

Corso di Laurea in Scienze e Tecnologie Biologiche Corso di Fisica AA 2021/2022

Esercitazione 8 LAVORO ED ENERGIA

Stefania Baronio stefania.baronio@phd.units.it

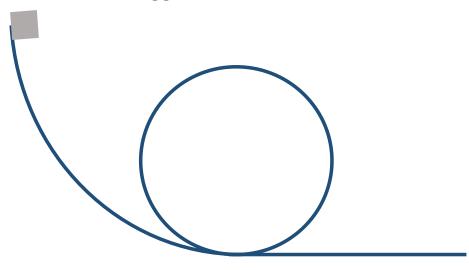
#1 II pozzo – prova scritta del 27.09.2019

Un secchio contenente V = 15 L d'acqua viene tirato su da un pozzo profondo h = 18 m a velocità costante, in un tempo $\Delta t = 30$ s. Considerando la massa del secchio trascurabile rispetto a quella dell'acqua che contiene, e trascurando gli attriti, calcolare:

- a) l'intensità della forza **F** esercitata dalla persona che tira su il secchio;
- o) la potenza P erogata dalla medesima persona.

#2 Piano inclinato – 13.09.2019

Un corpo scivola giù da un piano inclinato ruvido, con pendenza di θ = 30° rispetto all'orizzontale. Nella discesa, lunga l e che fa scendere il corpo di un'altezza h, viene dissipata metà dell'energia potenziale iniziale U = mgh. Calcolare il coefficiente d'attrito dinamico μ_d tra il corpo ed il piano inclinato.


#3 Eruzione – 21.09.2018

In un'eruzione vulcanica, un frammento di roccia lavica porosa, di densità media ρ =2.8 g/cm³, viene lanciato in verticale verso l'alto con una velocità iniziale v_i =38 m/s. Il frammento, approssimabile ad una sfera di diametro d=5.2 cm, percorre all'insù un tratto h=50 m prima di fermarsi e ricadere. Calcolare:

- a) L'energia cinetica iniziale K_i del frammento di roccia;
- b) Il lavoro L_a compiuto dall'attrito dell'aria sul frammento di roccia durante la fase ascendente del moto;
- La velocità finale v_i del frammento di roccia quando esso ritorna alla quota iniziale, supponendo che il lavoro compiuto dall'attrito dell'aria sul frammento di roccia durante la fase discendente del moto sia pari all'80% di L_a .

#4 Non cadere!

Un blocco di massa m scivola da fermo sulla pista priva di attrito in figura. Qual è la minima altezza h da cui può essere liberato il blocco perché mantenga il contatto con la pista in ogni momento del uso percorso? Fornisci h in funzione del raggio r del cerchio.

Soluzioni

#1 II pozzo

- a) 147 N
- b) 88.2 W

#2 Piano inclinato

0.29

#3 Eruzione

- a) 149 J
- b) -47.9 J
- c) 24.7 m/s

#4 Non cadere

h=5r/2