Approximate String Matching

Giulia Bernardini
glulia.bernardini@units.it

Fundamentals of algorithms
a.y. 2021/2022

mailto:giulia.bernardini@units.it

From exact to approximate string matching

Often in applications we want to search a text for something that
IS similar to the pattern but not necessarily exactly the same.

This is the case, for example, when we want to search for a word
In a text taking possible typos into account; or when we want to
map a read in a genome taking into account sequencing errors.

To formalize this problem, we have to specify what does “similar”
mean. This can be done by defining a distance measure for
strings.

From exact to approximate string matching

There are several possible ways to define distances between
strings. Let us start with the simplest notion, which is a measure
of distance between two strings of the same length.

Given two strings S and T, both of length n, the Hamming
distance between S and T is the number of positions i such that

S[i]#T]i]. The following two strings have Hamming distance 3.

[ATGTTACAA
AATCTTACAC

Computing the Hamming distance between S and T requires
(trivially) O(n) time.

The Hamming distance

Hamming distance is a metric on 2", for any fixed alphabet 2 and
string length n. Let us denote by dx(S,T) the Hamming distance
between strings S and T, both in 2n.

* du(S,T)>0 for any S, T
* dH(S, T)=dn(T,S)
« du(S,T)=0 if and only if S=T

« du(S,T)<dn(S,U)+dn(U,T). Indeed, for positions i s.t. S[i]#T]i], it
must be either S[i]£Ul[i] or U[i]#T]i] (or both).

A
G

ACAC
=2: dn(U,T)=3

\ / N S I E—

The k-mismatch problem

Reference: Chapters 9.1 and 9.4 of: Gusfield, D.
Algorithms on Strings, Trees and Sequences.

The k-mismatch problem

IN: a text T of length n, a pattern P of length m<n, an integer k<m
OUT: all positions i in T such that du(T[i..i+|P|-1],P)<k

7 10 13 16
T=AMBARABACCICCICCOCCO ; P=COCCO ; k=3

COCCO
COCCO

COCCO
COCCO

Output: {7,10,13,16}

The k-mismatch problem

Theorem. Given a text T of length n, a pattern P of length m<n,
and an integer k<m, the k-mismatch problem can be solved in
O(kn) time, after an O(n+m)-time preprocessing.

Longest Common Extension queries

Problem: preprocess two strings S and T such that the following
queries can be answered efficiently.

Query: given a position i in S and a position j in T, find the length
of the longest common prefix (called Longest Common Extension)
of SJi..|S|] and T[j..|T|], denoted by LCEs x(i,)).

Example. Let S=abracadabra, T=bracco. Then:

e‘bracadabra

LCEs1(2,1)=4 |bracco
abragadabra

LCEsT(6.3)=1 piacen

abracadabra
LCEs,1(7,4)=0 br:lgco

Longest Common Extension queries

Theorem. Given a string S of length n and a string T of length m,
LCE queries can be answered in O(1) time after an O(n+m)-time
preprocessing.

The preprocessing required is to build the generalised suffix tree
of S and T, and then to preprocess it to allow constant-time LCA
queries.

Then LCEs1(i,j) is equal to the string depth of LCA(ui,v)), where uiis
the leaf of the generalised suffix tree corresponding to SJ[i..|S|], vjis
the leaf of the generalised suffix tree corresponding to T[j..[T][].

Lowest Common Ancestor queries

The lowest common ancestor (LCA) of two nodes u and v is the
deepest node that is an ancestor of both u and v.

Theorem (Bender and Farach-Colton). Any tree of size O(N) can
be preprocessed in O(N) time so that the LCA of any two nodes
can be computed in O(1) time.

