffix links are well defined for all nodes except the root. For the 
root, we define slink(root) = root.

Lemma 1. If the suffix tree of T has a node u representing T[i..j] for 
any 1 i < j n, then it has a node v representing T[i+1..j]

Proof. If u is the leaf representing the suffix Ti , then v is the leaf 
representing the suffix Ti+1. 

If u is an internal node, then it has two child edges with labels 
starting with different symbols, say a and b, which means that 
T[i..j]a and T[i..j]b are both substrings of T. 

Then,T[i+1..j]a and T[i+1..j]b are substrings of T too, and thus there 
must be a branching node v representing T[i +1..j].  


This lemma ensures that depth(slink(u)) = depth(u)-1.
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Suffix links are stored for branching nodes only, but we can define 
and compute them for any locus (u,d): 

SuffixLink(u, d) 


1 v slink(parent(u));

2 while depth(v) < d-1 do


3 v child(v,T[start(u)+depth(v)+1]);

4 return(v,d-1);


←

←
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The same idea can be used for computing the suffix links during or 
after the brute force construction: 

ComputeSuffixLink(u)


1 d depth(u); 
2 v slink(parent(u));

3 while depth(v) < d-1 do 


4 v child(v,T[start(u)+depth(v)+1]);

5 if depth(v)>d-1 then 


6 v CreateNode(v,d-1);

7 slink(u) v;


←
←

←

←
←
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The same idea can be used for computing the suffix links during or 
after the brute force construction: 

ComputeSuffixLink(u)


1 d depth(u); 
2 v slink(parent(u));

3 while depth(v) < d-1 do 


4 v child(v,T[start(u)+depth(v)+1]);

5 if depth(v)>d-1 then 


6 v CreateNode(v,d-1);

7 slink(u) v;


Lines (5)-(6) execute if there is no node at (v,d-1). The procedure 
CreateNode(v, d-1) sets slink(v) = ε. The algorithm uses the suffix 
link of the parent of u, which must have been computed before. 

←
←

←

←
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The creation of a new node on line (6) never happens in a fully 
constructed suffix tree, but during the brute force algorithm the 
necessary node may not exist yet.

If a new internal node ui was created during the insertion of the 
suffix Ti, there exists an earlier suffix Tj, with j < i, that branches at 
ui into a different direction than Ti .

Then slink(ui) represents a prefix of Tj+1 and thus it exists at least as 
a locus on the path labelled Tj+1. However, it may happen that it 
does not become a branching node until the insertion of Ti+1.

In such a case, ComputeSuffixLink(ui) creates the slink(ui) node a 
moment before it would otherwise be created by the brute force 
construction.

Suffix links



Linear-Time Construction of 
the Suffix Tree

Reference1: Chapters 6.3 and 6.5 of: Gusfield, D. 
Algorithms on Strings, Trees and Sequences. 

Reference2: Original paper by McCreight (in the 
material of the course)


This set of slides was partially adapted from the slides of Juha Kärkkäinen 
[https://www.cs.helsinki.fi/u/tpkarkka/teach/15-16/SPA/lecture08.pdf]



McCreight’s suffix tree construction is a simple modification of the 
brute force algorithm that computes the suffix links during the 
construction and uses them as shortcuts.

Say that we have just added a leaf wi representing the suffix Ti  as 
a child to a node ui . The next step is to add wi+1 as a child to a 
node ui+1. The brute force algorithm finds ui+1 by traversing the 
partially constructed suffix tree from the root; McCreight’s 
algorithm takes a shortcut to slink(ui). This is safe because slink(ui) 
represents a prefix of Ti+1! 


McCreight’s Construction Algorithm



McCreight’s Construction Algorithm
McCreight-Construction(T[1 . . n])


1 root EmptyNode(); 

2 depth(root) 0;

3 (u,d) (root,0);

4 slink(root) root;

5 for i=1,…,n do


6 while d=depth(u) and child(u,T[i+d])  ε do

7 (u,d) ( child(u,T[i +d]) , d+1 );

8 while d < depth(u) and T[start(u) + d] = T[i + d]) do


9 d d+1;

10 if d < depth(u) then


11 u CreateNode(u, d);

12 w CreateLeaf(i,u,d);

13 if slink(u) is empty then


14 slink(u) ComputeSuffixLink(u);

15 (u,d) (slink(u),max{d-1,0});

←
←

←
←

≠
←

←

←
←

←
←



McCreight’s Construction Algorithm
Theorem. Let T be a string of length n over an alphabet of 
constant size. McCreight’s algorithm computes the suffix tree of T 
in O(n) time.


