
Approximate String Matching
Giulia Bernardini


giulia.bernardini@units.it 

Fundamentals of algorithms

a.y. 2021/2022

mailto:giulia.bernardini@units.it


From exact to approximate string matching
Often in applications we want to search a text for something that 
is similar to the pattern but not necessarily exactly the same.

This is the case, for example, when we want to search for a word 
in a text taking possible typos into account; or when we want to 
map a read in a genome taking into account sequencing errors.

To formalize this problem, we have to specify what does “similar” 
mean. This can be done by defining a distance measure for 
strings.



From exact to approximate string matching
There are several possible ways to define distances between 
strings. Let us start with the simplest notion, which is a measure 
of distance between two strings of the same length.


Given two strings S and T, both of length n, the Hamming 
distance between S and T is the number of positions i such that 

S[i] T[i]. The following two strings have Hamming distance 3.


TATGTTACAA

AATCTTACAC


Computing the Hamming distance between S and T requires 
(trivially) O(n) time.

≠



The Hamming distance
Hamming distance is a metric on Σn, for any fixed alphabet Σ and 
string length n. Let us denote by dH(S,T) the Hamming distance 
between strings S and T, both in Σn.

• dH(S,T) 0 for any S,T

• dH(S,T)=dH(T,S)

• dH(S,T)=0 if and only if S=T

• dH(S,T) dH(S,U)+dH(U,T). Indeed, for positions i s.t. S[i] T[i], it 

must be either S[i] U[i] or U[i] T[i] (or both). 


S=TATGTTACAA

U=TATCTTAGAA

T=AATCTTACAC


dH(S,T)=3; dH(S,U)=2; dH(U,T)=3
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The k-mismatch problem
Reference: Chapters 9.1 and 9.4 of: Gusfield, D. 

Algorithms on Strings, Trees and Sequences.



The k-mismatch problem
IN: a text T of length n, a pattern P of length m<n, an integer k<m

OUT: all positions i in T such that dH(T[i..i+|P|-1],P) k


T=AMBARABACCICCICCOCCO ; P=COCCO ; k=3 
        COCCO 

         

Output: {7,10,13,16}
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The k-mismatch problem
Theorem. Given a text T of length n, a pattern P of length m<n, 
and an integer k<m, the k-mismatch problem can be solved in 
O(kn) time, after an O(n+m)-time preprocessing.




Problem: preprocess two strings S and T such that the following 
queries can be answered efficiently.

Query: given a position i in S and a position j in T, find the length 
of the longest common prefix (called Longest Common Extension) 
of S[i..|S|] and T[j..|T|], denoted by LCES,T(i,j).


Example. Let S=abracadabra, T=bracco. Then:


LCES,T(2,1)=4


LCES,T(6,3)=1


LCES,T(7,4)=0

Longest Common Extension queries

abracadabra
bracco

abracadabra
bracco

abracadabra
bracco



Theorem. Given a string S of length n and a string T of length m, 
LCE queries can be answered in O(1) time after an O(n+m)-time 
preprocessing.


The preprocessing required is to build the generalised suffix tree 
of S and T, and then to preprocess it to allow constant-time LCA 
queries.


Then LCES,T(i,j) is equal to the string depth of LCA(ui,vj), where ui is 
the leaf of the generalised suffix tree corresponding to S[i..|S|], vj is 
the leaf of the generalised suffix tree corresponding to T[j..|T|].

Longest Common Extension queries



The lowest common ancestor (LCA) of two nodes u and v is the 
deepest node that is an ancestor of both u and v.

Theorem (Bender and Farach-Colton). Any tree of size O(N) can 
be preprocessed in O(N) time so that the LCA of any two nodes 
can be computed in O(1) time.

Lowest Common Ancestor queries



The kangaroo algorithm for k-mismatch
kMISMATCH(T,P,k)


sol ;

for all i=1,…,|T|


count 0; match 0;

while count k and match+count<|P|


ext LCET,P( match+count+i , match+count+1 );

match match + ext;

if match+count=|P| 


sol.append(i);

else 

count count +1;

return sol;

← ∅
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The k-mismatch problem
T=ACCICCICCOCCO ; P=COCCO ; k=3 
LCET,P(5,3)=2



The edit distance problem
Reference: Chapters 11.2 and 11.3 of: Gusfield, 
D. Algorithms on Strings, Trees and Sequences.



The edit distance between two strings
The most widely used notion of distance between strings is a 
measure of distance between two strings of any lengths that 
focuses on transforming one string into the other with a series of 
edit operations on individual characters.

The permitted operations are deleting a character from the first 
string, (denoted by D) inserting a character in the first string (I), or 
replacing a character of the first string with another (R).


Given two strings S and T, both of length n, the edit distance 
between S and T is the minimum number of character deletions, 
insertions and replacements to transform S into T.

The following two strings have edit distance 5.

S=VINT NER 
T= INTEREST 
  D   IR RI



The edit distance between two strings
Note that there may be multiple sequences of edit operations of 
minimum length that transform S into T: the edit distance is just 
the minimum length.


S=VINT NER 
T= INTEREST 
  D   IR RI

S=VINT NE R 
T= INTEREST 
  D   IR IR

S=VINTNER 
T= INT EREST 
  D   D  III



The edit distance between two strings
Note that there may be multiple sequences of edit operations of 
minimum length that transform S into T: the edit distance is just 
the minimum length.


Using “M” to denote a non-operation “match” in addition to the 
symbols of the three edit operations “I”, “D”, “R”, a string over the 
alphabet {M,I,D,R} that describes a transformation of S into T is 
called an edit transcript of the two strings.