The kangaroo algorithm for k-mismatch

KMISMATCH(T,PK)
sol « &;
for all i=1,...,[T]|
count«0; match«-0;
while count<k and match+count<|P|

ext<«—LCETp(match+count+i , match+count+1); r

match<«match + ext;
if match+count=|P|
sol.append(i);
else
count«-count +1;
return sol;

The k-mismatch problem

T=ACCICCICCOCCO ; P=COCCO ; k=3
LCETp(5,3)=2
O

accicciccocco$ c icc (o} $

O O O O O

icc c o occo$ iccocco$ $ cco$
O O O O O O ©C 00
11 1.14 2.6
occo$ iccocco$ 0 icc $ cco$
O O O O O O Q 0 o0 00
1.13 25 1.10 2.2

cco$ occo$ iccocco$

OOO O O O 00 00

112 24 1.9 2.1
@ 1.8 1.2

The edit distance problem

Reference: Chapters 11.2 and 11.3 of: Gusfield,
D. Algorithms on Strings, Trees and Sequences.

The edit distance between two strings

The most widely used notion of distance between strings is a
measure of distance between two strings of any lengths that
focuses on transforming one string into the other with a series of
edit operations on individual characters.

The permitted operations are deleting a character from the first
string, (denoted by D) inserting a character in the first string (l), or
replacing a character of the first string with another (R).

Given two strings S and T, both of length n, the edit distance
between S and T is the minimum number of character deletions,
insertions and replacements to transform S into T.

The following two strings have edit distance 5.
S=VINT NER
T= INTEREST

D IR RI

The edit distance between two strings

Note that there may be multiple sequences of edit operations of
minimum length that transform S into T: the edit distance is just

the minimum length.

S=VINT NER S=VINT NE R S=VINTNER
T= INTEREST T= INTEREST T= INT EREST
D IR RI D IR IR D D III

The edit distance between two strings

Note that there may be multiple sequences of edit operations of
minimum length that transform S into T: the edit distance is just

the minimum length.

S=VINT NER S=VINT NE R S=VINTNER
T= INTEREST T= INTEREST T= INT EREST
DMMMIRMRI DMMMIRMIR DMMMDMMIII

Using “M” to denote a non-operation “match” in addition to the
symbols of the three edit operations “I”, “D”, “R”, a string over the
alphabet {M,|,D,R} that describes a transformation of Sinto T is
called an edit transcript of the two strings.

The edit distance problem

Given two strings S and T, the edit distance problem is to
compute the edit distance between S and T together with an
optimal edit transcript that describes a minimum-length
transformation.

Theorem. The edit distance between a string S and a string T can
be computed in O(|S||T|) time and space.

This problem can be solved with a dynamic programming
algorithm.

Computing edit distance: recursion

Given strings S of length n and T of length m, we denote by D(i,j)
the edit distance between S[1..i] and T[1..j]. D(n,m) denotes the
edit distance between the whole S and T.

Base conditions: D(i,0)=i (i deletions) and D(0,j)=j (j insertions).

Let d:[1,n]x[1,m]—{0,1} a function such that d(i,j)=1 if S[i]#S[j],
d(i,j)=0 otherwise. Then it holds the following

Recursion: D(i,j)=min{ D(i-1,j))+1 , D(i,j-1)+1 , D(i-1,j-1)+d(i,j) } for
any i€[1,n], je[1,m].

Computing edit distance: recursion

Lemma 1. For any i€[1,n], j€[1,m], D(i,j) is either D(i-1,j)+1,
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.

Proof. Consider an optimal transcript for S[1..i] and T[1..j], and
focus on the last operation. There are four cases.

1. The last operation is the insertion of T[j] at the end of the
transformed S[1..i]. Then the transcript before the last symbol |
gives the minimum number of operations to transform S[1..i] into
T[1..j-1], and this number is precisely D(i,j-1). Adding 1 for the last
insertion, we obtain that D(i,j)=D(i,j-1)+1.

S=VINT
T= INTE

DMMMI
i=4,j=4, D(4,4)=2, D(4,3)=1

Computing edit distance: recursion

Lemma 1. For any i€[1,n], j€[1,m], D(i,j) is either D(i-1,j)+1,
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.

Proof. Consider an optimal transcript for S[1..i] and T[1..j], and
focus on the last operation. There are four cases.

2. The last operation is the deletion of S[i]. Then the transcript

before the last symbol D gives the minimum number of operations
to transform S[1..i-1] into T[1..j], and this number is precisely D(i-1,)).
Adding 1 for the last deletion, we obtain that D(i,j)=D(i-1,j)+1.