Proof. The insertion of a suffix Ti  takes O(1) time except in two 
points:

1. The while loops on lines (6)-(9), that spell all characters on the 
path from the node slink(ui-1) to ui. Every round increments the 
string depth d. The only place where d decreases is on line (15) 
and even then by one (because of Lemma 1). Since d can never 
exceed n, the total time on lines (6)-(9) is O(n) (with an aggregate 
analysis).



McCreight’s Construction Algorithm
2. The subroutine ComputeSuffixLink(u). The while loop at lines (3)-
(4) checks exactly one character for each explicit node on the path 
from slink(parent(u)) to slink(u), thus its time complexity is 
proportional to the total number of explicit nodes it visits.

Let NN(u) denote the number of explicit nodes on the path from the 
root to a node u. It clearly holds that NN(p(u))=NN(u)-1; and 
NN(slink(u)) NN(u)-1. 

In ComputeSuffixLink(u) we start traversing from slink(p(u)), so it 
holds that NN(slink(p(u)) NN(u)-2. Other than that, NN only 
increases at each call of ComputeSuffixLink. The total number of 
explicit nodes visited over all calls of ComputeSuffixLink is 
bounded by the total decrease plus the total increase in NN. 

There are n steps, so the total decrease is at most 2n; and the total 
increase is at most 3n, because NN(u) n for all nodes u. Thus all 
the calls to ComputeSuffixLink require O(n) time in total.

≥
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Implementation Issues
The main design issue of any suffix tree construction algorithm is 
how to represent and search the branches out of the nodes. We  
must balance the space required and the need for speed in 
searching, both in building the tree and in using it afterwards.

There are four basic choices possible to represent branches.


• An array of size (|Σ|) at each nonleaf branching node v. The 
array at v is indexed by the characters of Σ: the entry of a 
character x stores a pointer to the child of v whose edge label 
starts with x (if it exists), and the two indices of T representing the 
edge label. With this representation, searching an edge requires 
O(1) time; but it requires (|Σ|) space per node, which is 
impractical for large alphabets/long texts.

Θ

Θ



Implementation Issues
• A linked list for each nonleaf branching node v, containing the 

first character of the edge label of each branch out of v. In the 
construction, whenever a new edge from v is added to the tree, 
a new character is added to the list. The search of a character is 
done sequentially from the beginning of the list. The characters 
in these lists can be maintained in lexicographic order, which 
speeds up the search in practice, but it still requires O(|Σ|) time 
per every node operation in the worst case. On the other hand, 
there is no waste of space.


• Some sort of balanced tree for each nonleaf branching node v.  
If v has k children, then, adding a new edge and searching cost 
O(log k) time, and the space required is O(k). The drawback is 
that balanced trees have space and programming overhead, and 
thus in practice they are only convenient when k is very large.



Implementation Issues
• Some sort of (perfect) hashing techniques for each nonleaf 

branching node.


In practice, for large alphabets and long texts, a mixture of the 
above options is the best choice, e.g., using arrays for the nodes 
close to the root (which typically have many children) and sorted 
lists for the deeper nodes.



Use of the Suffix Tree



The longest repeating factor of a text T is the longest substring 
that occurs at least twice in T. It is represented by the deepest 
branching node in the suffix tree.


Using the Suffix Tree: Longest Repeating Factor 



The longest repeating factor of a text T is the longest substring 
that occurs at least twice in T. It is represented by the deepest 
branching node in the suffix tree.

The longest repeating factor of T=mississippi$ is “issi”.

Exercise. Write pseudocode

for a solution to this problem, 

and analyse its time 

complexity. i

s

Using the Suffix Tree: Longest Repeating Factor 



Input: a text T

Output: the number of distinct substrings of T


Using the Suffix Tree: Number of distinct substrings  



Input: a text T

Output: the number of distinct substrings of T

Every locus (node, depth) in the suffix tree represents a substring 
of the text; and every substring is represented by some locus.