S=VINT NER 
T= INTEREST 
  DMMMIRMRI

S=VINT NE R 
T= INTEREST 
  DMMMIRMIR

S=VINTNER 
T= INT EREST 
  DMMMDMMIII



The edit distance problem
Given two strings S and T, the edit distance problem is to 
compute the edit distance between S and T together with an 
optimal edit transcript that describes a minimum-length 
transformation.

Theorem. The edit distance between a string S and a string T can 
be computed in O(|S||T|) time and space.


This problem can be solved with a dynamic programming 
algorithm.



Computing edit distance: recursion
Given strings S of length n and T of length m, we denote by D(i,j) 
the edit distance between S[1..i] and T[1..j]. D(n,m) denotes the 
edit distance between the whole S and T.


Base conditions: D(i,0)=i (i deletions) and D(0,j)=j (j insertions).

Let d:[1,n]x[1,m] {0,1} a function such that d(i,j)=1 if S[i] S[j], 
d(i,j)=0 otherwise. Then it holds the following


Recursion: D(i,j)=min{ D(i-1,j)+1 , D(i,j-1)+1 , D(i-1,j-1)+d(i,j) } for 
any i [1,n], j [1,m].

→ ≠
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Computing edit distance: recursion
Lemma 1. For any i [1,n], j [1,m], D(i,j) is either D(i-1,j)+1, 
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.


Proof. Consider an optimal transcript for S[1..i] and T[1..j], and 
focus on the last operation. There are four cases.

1. The last operation is the insertion of T[j] at the end of the 
transformed S[1..i]. Then the transcript before the last symbol I 
gives the minimum number of operations to transform S[1..i] into 
T[1..j-1], and this number is precisely D(i,j-1). Adding 1 for the last 
insertion, we obtain that D(i,j)=D(i,j-1)+1.

∈ ∈

S=VINT 
T= INTE 
  DMMMI 
i=4,j=4, D(4,4)=2, D(4,3)=1



Computing edit distance: recursion
Lemma 1. For any i [1,n], j [1,m], D(i,j) is either D(i-1,j)+1, 
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.


Proof. Consider an optimal transcript for S[1..i] and T[1..j], and 
focus on the last operation. There are four cases.

2. The last operation is the deletion of S[i]. Then the transcript 
before the last symbol D gives the minimum number of operations 
to transform S[1..i-1] into T[1..j], and this number is precisely D(i-1,j). 
Adding 1 for the last deletion, we obtain that D(i,j)=D(i-1,j)+1.

∈ ∈

S=VINTN 
T= INT 
  DMMMD 
i=5,j=3, D(5,3)=2, D(4,3)=1



Computing edit distance: recursion
Lemma 1. For any i [1,n], j [1,m], D(i,j) is either D(i-1,j)+1, 
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.


Proof. Consider an optimal transcript for S[1..i] and T[1..j], and 
focus on the last operation. There are four cases.

3. The last operation is the replacement of S[i] with T[j]. Then the 
transcript before the last symbol R gives the minimum number of 
operations to transform S[1..i-1] into T[1..j-1], and this number is 
precisely D(i-1,j-1). Adding 1 for the last replacement, we obtain 
that D(i,j)=D(i-1,j-1)+1.

∈ ∈

S=VINT N 
T= INTER 
  DMMMIR  
i=5,j=5, D(5,5)=3, D(4,4)=2



Computing edit distance: recursion
Lemma 1. For any i [1,n], j [1,m], D(i,j) is either D(i-1,j)+1, 
D(i,j-1)+1, or D(i-1,j-1)+d(i,j). There are no other possibilities.


Proof. Consider an optimal transcript for S[1..i] and T[1..j], and 
focus on the last operation. There are four cases.

4. Finally, if the last symbol is the match S[i]=T[j]. Then 
D(i,j)=D(i-1,j-1).

∈ ∈

S=VINT 
T= INT 
  DMMM 
i=4,j=3, D(4,3)=1, D(3,2)=1



Computing edit distance: recursion
Lemma 2. For any i [1,n], j [1,m], D(i,j) min{ D(i-1,j)+1 , D(i,j-1)+1 , 
D(i-1,j-1)+d(i,j) }


Proof. With the same reasoning of the proof of Lemma 1, it suffices 
to show that for each case there exists a transformation achieving 
each of the three values specified in the lemma statement.

∈ ∈ ≤



Computing edit distance: dynamic programming

The dynamic programming algorithm for computing edit distance 
consists in computing all values D(i,j) bottom-up, starting from the 
smallest possible i and j and storing the computed values in a 
dynamic programming table that has the letters of S at the columns 
and the letters of T at the rows (plus an extra row and column to 
account for i=0 and j=0). 




Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions.




Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions. The other 
cells are filled in using the recursive relation. 

0

1

1



Computing edit distance: dynamic programming

Column and row 0 are filled in using the base conditions. The other 
cells are filled in using the recursive relation. The result is in the 
bottom-right cell.



Computing edit distance: traceback
In order to reconstruct an optimal transcript, it suffices to store 
some pointers when computing the table: when computing D(i,j) 
we store a pointer from cell (i,j) to cell (i-1,j) if D(i,j)=D(i-1,j)+1; we 
store a pointer to cell (i,j-1) if D(i,j)=D(i,j-1)+1; we store a pointer to 
cell (i-1,j-1) if D(i,j)=D(i-1,j-1)+d(i,j).


We can then follow any pointer path from cell (m,n) to cell (0,0). 
This way we reconstruct a transcript backwards, writing an I every 
time we follow a vertical pointer, a D every time we follow a 
horizontal pointer, and a R or a M when we follow a diagonal 
pointer, depending on the value of function d.



Computing edit distance: dynamic programming

The optimal transcript highlighted in grey is MIIMRMMM, 
corresponding to the alignment

S  unday 
Saturday 
MIIMRMMM