S=VINTN
T= INT

DMMMD
=5,j=3, D(5,3)=2, D(4,3)=1

Computing edit distance: recursion

Lemma 1. For any i€[1,n], j€[1,m], D(i,j) is either D(i-1,j)+1,
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.

Proof. Consider an optimal transcript for S[1..i] and T[1..j], and
focus on the last operation. There are four cases.

3. The last operation is the replacement of SJi] with T[j]. Then the
transcript before the last symbol R gives the minimum number of
operations to transform S[1..i-1] into T[1..j-1], and this number is
precisely D(i-1,j-1). Adding 1 for the last replacement, we obtain
that D(i,j)=D(i-1,j-1)+1.

S=VINT N
T= INTER
DMMMIR
1=5,3=5, D(5,5)=3, D(4,4)=2

Computing edit distance: recursion

Lemma 1. For any i€[1,n], j€[1,m], D(i,j) is either D(i-1,j)+1,
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.

Proof. Consider an optimal transcript for S[1..i] and T[1..j], and
focus on the last operation. There are four cases.

4. Finally, if the last symbol is the match S[i]=T][j]. Then
D(i,j)=D(i-1,j-1).

S=VINT
T= INT

DMMM
i=4,j=3, D(4,3)=1, D(3,2)=1

Computing edit distance: recursion

Lemma 2. For any i€[1,n], j€[1,m], D(i,j)<min{ D(i-1,j)+1 , D(i,j-1)+1,
D(i-1,j-1)+d(,]) }

Proof. With the same reasoning of the proof of Lemma 1, it suffices
to show that for each case there exists a transformation achieving
each of the three values specified in the lemma statement.

Computing edit distance: dynamic programming

The dynamic programming algorithm for computing edit distance
consists in computing all values D(i,j) bottom-up, starting from the
smallest possible i and j and storing the computed values in a
dynamic programming table that has the letters of S at the columns

and the letters of T at the rows (plus an extra row and column to
account for i=0 and j=0).

Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions.

S 1
a 2
t | 3
u 4
r S
d 6
a 7/
y 8

Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions. The other
cells are filled in using the recursive relation.

S 1 0 1
a 2 1
t | 3

u 4

r S
d 6
a 7/

y 8

Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions. The other
cells are filled in using the recursive relation. The result is in the
bottom-right cell.

S u n d a vy

0 1 2 3 4 5 6

s 1. 0 1 2 3 4 5
a/ 2 1 1 2 3 38 4
t | 3 2 2 2 3 4 4
u 4 3 2 3 3 4 5
r 5 4 3 8 4 4 5
d 6 5 4 4 3 4 5
a/7 6 5 5 4 3 4
y 8 7 6 6 5 4 3

Computing edit distance: traceback

In order to reconstruct an optimal transcript, it suffices to store
some pointers when computing the table: when computing D(i,j)
we store a pointer from cell (i,)) to cell (i-1,j) if D(i,))=D(i-1,j))+1; we
store a pointer to cell (i,j-1) if D(i,j)=D(i,j-1)+1; we store a pointer to
cell (i-1,j-1) if D(i,))=D(i-1,j-1)+d(i,)).

We can then follow any pointer path from cell (m,n) to cell (0,0).
This way we reconstruct a transcript backwards, writing an | every
time we follow a vertical pointer, a D every time we follow a
horizontal pointer, and a R or a M when we follow a diagonal
pointer, depending on the value of function d.

Computing edit distance: dynamic programming

The optimal transcript highlighted in grey is MIIMRMMM,
corresponding to the alignment

S unday

S u n d a vy
Saturday
0 1 2 3 4 5 6
MIIMRMMM
s/1 0 1 2 3 4 5
a 2 1 1 2 3 3 4
t 3 2 2 2 3 4 4
u/ 4 3 2 3 3 4 5
r 5 4 3 8 4 4 5
d 6 5 4 4 3 4 5
a 7 6 5 5 4 3 4
y 8 7 6 6 5 4 3