E.g., locus (1,5) represents

the substring “missi”

Using the Suffix Tree: Number of distinct substrings  
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Input: a text T

Output: the number of distinct substrings of T

It suffices to count the number of distinct loci using any traversal 
(e.g., DFS or BFS) of the suffix tree.

Exercise. Write pseudocode for the solution described above. 
What is its time complexity?


Using the Suffix Tree: Number of distinct substrings  



Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]


Using the Suffix Tree: Longest Common Prefix  



Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.
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Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.

Theorem (Bender and Farach-Colton). Any tree of size O(N) can 
be preprocessed in O(N) time so that the LCA of any two nodes 
can be computed in O(1) time.
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Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.

Theorem (Bender and Farach-Colton). Any tree of size O(N) can 
be preprocessed in O(N) time so that the LCA of any two nodes 
can be computed in O(1) time.

Theorem. Longest Common Prefix queries in T can be answered 
in O(1) time after O(n) time preprocessing of the suffix tree of T. 


Using the Suffix Tree: Longest Common Prefix  



Problem: preprocess a text T of length n so that the following 
queries can be answered efficiently.

Query: given a pair (i,j), return the longest common prefix of T[i..n] 
and T[j..n]

For T=mississippi$, let (5,8)

be the query. The answer is

“i”, which is the path label of

the LCA of leaves 5 and 8.

Using the Suffix Tree: Longest Common Prefix  
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The Generalised Suffix Tree
Reference: Chapter 6.4 of: Gusfield, D. Algorithms 

on Strings, Trees and Sequences.



The concept of suffix tree of a string can be easily extended to a 
set of strings.

The generalised suffix tree of a set of strings S1,S2,…,Sk is the 
compacted trie of all the suffixes of all the strings in the set. 

To build it, it suffices to build the suffix tree of their concatenation 
S1$1S2$2…Sk$k, where $1,$2,…,$k are distinct terminal symbols.


Generalised Suffix Tree for a Set of Strings



The concept of suffix tree of a string can be easily extended to a 
set of strings.

The generalised suffix tree of a set of strings S1,S2,…,Sk is the 
compacted trie of all the suffixes of all the strings in the set. 

To build it, it suffices to build the suffix tree of their concatenation 
S1$1S2$2…Sk$k, where $1,$2,…,$k are distinct terminal symbols.


S1=miss$

S2=issippi#

Generalised Suffix Tree for a Set of Strings



Building the suffix tree of S1$1S2$2…Sk$k, requires time linear in 
the sum of the lengths of the strings in the set. 

The suffix tree built in this way, though, contains also spurious 
substrings that span more than one input string.

For example, the concatenation miss$issippi# contains the 
substring ss$issippi#. 

However, because each terminal symbol is distinct and is not in 
any of the original strings, the label on any path from the root to a 
branching node must be a substring of one of the original strings. 

To remove these spurious substrings it suffices to truncate the 
labels of the branches ending at the leaves to the first terminal 
symbol.

Generalised Suffix Tree for a Set of Strings



The generalised suffix tree of a set of strings can obviously be 
used to search for one or more patterns in all strings of the set, 
i.e., to solve the exact pattern matching problem in a database. 

To do so, we spell the pattern(s) from the root, much like we do 
with the suffix tree of one string.

Use of the Generalised Suffix Tree



The Longest Common Substring (LCS) of two strings S and T is 
the longest substring that occurs both in S and in T. 

It is represented by the deepest branching node in the suffix tree 
that have at least a descending leaf corresponding to S and at 
least a descending leaf corresponding to T.


Use of the GST: Longest Common Substring



The Longest Common Substring (LCS) of two strings S and T is 
the longest substring that occurs both in S and in T. 

It is represented by the deepest branching node in the suffix tree 
that have at least a descending leaf corresponding to S and at 
least a descending leaf corresponding to T. 

The LCS of “miss” and

“issippi” is “iss”  


Use of the GST: Longest Common Substring



The LCS of S and T can be found in O(|S|+|T|) time by:

• preprocessing the GST of S and T to mark each branching node 

with the strings corresponding to the leaves descending from 
there. This can be done traversing the GST bottom-up.


• Picking the deepest node marked with both S and T. This can be 
done with a DFS.

S=miss$

T=issippi#


Use of the GST: Longest Common Substring

S,TS,T

T

S,T

S,T


